A Performance Perspective on Function Virtualization for Small Cells in 5G Networks

John N. Daigle

wcdaigle@olemiss.edu

Department of Electrical Engineering University of Mississippi

J. N. Daigle ITC'29 Keynote Presentation 5 September 2017

イロト イポト イヨト イヨト

Overview

- Objective Statement
- 2 Small Cells and Virtualization
- Partitioning Functions and Virtualizing
- Application Scenario
- 5 Raptor Code-Based Content Delivery Paradigm
- 6 Realities of Mobile Communications
- What We Expect to Do Next?
- Conclusions

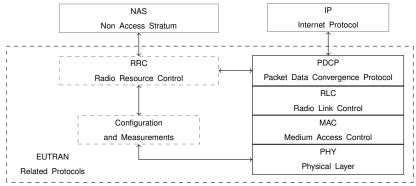
・ 回 ト ・ ヨ ト ・ ヨ ト

Objective Statement

To share some thoughts on network functions virtualization

- The current state of the art as it applies to small-cell deployment
- Performance issues in wireless cellular systems
- Some things that can be done to help to realize some of the potential of small cell deployment

イロト イポト イヨト イヨト

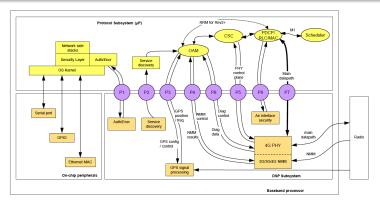

Motivation for Small Cells and Virtualization

- Lower footprint and energy consumption
- Facilitate remote management and reduce operation complexity
- · · · long list
- Facilitates slicing: multiple virtual networks on single physical infrastructure. Each slice
 - is service- and vendor-specific
 - can be defined on-the-fly using SDN as a tool
 - can be provisioned on-the-fly using some kind of orchestrator
 - can be instantiated on-the-fly by some kind of orchestrator through the allocation of infrastructure resources
 - has resources that are isolated from all other virtual networks
 - enjoys standards-based, on-the-fly, self-optimization
- Slicing "potentially offers a viable mechanism for operators to extract the most potential from NFV/SDN, an opportunity of mind-boggling complexity." (STL Partners, Mar 2017)

Central Idea

- Current LTE network architecture has only two elements
 - Evolved Packet Core (EPC)
 - E-UTRAN Node B (eNB).
- Function virtualization splits the functionality of eNB into two pieces
 - **PNF**, Functions implemented in a remote radio head that connects directly to user equipment over RF
 - VNF, A collection of software, or virtual functions, that implements all other functions needed to manage delivery of services
- Fronthaul: Mechanisms to communicate between the PNF and VNF
- Issues
 - How to organize the processing into separate functional components
 - How to decide which parts to virtualize
 - Decide where to host functionality to assure goals can be achieved
 - Decide how to host functionality to assure goals can be achieved

EUTRAN–Air Interface Protocol for User Equipments (UE)

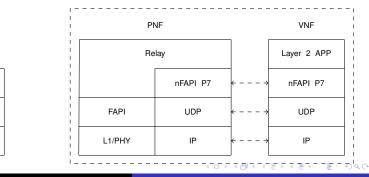

Functionality inside EUTRAN is the target functionality to virtualize!

< 🗆 > < 🗇 >

ヨト・モラト

э

Organization of Functionality



SCF 082: SCF Functional Application Platform Interface (FAPI)

J. N. Daigle ITC'29 Keynote Presentation 5 September 2017

▲ 프 ▶ 문

Non-Virtualized versus Virtualized–P7 Example

Virtualized eNB

Standard eNB

Layer 2 APP FAPI L1/PHY

J. N. Daigle ITC'29 Keynote Presentation 5 September 2017

Which Services Benefit?

- Venue specific, e.g. sports events
- Enterprise networks
- Mobile telemedicine services
- Content delivery
- Mostly services that have not yet been thought up

What's the difference ... we have most of this stuff now!

- Slicing
- Install networks on-the-fly when and where needed

Environment

- State is a area of, say, 300 by 500 km
- A small number of major medical facilities accessible in the state
- Numerous small hospitals distributed around the state
- Generally sparse population, with hospitals relatively small
- Only limited special equipment and skills at small hospitals
- Some patients must be transported periodically to major medical facilities for specialized treatment
- Some patients need transportation urgently

イロト イポト イヨト イヨト

Telemedicine Application (continued)

Medical vehicle transporting multiple patients to distant medical center

- Route is through a sparsely populated rural area
 - Small communities along the route
 - Generally served by macro cells
 - Highly varying coverage due to large tree canopy
 - Some residences along the route have
 - Internet service
 - Small cells attached to Internet service to improve access

Communications between mobile and medical center

- Real-time two-way voice for coordination of services
- Video streaming of patient conditions in uplink
- Streamed sensor data of patient vital signs in uplink
- Bi-directional file transfer

ヘロン ヘアン ヘビン ヘビン

ъ

Service Delivery Protocol Needs

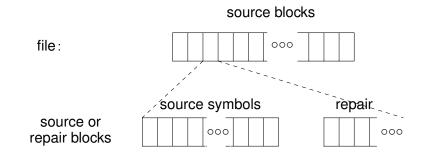
Need ability to

- Capitalize on all available communication resources
 - Maximal possible content transfer given resources
 - Best integrity of received content
- Survive random periods of communication drop-outs
- Continue interrupted activities seamlessly
- Cope with highly variable one-way and round-trip delays

Fountain codes, specifically RaptorQ codes, may be helpful.

ヘロト ヘ戸ト ヘヨト ヘヨト

Fountain Coding and University of Mississippi


We are passionate about understanding

- fountain codes and their derivatives, specifically RaptorQ
- the potential role of fountain codes for all types of content delivery in communications networks of all types
- development of prototypes of content delivery protocols to address specific paradigms

We have interesting results in the areas of

- Peer-to-peer content delivery
- Content transfer over mobile cellular phone hotspots (plural)
- Content transfer over simultaneous DSL and cell-phone hot spot
- Deep space communications, e.g. Mars to Earth

High-level View of Raptor Coding

ヘロト ヘワト ヘビト ヘビト

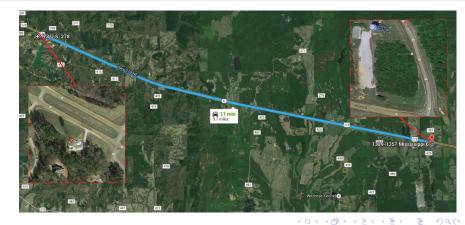
э

High-level View of Raptor Coding (concluded)

- Content into K chunks called source symbols (Ss)
- Encoded symbols (Es) are pseudorandom linear combinations of Ss
 - \rightarrow An encoding symbol is a linear equation!
 - \rightarrow Source can generate $\gg K$ encoded symbols
 - ightarrow Coding routine yields linear independence of pprox any K Es
- Receiver collects $K + \epsilon$ linear equations (Es)
- Receiver throttles sender
- Symbol identifiers (ESIs) allow formulation of linear system
- Receiver solves linear system to recover source symbols

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

Stationary Measurements Tethered over LTE Hotspot


SFTP Time(s)	RaptorQ Time (s)	
22.966	23.069	
26.007	22.945	
25.922	22.724	
23.782	22.921	
25.369	22.805	
26.291	22.964	
24.501	23.153	
24.139	22.891	
23.448	23.060	
24.736	23.468	
24.716	23.000	
7.625	8.194	
	22.966 26.007 25.922 23.782 25.369 26.291 24.501 24.139 23.448 24.736 24.716	

J. N. Daigle ITC'29 Keynote Presentation 5 September 2017

ヘロア 人間 アメヨア 人口 ア

э

A Segment of Mississippi Highway

J. N. Daigle ITC'29 Keynote Presentation 5 September 2017

Measured data transfer rates for consecutive runs

	Dat	a rates in M	b/s	
Transfer #	SFTP	SFTP	RaptorQ	RaptorQ
	(W to E)	(E to W)	(W to E)	(E to W)
1	6.731	13.461	19.977	4.770
2	12.564	11.778	4.967	15.640
3	5.093	6.980	4.094	13.872
4	6.282	5.543	5.442	9.936
5	6.731	1.327	6.378	2.492
6	7.248	3.846	6.503	7.363
7	1.545	6.079	5.187	5.893
8	4.959	6.980	5.068	4.127
9	4.383	6.282	9.997	4.678
10	10.470	6.282	9.101	2.392
11	8.974	2.771	17.610	6.731
12	15.705		17.013	
			6.929	
Average	5.410	4.430	7.027 < 🗆	▶ 5.056 < ≣
	J. N. Daigle ITC'29 Keynote Presentation 5 Septen			

Conclusions About Present Mobile Reality

- Provider maps show 100% LTE coverage
- Average transfer rates for the exact same file over route
 - Range from about 3 to 20 Mb/s
 - Depend upon the protocol
 - Vary widely from location to location
- US 278 is a major road; what about Rte 334?
 - Can get steady but slow file transfer using RaptorQ
 - SFTP doesn't work at all; just freezes
- Difficult to see how performance guarantees can be made with macro cell infrastructure

ヘロト 人間 ト ヘヨト ヘヨト

Can Virtualization and Small Cells Help?

Small Cells? Probably depends on

- available or achievable landline coverage
- achievable density based on cost
- ability to respond quickly to coverage holes


Virtualization? Probably-depends upon

- economically achievable fronthaul bit rates and latencies
- controlling costs of remote radio heads

Remember

- Coverage is supposed to be ubiquitous
- There are many roads
- Population is sparse; 3 million people over 150,000 km²

The Importance of Hands-on

J. N. Daigle ITC'29 Keynote Presentation 5 September 2017

ヘロト ヘワト ヘビト ヘビト

э

Develop Expertise with Functional Virtualization

- Get a kubernetes cluster up and running
 - This can be done cheaply using single board computers, e.g. Raspberry Pis
 - Contains functions to orchestrate network functional virtualization using containers
 - Processing nodes run Docker to process containers
- Define some realistic processing scenarios
- Deploy some parallel processing chains connected
 - Locally
 - Through Internet and openly available platforms
- Develop models to evaluate latencies
- Perform measurements to gain some insight

Serious Effort on Problem Development

- Definition of real scenarios need continuing effort
- Develop simple scenarios that mimic real virtualized processing and communication needs
- Gain some insight on ways to achieve isolation of services within a shared resource environment
- Develop performance models that capture at least some important properties for shared resouce management
- Test performance model results against measurement results from implementations

ヘロト 人間 ト ヘヨト ヘヨト

Conclusions

- Remember slicing "potentially offers a viable mechanism for operators to extract the most potential from NFV/SDN, an opportunity of mind-boggling complexity."
 - \Rightarrow Don't forget the "mind-boggling complexity" part!
- There appears to be little chance that ubiquitous performance guarantees
 - Have any hope in absence of small cell deployment
 - Can be achieved without some level of functional virtualization
- Ubiquitous service guarantees are likely to be expensive
- Enormous opportunity for performance evaluation towards real-time management
- Little chance of significant contribution without serious problem definition effort