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Abstract—There is a form of unfairness phenomenon 

found in data center networks,which was identified by P. 

Prakash. This phenomenon shows that the throughput of 

a flow with smaller RTT is less than the throughput of a 

flow with large RTT. This is completely contrary to the 

classic TCP protocol. P. Prakash gives an explanation 

based on port blackout theory. However, after careful 

analysis, we have found another reason for this unusual 

phenomenon, which may be more important. This is 

because of an unfair distribution of the flows with 

different RTT on the physical link and the differences in 

congestion window size when finishing the current block 

transmission. In this paper, we develop an analytical 

model for the goodput in the outcast behavior. Then, we 

design a window notification based protocol to address 

this phenomenon. By using the mean value of the 

congestion window measurement, we unified the 

congestion window size for flows with different RTT, 

which improves the goodput of the flows with small RTT. 

By designing several experiments using the ns-2 simulator, 

we demonstrate that our explanation of outcast 

phenomenon is correct. Furthermore, we verify the 

effectiveness of the proposed algorithms.  
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I.  INTRODUCTION  

There isn’t a standard definition for a data center. 
Generally speaking, a data center consists of facilities for 
placement of computer systems and related components, such 
as storage systems, the environment and security equipment 
[1]. In recent years, the BCube architecture[2] and the Fat-tree 
architecture shown in Fig. 1 are widely used in the data center 
[3] . 

 
Fig. 1.  Fat-tree framework topology diagram[6]. 

Fat-tree framework for data center was presented at the 

ACM SIGCOMM 2008 conference. In data center networks, 

fat-tree architecture is widely used and researched for its 

scalable characteristics [8]. Fat-tree framework has a special 

routing strategy. This strategy allows receivers to get data 

from senders with fixed links [3].  

The main features of a data center network comprises: 

high-speed links, the lower switch propagation delay and 

limited cache. The TCP protocol has not only become the 

most successful transport layer protocol on the Internet, but 

also widely used in data center networks. However, traffic 

load and link environments are different between data center 

network and the Internet, the TCP protocol is not fully 

applicable for data center networks because the performance 

of TCP in data centers is different from that in the Internet. It 

is worth while researching the corresponding issues. Outcast is 

one of the special problems from using the TCP protocol in 

data center network.  

P. Prakash first described the outcast phenomenon[6]. In 

that paper, he also validated the outcast problem in different 

data center testbeds and analyzed the reason for this 

phenomenon. The main reason he believed is the port blackout 

phenomenon. Port blackout can be essentially explained as 

follows. When a series of packets enters the switch from 

different input ports, they must compete for the only output 

port. In these different input ports, some of them may luckily 

get into the switch cache, while the rest of them could only be 

discarded, since the queue in the output port is full. 

II. THE REASON OF THE OUTCAST PHENOMENON 

In order to look inside for the essential reason for this 

outcast, we set up a network in Fig. 2, which consisted of three 

senders, three switches and one receiver. 

 
Fig. 2.  The unfairness on the distribution of flows on different links.[4]. 



One of the physical links carries 12 flows, one carries 2 

flows and another one carries only one flow. This simplified 

experiment is based on the routing algorithm which is used by 

the fat-tree topology[3]. We adopt the routing algorithm which 

is used by the fat-tree topology[3]. We also know that the 

receiver cannot ask for the next data block until it receives all 

current blocks. Based on the information above, we can 

determine the reason for this outcast phenomenon.  

(1). When the client requests data blocks from the servers, we 

can confirm that the flows with small RTT (round trip time) 

can complete earlier than the flows with large RTT. This is 

mainly because when a connection is newly created, the 

congestion cannot immediately appear, and according to the 

characteristics of data center applications, only when all 

senders complete the transmission of the current data block, 

can the receiver request the next data block. Thus, the senders 

with small RTT can only wait until the other senders with 

large RTT finish the transmission of their current data block, 

then they can send the next data block. In this case, the 

number of flows on the bottleneck decreases. That means each 

sender can obtain more bandwidth. Such a direct consequence 

of this event is that when these senders finish sending the data 

packets, they would have a larger congestion window.  

Conclusion: After the end of the first data block 

transmission, the situation is that flows with small RTT have a 

smaller congestion window, while flows with large RTT have 

a larger congestion window. 

(2). We assume that when the second data block starts sending, 

the network suffers packet loss. From the overall observation, 

each input port has the same probability of whether their 

packets are discarded, since we assume that the incoming data 

packets follows a Poisson distribution. Assume else that each 

input port loses k packets, due to the cache for the bottleneck 

switch is full. We can see that if there are more flows on the 

link, then less packets, on average, get lost on each connection; 

conversely, the fewer flows on a link, the more packets on 

average get lost on each connection.  

Conclusion: When packets loss occurs, flows with small 

RTT lose more packets than the flows with large RTT. 

(3). Combining the fast transmission event with the first and 

second conclusions, we can see that because the congestion 

window of the flows with small RTT is small and they lose 

more packets, they are more likely to lose the packets whose 

corresponding ACK is not received in the current congestion 

window. This will obviously lead to timeout. At the same time, 

flows with large RTT are less likely to suffer timeout except 

they just lose one of the last three packets, since their 

congestion windows are large while they suffer less in packet 

loss. According to the analysis in section Ⅲ, timeout and 

RTOmin time have the largest impact on the whole throughput 

of the network.  

Conclusion: When flows with small RTT suffer packet 

loss, they are more likely to be affected, which will result in a 

decrease of throughput. Conversely, flows with large RTT will 

not show similar behavior. 

From the three conclusions above, we can see that the 

substantial causes of the outcast phenomenon are the uneven 

distribution of flows with different RTT on the physical links 

and the characteristics of the applications which run on the 

data center network. These two reasons work together to make 

the final result -- the throughput of flows with small RTT is 

less than the flows with large RTT. In the next section, we will 

give a simple mathematical model on the outcast phenomenon. 

III. THROUGHPUT MODEL OF THE OUTCAST 

PHENOMENON 

In this section, we shall respectively develop an 

analytical model for throughput of flows with small RTT and 

flows with large RTT to reinterpret the outcast phenomenon. 

In our model, we only describe the congestion avoidance and 

fast retransmit states. We assume that these are the only flows 

with large RTT and small RTT we defined existing in the 

bottleneck link, without any other data flow. Our model uses 

the fat-tree architecture[3]. The upper part of the fat-tree 

architecture is used the core switches and the middle part is 

used for the aggregation switches. The flows with larger RTT 

come from servers that cannot communicate with the target 

node through the same aggregation switch, so they must go 

through the upper core switch . The flows with small RTT 

come from servers which communicate with the same 

aggregation switch with the target node ,so they do not need to 

use the upper core switch. There are lots of servers connected 

to the upper core servers and few servers can connect to the 

same aggregation switch with the target node. So the number 

of the flows with large RTT is greater than the number of the 

flows with small RTT. 

Assume that there are N senders, including Ns senders with 

small RTT and Nl senders with large RTT. Since the 

differences of RTT are mainly reflected on the time from the 

senders to the bottleneck switch, we define the round trip 

delay of the flows with small RTT as 
s

RTT  and delay of the 

flows with large RTT as 
l

R T T . The default retransmission 

timeout value is RTO . The bandwidth of the bottleneck is 

C spkts / , and the buffer of the bottleneck switch is 

B pkts . The payload of each packet is 
pS bytes . Since we 

only consider the congestion avoidance state, we define s

iW  

as the congestion window size of the flows with small RTT in 

the i
th
 round, and l

i
W  as the congestion window size of the 

flows with large RTT in the i
th

 round. We further define 
iR  as 

the bottleneck delay on the i
th

 round. 
iQ is the queue length of 

bottleneck buffer when the i
th

 round is finished. 

First we calculate the dynamic changes for the queue 

length. During the congestion avoidance phase, when the 

transmission is in the i
th

 round, sN  flows with small RTT 

and lN  flows with large RTT send data packets to a single 

receiver. So we can calculate the number of packets when the 

i
th

 round is finished. 

{ }1m in ( ) ,
s l

i i s i l i iQ Q N W N W C R B
+

−= + × + × − × (1) 

Where
+a  means if 0>a , aa =+

; else 0=+a . 



Since the switch uses the first in first out method to 

manage its queue in the buffer and the propagation delay is a 

fixed value, we define it as D. We can show that the 

propagation delay in the i
th

 round plus the queuing delay is the 

bottleneck delay in the i
th

 round iR . 

1( ) /i iR D Q Cϕ−= + +                             (2) 

whereφ  means a random variable when the queuing delay 

exceeds
1

/
i

Q C
−

. 

A. Throughput model of flows with small RTT 

In this section, we calculate the goodput of the flows with 

small RTT. First, we calculate the maximum size of the 

congestion window in the congestion avoidance state. As we 

all know, after the end of each round, the congestion window 

size will increase by one maximum segment size. This 

situation repeats until there is one packet getting lost in the n
th

 

round. Then we can consider that the time from the first round 

to the n
th

 rounds makes up the congestion avoidance phase. 

We define s

n
W  as the maximum congestion window size of 

flows with small RTT in this phase, l

n
W  as the maximum 

congestion window size of flows with large RTT. When the 

window reaches to s

n
W , there are s

n
d  packets getting lost. We 

take a maximum possible value for the number of lost packets, 

i.e. the whole window s

n
W . The number of packets lost we 

calculate is from the period once the congestion window size 

is halved to the next time the congestion window halved. In 

this way, we can calculate the total number of packets sent in 

this stage s

n
S . 

( )
2 2

0

3 3

2 8 4

s
nW

s
s s sn
n n n

j

W
S j W W

=

 
= + = + 

 
∑

    (3) 

So we can get the number of successfully transmitted data 

packets s

n
Y  during the congestion avoidance phase. 

( )
23 1

8 4

s s s s s

n n n n nY S d W W= − = −                   (4) 

From the equation 1 and equation 2, we can obtain 

{ }m in ( ) ,s l

i s i l iQ N W N W C D Bϕ += × + × − × −   (5) 

We can calculate the difference between iQ  and 1−iQ  to 

get the following result. 

1i i s lQ Q N N N−− = + =                         (6) 

So in the i
th

 round, the first packet suffers the delay as 

1
/

i
Q C

−
.  And the last packet suffers the delay as 

1
( ) /

i
Q N C

−
+ . Since the arrival and departure rate of the 

buffer is the same, we can be obtain the expectation of ϕ  

as: ( ) / 2E Nϕ = . 

m in ,
2

s l

i s i l i

N
Q N W N W C D B

+   
= × + × − × −  

   

   (7) 

1 1( ) /s l

i s i l iR N W N W C− −= × + ×                        (8) 

Next, we calculate the duration of the congestion 

avoidance phase. Equation (8) represents the delay time of the 

bottleneck link. Since the respective slow start thresholds[6] at 

this time are / 2s

nW and / 2l

nW , we can see that the 

congestion windows in the last round of the slow start phase 

are 
0 / 4s s

nW W=  and 
0 / 4l l

nW W= . Therefore, the 

bottleneck link congestion avoidance phase delay time is 

shown below: 

( ) ( )
1

2 2

1

3 3

8 8

n
s s l ls l

n i n n n n

i

N N
T R W W W W

C C

+

=

   
= = + + +   

   
∑

 (9) 

Since the retransmission timeout is RTO, we can get the 

total time as below. 

( )
s n s l
T T RTO n RTT RTT= + + × +             (10) 

We can obtain the goodput equation.  

( )

( ) ( ) ( )

2

2 2

3 1

8 4

3 3

8 8

s s

s n n s p

n
s

s s l ls ls
n n n n s l

W W N S
Y

G
N NT

W W W W RTO n RTT RTT
C C

 
− × × 

 
= =

   
+ + + + + × +   
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(11) 

B. Throughput model of flows with large RTT 

The situation of the flows with large RTT is similar to the 

flows with small RTT. However, when packet loss occurs, the 

flows with large RTT would not get into a timeout event. 

Because the congestion window size is large and it won’t lose 

all the packets. Conservatively, they turn into the fast 

retransmission state. So we choose the minimum number of 

packets lost, i.e. one data packet, when these flows suffer 

packet loss. We know in the fast retransmission phase, / 2l

n
W  

packets are resent. l

n
d  is the number of lost packets.  

( ) ( )
2 23 3 3 5

1 1
8 4 2 8 4

l l l

n n n

l
l l l ln
n n n n

Y S d

W
W W W W

= −

= + + − = + −

(12) 

The total congestion avoidance duration of the flows with 

large RTT can be calculated as the flows with small RTT. The 

difference is that the flows with large RTT turn into fast 

retransmission instead of timeout. The extra time that the 

flows with large RTT need is the time for 

retransmitting / 2l

nW  packets and the propagation delay D. 

Then we can obtain the total duration time as below. 

( )
l n s l
T T D n R T T R T T= + + × +                  (13) 

We can get the goodput equation of flows with large RTT. 

( )

( ) ( ) ( )

2

2 2

3 5
1

8 4

3 3

8 8

l l

l n n l p

n
l

s s l ls ll
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W W N S
Y
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W W W W D n RTT RTT
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   
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(14) 

Now we can find out that the main differences are on the 

window size, the number of flows, and the waiting time. In the 

analysis of the previous section, we already know that 
s l

n n
W W< and 

s l
N N< . Obviously, we have DRTO > . 

Finally, we have the conclusion that the goodput of flows with 

small RTT is smaller than flows with large RTT. 

IV. A WINDOW SIZE NOTIFICATION BASED 

ALGORITHM 

From the analysis above, it can be seen, in order to solve 

the outcast phenomenon, we must make the congestion 

window of the data flows as consistent as possible. Now we 



introduce a window size notification based algorithm TCP-

CWR (TCP congestion window replacement). The senders 

send their congestion window size to the receiver when they 

finish the transmission of the current data block. The receiver 

calculates the average window size according to the size 

provided by the senders and sends back to each sender. The 

senders adjust their congestion window to the value calculated 

by the receiver. This would make all the senders have the 

same congestion windows when a new data block starts to 

send. The following discussion describes the process. 

1). After the transmission of the current data block, the 

applications running on the senders will send the size of the 

current congestion window to the receiver. Before the receiver 

gets this message, it does not request the next data block. 

2). When the receiver gets all the messages carrying the 

window size, it calculates the mean value of the congestion 

window. Then the receiver sends the new data block request 

packet attached with this value to the senders. 

1
( ) /

N

ii
cwnd cwnd N

=
= ∑                        (15) 

3) After receiving this message, the senders set their 

congestion window value to the target value, and then send 

data packets normally. 
When congestion occurs in the network and it results in the 

packet loss, we have adjusted the congestion window, flows 
with small RTT would not lose the entire unACKed packets. 
This means that they could enter into the fast retransmission 
phase, which won’t affect performance seriously. 

V. SIMULATION RESULTS 

We used the NS-2 simulation platform to do the simulation 

experiments. We set up a simplified topology which is shown 

in Fig. 2. 

When we chose our experiment parameters, we strictly 

followed the parameters in Prakash’s experiment. So we set 3 

flows with RTT time 400 sµ  , and 12 flows with RTT time 

800 sµ .In the experiment, we observed their goodput and the 

number of timeouts with their RTT time. The results are 

shown in Fig. 3 and Fig. 4 . 

 
Fig. 3.  The relationship between RTT and Goodput. 

 
Fig. 4.  The relationship between RTT and the number of timeout 

From Fig. 3, we find that a quantitative relationship 

between goodput and RTT, i.e. the goodput of flows with 

small RTT is less than for flows with large RTT. This means 

the outcast phenomenon occurs in our simplified testbed. 

From Fig. 4, we also can see that flows with small RTT suffer 

30 timeouts, while flows with large RTT only suffer 2 

timeouts. 

 

Fig. 5.  The relationship between RTT and goodput. 

From the results in Fig. 5, we can find that, after the 

adjustment of our algorithm, the goodput of flows with small 

RTT is almost the same with as flows with large RTT. 

VI. CONCLUSION 

In this paper, we discussed the essential reasons for the 

outcast phenomenon. Through analysis using our simplified 

topology, we find that outcast is mainly because, when there 

are some packets getting lost, the flows with different RTT are 

affected differently. It has a more serious impact on the flows 

with small RTT, and the flows with large RTT are less 

affected. We then gave a mathematical model for goodput to 

further interpret the outcast phenomenon. Finally, we 

proposed window size notification based algorithm to mitigate 

the outcast phenomenon. With these experiments, we clearly 

validated our work. 
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