
Analysis for Unfairness of TCP Outcast Problem in

Data Center Networks

Yang Qin

+
*, Yao Shi, Qiwei Sun, Liqun Zhao

+
Key Laboratory of Network Oriented Intelligent Computation, Shenzhen Graduate School,

Harbin Institute of Technology .Shenzhen, P. R. China

*corresponding author: yqinsg@gmail.com

Abstract—There is a form of unfairness phenomenon

found in data center networks,which was identified by P.

Prakash. This phenomenon shows that the throughput of

a flow with smaller RTT is less than the throughput of a

flow with large RTT. This is completely contrary to the

classic TCP protocol. P. Prakash gives an explanation

based on port blackout theory. However, after careful

analysis, we have found another reason for this unusual

phenomenon, which may be more important. This is

because of an unfair distribution of the flows with

different RTT on the physical link and the differences in

congestion window size when finishing the current block

transmission. In this paper, we develop an analytical

model for the goodput in the outcast behavior. Then, we

design a window notification based protocol to address

this phenomenon. By using the mean value of the

congestion window measurement, we unified the

congestion window size for flows with different RTT,

which improves the goodput of the flows with small RTT.

By designing several experiments using the ns-2 simulator,

we demonstrate that our explanation of outcast

phenomenon is correct. Furthermore, we verify the

effectiveness of the proposed algorithms.

Keywords—data center network; congestion window;

outcast

I. INTRODUCTION

There isn’t a standard definition for a data center.
Generally speaking, a data center consists of facilities for
placement of computer systems and related components, such
as storage systems, the environment and security equipment
[1]. In recent years, the BCube architecture[2] and the Fat-tree
architecture shown in Fig. 1 are widely used in the data center
[3] .

Fig. 1. Fat-tree framework topology diagram[6].

Fat-tree framework for data center was presented at the

ACM SIGCOMM 2008 conference. In data center networks,

fat-tree architecture is widely used and researched for its

scalable characteristics [8]. Fat-tree framework has a special

routing strategy. This strategy allows receivers to get data

from senders with fixed links [3].

The main features of a data center network comprises:

high-speed links, the lower switch propagation delay and

limited cache. The TCP protocol has not only become the

most successful transport layer protocol on the Internet, but

also widely used in data center networks. However, traffic

load and link environments are different between data center

network and the Internet, the TCP protocol is not fully

applicable for data center networks because the performance

of TCP in data centers is different from that in the Internet. It

is worth while researching the corresponding issues. Outcast is

one of the special problems from using the TCP protocol in

data center network.

P. Prakash first described the outcast phenomenon[6]. In

that paper, he also validated the outcast problem in different

data center testbeds and analyzed the reason for this

phenomenon. The main reason he believed is the port blackout

phenomenon. Port blackout can be essentially explained as

follows. When a series of packets enters the switch from

different input ports, they must compete for the only output

port. In these different input ports, some of them may luckily

get into the switch cache, while the rest of them could only be

discarded, since the queue in the output port is full.

II. THE REASON OF THE OUTCAST PHENOMENON

In order to look inside for the essential reason for this

outcast, we set up a network in Fig. 2, which consisted of three

senders, three switches and one receiver.

Fig. 2. The unfairness on the distribution of flows on different links.[4].

One of the physical links carries 12 flows, one carries 2

flows and another one carries only one flow. This simplified

experiment is based on the routing algorithm which is used by

the fat-tree topology[3]. We adopt the routing algorithm which

is used by the fat-tree topology[3]. We also know that the

receiver cannot ask for the next data block until it receives all

current blocks. Based on the information above, we can

determine the reason for this outcast phenomenon.

(1). When the client requests data blocks from the servers, we

can confirm that the flows with small RTT (round trip time)

can complete earlier than the flows with large RTT. This is

mainly because when a connection is newly created, the

congestion cannot immediately appear, and according to the

characteristics of data center applications, only when all

senders complete the transmission of the current data block,

can the receiver request the next data block. Thus, the senders

with small RTT can only wait until the other senders with

large RTT finish the transmission of their current data block,

then they can send the next data block. In this case, the

number of flows on the bottleneck decreases. That means each

sender can obtain more bandwidth. Such a direct consequence

of this event is that when these senders finish sending the data

packets, they would have a larger congestion window.

Conclusion: After the end of the first data block

transmission, the situation is that flows with small RTT have a

smaller congestion window, while flows with large RTT have

a larger congestion window.

(2). We assume that when the second data block starts sending,

the network suffers packet loss. From the overall observation,

each input port has the same probability of whether their

packets are discarded, since we assume that the incoming data

packets follows a Poisson distribution. Assume else that each

input port loses k packets, due to the cache for the bottleneck

switch is full. We can see that if there are more flows on the

link, then less packets, on average, get lost on each connection;

conversely, the fewer flows on a link, the more packets on

average get lost on each connection.

Conclusion: When packets loss occurs, flows with small

RTT lose more packets than the flows with large RTT.

(3). Combining the fast transmission event with the first and

second conclusions, we can see that because the congestion

window of the flows with small RTT is small and they lose

more packets, they are more likely to lose the packets whose

corresponding ACK is not received in the current congestion

window. This will obviously lead to timeout. At the same time,

flows with large RTT are less likely to suffer timeout except

they just lose one of the last three packets, since their

congestion windows are large while they suffer less in packet

loss. According to the analysis in section Ⅲ, timeout and

RTOmin time have the largest impact on the whole throughput

of the network.

Conclusion: When flows with small RTT suffer packet

loss, they are more likely to be affected, which will result in a

decrease of throughput. Conversely, flows with large RTT will

not show similar behavior.

From the three conclusions above, we can see that the

substantial causes of the outcast phenomenon are the uneven

distribution of flows with different RTT on the physical links

and the characteristics of the applications which run on the

data center network. These two reasons work together to make

the final result -- the throughput of flows with small RTT is

less than the flows with large RTT. In the next section, we will

give a simple mathematical model on the outcast phenomenon.

III. THROUGHPUT MODEL OF THE OUTCAST

PHENOMENON

In this section, we shall respectively develop an

analytical model for throughput of flows with small RTT and

flows with large RTT to reinterpret the outcast phenomenon.

In our model, we only describe the congestion avoidance and

fast retransmit states. We assume that these are the only flows

with large RTT and small RTT we defined existing in the

bottleneck link, without any other data flow. Our model uses

the fat-tree architecture[3]. The upper part of the fat-tree

architecture is used the core switches and the middle part is

used for the aggregation switches. The flows with larger RTT

come from servers that cannot communicate with the target

node through the same aggregation switch, so they must go

through the upper core switch . The flows with small RTT

come from servers which communicate with the same

aggregation switch with the target node ,so they do not need to

use the upper core switch. There are lots of servers connected

to the upper core servers and few servers can connect to the

same aggregation switch with the target node. So the number

of the flows with large RTT is greater than the number of the

flows with small RTT.

Assume that there are N senders, including Ns senders with

small RTT and Nl senders with large RTT. Since the

differences of RTT are mainly reflected on the time from the

senders to the bottleneck switch, we define the round trip

delay of the flows with small RTT as
s

RTT and delay of the

flows with large RTT as
l

R T T . The default retransmission

timeout value is RTO . The bandwidth of the bottleneck is

C spkts / , and the buffer of the bottleneck switch is

B pkts . The payload of each packet is
pS bytes . Since we

only consider the congestion avoidance state, we define s

iW

as the congestion window size of the flows with small RTT in

the i
th
 round, and l

i
W as the congestion window size of the

flows with large RTT in the i
th

 round. We further define
iR as

the bottleneck delay on the i
th

 round.
iQ is the queue length of

bottleneck buffer when the i
th

 round is finished.

First we calculate the dynamic changes for the queue

length. During the congestion avoidance phase, when the

transmission is in the i
th

 round, sN flows with small RTT

and lN flows with large RTT send data packets to a single

receiver. So we can calculate the number of packets when the

i
th

 round is finished.

{ }1m in () ,
s l

i i s i l i iQ Q N W N W C R B
+

−= + × + × − × (1)

Where
+a means if 0>a , aa =+

; else 0=+a .

Since the switch uses the first in first out method to

manage its queue in the buffer and the propagation delay is a

fixed value, we define it as D. We can show that the

propagation delay in the i
th

 round plus the queuing delay is the

bottleneck delay in the i
th

 round iR .

1() /i iR D Q Cϕ−= + + (2)

whereφ means a random variable when the queuing delay

exceeds
1

/
i

Q C
−

.

A. Throughput model of flows with small RTT

In this section, we calculate the goodput of the flows with

small RTT. First, we calculate the maximum size of the

congestion window in the congestion avoidance state. As we

all know, after the end of each round, the congestion window

size will increase by one maximum segment size. This

situation repeats until there is one packet getting lost in the n
th

round. Then we can consider that the time from the first round

to the n
th

 rounds makes up the congestion avoidance phase.

We define s

n
W as the maximum congestion window size of

flows with small RTT in this phase, l

n
W as the maximum

congestion window size of flows with large RTT. When the

window reaches to s

n
W , there are s

n
d packets getting lost. We

take a maximum possible value for the number of lost packets,

i.e. the whole window s

n
W . The number of packets lost we

calculate is from the period once the congestion window size

is halved to the next time the congestion window halved. In

this way, we can calculate the total number of packets sent in

this stage s

n
S .

()
2 2

0

3 3

2 8 4

s
nW

s
s s sn
n n n

j

W
S j W W

=

 
= + = + 

 
∑

 (3)

So we can get the number of successfully transmitted data

packets s

n
Y during the congestion avoidance phase.

()
23 1

8 4

s s s s s

n n n n nY S d W W= − = − (4)

From the equation 1 and equation 2, we can obtain

{ }m in () ,s l

i s i l iQ N W N W C D Bϕ += × + × − × − (5)

We can calculate the difference between iQ and 1−iQ to

get the following result.

1i i s lQ Q N N N−− = + = (6)

So in the i
th

 round, the first packet suffers the delay as

1
/

i
Q C

−
. And the last packet suffers the delay as

1
() /

i
Q N C

−
+ . Since the arrival and departure rate of the

buffer is the same, we can be obtain the expectation of ϕ

as: () / 2E Nϕ = .

m in ,
2

s l

i s i l i

N
Q N W N W C D B

+   
= × + × − × −  

   

 (7)

1 1() /s l

i s i l iR N W N W C− −= × + × (8)

Next, we calculate the duration of the congestion

avoidance phase. Equation (8) represents the delay time of the

bottleneck link. Since the respective slow start thresholds[6] at

this time are / 2s

nW and / 2l

nW , we can see that the

congestion windows in the last round of the slow start phase

are
0 / 4s s

nW W= and
0 / 4l l

nW W= . Therefore, the

bottleneck link congestion avoidance phase delay time is

shown below:

() ()
1

2 2

1

3 3

8 8

n
s s l ls l

n i n n n n

i

N N
T R W W W W

C C

+

=

   
= = + + +   

   
∑

 (9)

Since the retransmission timeout is RTO, we can get the

total time as below.

()
s n s l
T T RTO n RTT RTT= + + × + (10)

We can obtain the goodput equation.

()

() () ()

2

2 2

3 1

8 4

3 3

8 8

s s

s n n s p

n
s

s s l ls ls
n n n n s l

W W N S
Y

G
N NT

W W W W RTO n RTT RTT
C C

 
− × × 

 
= =

   
+ + + + + × +   

   

(11)

B. Throughput model of flows with large RTT

The situation of the flows with large RTT is similar to the

flows with small RTT. However, when packet loss occurs, the

flows with large RTT would not get into a timeout event.

Because the congestion window size is large and it won’t lose

all the packets. Conservatively, they turn into the fast

retransmission state. So we choose the minimum number of

packets lost, i.e. one data packet, when these flows suffer

packet loss. We know in the fast retransmission phase, / 2l

n
W

packets are resent. l

n
d is the number of lost packets.

() ()
2 23 3 3 5

1 1
8 4 2 8 4

l l l

n n n

l
l l l ln
n n n n

Y S d

W
W W W W

= −

= + + − = + −

(12)

The total congestion avoidance duration of the flows with

large RTT can be calculated as the flows with small RTT. The

difference is that the flows with large RTT turn into fast

retransmission instead of timeout. The extra time that the

flows with large RTT need is the time for

retransmitting / 2l

nW packets and the propagation delay D.

Then we can obtain the total duration time as below.

()
l n s l
T T D n R T T R T T= + + × + (13)

We can get the goodput equation of flows with large RTT.

()

() () ()

2

2 2

3 5
1

8 4

3 3

8 8

l l

l n n l p

n
l

s s l ls ll
n n n n s l

W W N S
Y

G
N NT

W W W W D n RTT RTT
C C

 
+ − × × 

 = =
   

+ + + + + × +   
   

(14)

Now we can find out that the main differences are on the

window size, the number of flows, and the waiting time. In the

analysis of the previous section, we already know that
s l

n n
W W< and

s l
N N< . Obviously, we have DRTO > .

Finally, we have the conclusion that the goodput of flows with

small RTT is smaller than flows with large RTT.

IV. A WINDOW SIZE NOTIFICATION BASED

ALGORITHM

From the analysis above, it can be seen, in order to solve

the outcast phenomenon, we must make the congestion

window of the data flows as consistent as possible. Now we

introduce a window size notification based algorithm TCP-

CWR (TCP congestion window replacement). The senders

send their congestion window size to the receiver when they

finish the transmission of the current data block. The receiver

calculates the average window size according to the size

provided by the senders and sends back to each sender. The

senders adjust their congestion window to the value calculated

by the receiver. This would make all the senders have the

same congestion windows when a new data block starts to

send. The following discussion describes the process.

1). After the transmission of the current data block, the

applications running on the senders will send the size of the

current congestion window to the receiver. Before the receiver

gets this message, it does not request the next data block.

2). When the receiver gets all the messages carrying the

window size, it calculates the mean value of the congestion

window. Then the receiver sends the new data block request

packet attached with this value to the senders.

1
() /

N

ii
cwnd cwnd N

=
= ∑ (15)

3) After receiving this message, the senders set their

congestion window value to the target value, and then send

data packets normally.
When congestion occurs in the network and it results in the

packet loss, we have adjusted the congestion window, flows
with small RTT would not lose the entire unACKed packets.
This means that they could enter into the fast retransmission
phase, which won’t affect performance seriously.

V. SIMULATION RESULTS

We used the NS-2 simulation platform to do the simulation

experiments. We set up a simplified topology which is shown

in Fig. 2.

When we chose our experiment parameters, we strictly

followed the parameters in Prakash’s experiment. So we set 3

flows with RTT time 400 sµ , and 12 flows with RTT time

800 sµ .In the experiment, we observed their goodput and the

number of timeouts with their RTT time. The results are

shown in Fig. 3 and Fig. 4 .

Fig. 3. The relationship between RTT and Goodput.

Fig. 4. The relationship between RTT and the number of timeout

From Fig. 3, we find that a quantitative relationship

between goodput and RTT, i.e. the goodput of flows with

small RTT is less than for flows with large RTT. This means

the outcast phenomenon occurs in our simplified testbed.

From Fig. 4, we also can see that flows with small RTT suffer

30 timeouts, while flows with large RTT only suffer 2

timeouts.

Fig. 5. The relationship between RTT and goodput.

From the results in Fig. 5, we can find that, after the

adjustment of our algorithm, the goodput of flows with small

RTT is almost the same with as flows with large RTT.

VI. CONCLUSION

In this paper, we discussed the essential reasons for the

outcast phenomenon. Through analysis using our simplified

topology, we find that outcast is mainly because, when there

are some packets getting lost, the flows with different RTT are

affected differently. It has a more serious impact on the flows

with small RTT, and the flows with large RTT are less

affected. We then gave a mathematical model for goodput to

further interpret the outcast phenomenon. Finally, we

proposed window size notification based algorithm to mitigate

the outcast phenomenon. With these experiments, we clearly

validated our work.

REFERENCES

[1] Arregoces M, Portolani M. Data Center Fundamentals. San Jose, Cisco
Press, 2003:56-58.

[2] Guo C, Lu G, Dan L. BCube: A High Performance, Server-Centric
Network Architecture for Modular Data Centers. ACM Special Interest
Group on Communication, 2009:63-74.

[3] Al-Fares M, Loukissas A, Vahdat A. A Scalable, Commodity Data
Center Network Archietecture. ACM Special Interest Group on
Communication, 2008:63-74.

[4] Prakash P, Dixit A, Hu Y. The TCP Outcast Problem: Exposing
Throughput Unfairness in Data Center Networks. 9th USENIX
Conference on Networked System Design and Implementation, 2012:30-
41.

[5] Zhang J, Ren F, Lin C. Modeling and Understanding TCP Incast in Data
Center Networks. IEEE Conference on Computer Communication,
2011:1377-1385.

[6] Tam A, Xi K, Xu Y. Preventing TCP Incast Throughput Collapse at the
Initiation, Continuation, and Termination. 20th International Workshop
on Quality of Service, 2012:1-9.

[7] Floyd S, Henderson T, Gurtov A. RFC3782: The NewReno
Modification to TCP’s Fast Recovery Algorithm[S/OL]. www.ieee.org.

[8] Greenberg A, Lahiri P, Maltz D A, et al. Towards a next generation data
center architecture: scalability and commoditization[C] //Proceedings of
the ACM workshop on Programmable routers for extensible services of
tomorrow. ACM, 2008: 57-62.

