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Abstract—An information-centric network should re-
alize significant economies by exploiting a favourable
memory-bandwidth tradeoff: it is cheaper to store
copies of popular content close to users than to fetch
them repeatedly over the Internet. We evaluate this
tradeoff for some simple cache network structures un-
der realistic assumptions concerning the size of the con-
tent catalogue and its popularity distribution. Derived
cost formulas reveal the relative impact of various cost,
traffic and capacity parameters, allowing an appraisal
of possible future network architectures. Our results
suggest it probably makes more sense to envisage the
future Internet as a loosely interconnected set of local
data centers than a network like today’s with routers
augmented by limited capacity content stores.

I. Introduction
It has become a commonplace to observe that the

Internet has become information-centric, with more than
90% of its traffic resulting from content retrieval1. There
is broad agreement that the network should make more
extensive use of caching in order to exploit an increasingly
favourable memory-bandwidth tradeoff: it is cheaper to
store copies of content items close to users than to repeat-
edly fetch them from some remote server. This tradeoff
determines the optimal cache size, number and location
and therefore has a strong impact on the structure of the
future Internet. Our objective in this paper is to derive
quantitative tradeoff results that reveal the structurally
determinant parameters of an information-centric network
(ICN).

Most currently proposed novel ICN architectures would
systematically equip routers with caches in order to reduce
the volume of content-retrieval traffic [1]. However, the
effectiveness of such universal caching has recently been
called into question [12]. We agree with the authors of this
paper that the in-network caching assumption needs closer
analysis, though not for the same reasons. The arguments
in [12] are based on models where cache size is assumed
infinite, effectively supposing storage costs are negligible.
Our own doubts stem rather from the observation formu-
lated in [11] that, to be effective in significantly reducing
traffic volumes, cache sizes need to be very large, orders of
magnitude larger than the storage that could reasonably
be added to a router [19]. Rather than a network of content

1See Cisco Visual Network Index, for example.

routers equipped with caches, the future Internet might
more realistically be seen as a network of data centers that,
among other applications, also do routing.

The memory-bandwidth tradeoff depends on the cache
hit rate that determines the proportion of download traffic
that is saved by a cache of given size. We use the “Che
approximation” to evaluate the hit rate of a cache as-
suming least recently used (LRU) replacement under the
independent reference model (IRM) [6], [10]. The hit rate
depends crucially on the size and popularity distribution
of the considered content catalogue. To derive a realistic
characterization we have used data recorded by Dan and
Carlsson [8] for content retrieved using BitTorrent. These
data allow us to directly derive the relative torrent request
rates, as required for the IRM. In the absence of compara-
ble measurement results for other types of content, we use
this as a generic popularity law with characteristic head,
body and tail behaviour.

To more clearly identify structural properties we con-
sider simple symmetrical cache networks. The base case is
a simple 2-level hierarchy where users first address requests
to their local level-1 cache. In case of a miss, requests are
redirected to a single central cache at level-2. The tradeoff
is determined by the total cost of storage compared to the
cost of the bandwidth needed to handle peak traffic flowing
between the two levels. We use simple cost formulas that
allow straightforward understanding of the impact of key
parameters. This is important since assumed parameter
values are necessarily imprecise and subject to quite rapid
change as costs tend to decrease while demand and content
catalogues grow.

Results for the simple 2-level hierarchy highlight struc-
tural issues but costs might be further reduced by using
some form of inter-cache cooperation. We therefore extend
the tradeoff analysis to account for two generalizations
drawn from the literature. First, we suppose level-1 caches
perform load sharing by specializing the content they
store. A hash of the chunk name determines to which
level-1 cache the request must be sent. In the second
generalization, users send all requests to their local cache
but in case of a miss, a request is sent to another level-1
cache that, as for load sharing, is designated by a hash of
the chunk name. These schemes require less storage than
the basic hierarchy but incur additional bandwidth costs
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leading to a modified tradeoff.
The rest of the paper is organized as follows. We begin

in the next section by situating our approach with respect
to related work. In Section III we recall the Che approxi-
mation and use it to derive some useful properties of the
model. This section also derives the BitTorrent popularity
law used to evaluate the memory-bandwidth tradeoff.
The memory-bandwidth tradeoff is evaluated in detail for
the 2-level cache hierarchy in Section IV. Generalizations
of this analysis to more sophisticated cooperative cache
networks are described in Section V.

II. Related work
There is a vast literature on how to place content items

in order to optimize the memory-bandwidth tradeoff under
various constraints. The papers cited below are a small
sample meant to illustrate of the approaches that are most
relevant to the present objective.

A paper by Nussbaumer et al. [18] adopts a similar
approach to ours in directly comparing the costs of storage
and bandwidth. The authors envisage caches at different
levels of a symmetric tree hierarchy and study cost as a
function of cache size. Their results are not directly ap-
plicable, however, mainly because we have quite different
cost assumptions. Cidon et al. [7] propose a method for
minimizing the sum of bandwidth and storage costs under
general assumptions but provide no numerical results or
qualitative analysis.

A number of papers seek to minimize bandwidth usage
when demand is assumed known for each object. Kan-
gasharju et al. [14] supposes cache locations and capacities
are given while Laoutaris et al. [15] proposes heuristics to
jointly optimize storage allocation and content placement
under a constraint on overall storage capacity. In both
cases, the storage cost is replaced by capacity constraints
and the analysis therefore brings little insight concerning
the memory-bandwidth tradeoff.

Two recent papers revisit the issue of optimal content
placement for video-on-demand. Borst et al. [3] seeks to
minimize bandwidth usage under given cache capacities
and known demand. This work is similar to ours in that
the authors characterize the nature of the optimal solution
for a simple symmetric 2-level cache hierarchy. Applegate
et al. [2] optimally places video content in a given network
where both storage capacity and link bandwidths are fixed.
Again, since capacity is fixed a priori, the results of these
papers cannot be used to evaluate the memory-bandwidth
tradeoff.

In the large body of current work on a future
information-centric Internet, we have found little of direct
use in our evaluation. Most papers follow Jacobson et al.
[13] in assuming caching is performed by routers equipped
with a content store. Since such a store is limited in
capacity for technological reasons, the aim is to optimally
exploit overall storage capacity by various selective and
cooperative caching strategies (e.g., [5], [16], [20]). In order

to avoid very poor performance under the assumed capac-
ity constraints, it appears necessary either to assume the
content catalogue is unrealistically small or that demand
is unreasonably concentrated on the most popular items.
In our work we do not pre-suppose in-router caching
and use a realistic content retrieval model derived from
measurements.

III. Cache performance and popularity laws
We recall the Che approximation and derive a popular-

ity law from measurements of BitTorrent activity.

A. The Che approximation
Cache hit rates are derived using the approximation

introduced by Che et al. [6] and shown by Fricker et
al. [10] to be extremely accurate, especially for the large
cache sizes considered here. The “Che approximation”
uses the independent reference model (IRM) where users
request objects from a fixed catalogue of size N , the
probability a request is for some object n being fixed and
independent of all prior requests. Let the latter probability
be proportional to a “popularity law” q(n) for 1 ≤ n ≤ N .
Under the IRM, the q(n) can be interpreted as rates of
independent Poisson processes.

The probability h(n) that a request for object n can be
satisfied by an LRU cache of size C is

h(n) = 1− e−q(n)tc (1)

where the “characteristic time” tc is the unique solution
to the equation

C =
N∑
n=1

h(n). (2)

The overall hit rate is θ =
∑
q(n)h(n)/

∑
q(n). Note that

performance depends on the relative values of the q(n) and
not their absolute values: under the IRM, hit rates do not
depend on traffic intensity. It is usual to order the q(n) in
decreasing order (object 1 is the most popular, object N
the least) but the approximation does not depend on this.

The approximation extends to objects of variable size.
Let object n be of size sn and assume sn � C for all n.
The hit rate is still given by (1) where tc now solves

C =
N∑
1
h(n)sn. (3)

Suppose sn is measured in chunks of constant size and
that objects are downloaded as a sequence of chunks.
First assume all chunks are always requested whenever the
object is requested so that each chunk inherits the object’s
popularity. The per-object hit rate is still given by (1)
and (3) and is clearly identical to the hit rate for each of
the object’s chunks. Note, however, that equations (1) and
(3) would also apply had we assumed the IRM applied to
chunks, ignoring therefore the obvious correlation between
successive requests for chunks of the same object. We
conclude that, under condition sn � C for 1 ≤ n ≤ N ,
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the hit rate can be accurately evaluated assuming the IRM
also applies to chunks.

Assume now users do not necessarily request every
chunk of an object, as is common when the objects in ques-
tion are streamed videos, for instance. The popularity law
per chunk will be different, q′(m) say for 1 ≤ m ≤

∑
n sn.

However, under the condition sn � C we expect the
chunk hit rates to still be well-approximated as above by
assuming the IRM at chunk level. Moreover, under quite
severe user impatience, we observe empirically in Section
III-D below that the popularity law under impatience is
practically the same (after reordering and to within a
multiplicative constant) as the per-chunk law assuming
no impatience. The Che approximation thus applies even
when users are impatient and the overall hit rate θ is
largely independent of the characteristics of this impa-
tience.

B. A three part popularity law
While we believe the IRM is a valid model for our

purposes, it remains very difficult in general to estimate
the popularity law q(n). For example, it is not possible
to directly infer the instantaneous popularity of a given
object from a measurement of the number of requests
for that object over a period of one week, say. While
request rates can be assumed constant, as in the IRM,
for a short periods, it is clear that an object’s popularity
can vary significantly over periods of hours and days.
Fortunately, one type of content does allow an estimation
of its popularity law. This is the set of torrents advertised
by a BitTorrent search engine like mininova.org.

Dan and Carlsson and co-authors have analyzed a large
data set obtained for torrents referenced by mininova [4],
[8]. They kindly provided us with some of their raw data
that we have used to derive a per-chunk popularity law.

A first data set allows us to classify some 2.9×106 active
torrents according to the number of leechers they had at
the time of capture, namely 8pm GMT on 15 Sept. 2008.
We retained 1.6×106 torrents that had at least one leecher
(the others were active because they had at least one seed).
The number of leechers is a measure of instantaneous
popularity but does not immediately give the required
request rates. By Little’s law, the request rate q(n) for
torrent n is the expected number of leechers divided by
the expected download time. Estimating the former by the
measured number of leechers l(n) and assuming the latter
is proportional to the torrent size in chunks sn, we have
q(n) ∝ l(n)/sn.

Unfortunately, the leecher file does not include torrent
size data. However, a second data set provides torrent size
for another set of torrents, as described in [4]. The torrents
in both data sets are identified by the usual content hash
and we were able to match leechers and size for some
330 000 of the 1.6 × 106 torrents. We filled in the blanks
by preserving as far as possible the size distribution of the
torrents of known size for every fixed number of leechers.
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Fig. 1: Popularity law for torrents; number of leechers l(n),
revised torrent popularity q(n), derived chunk popularity
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Fig. 2: Popularity law for torrents; fit

Figure 1 shows three popularity plots. The top one is the
original leechers against rank plot and is identical to the
corresponding curve in Figure 2 of [8]. The bottom curve
is normalized torrent popularity l(n)/sn plotted against
rank. Finally, the middle curve plots the popularity of 1
MB chunks against rank. It is derived by stretching the
second curve by counting sn equal popularity chunks for
torrent n for 1 ≤ n ≤ N . The average torrent size is around
1 GB so the total number of chunks is 1.6×109 for a total
of 1.6 PB. Note that the last two curves coincide for the
300 most popular torrents since these are all just 1 chunk
in size (the actual size is rounded up to 1 MB for cache
occupancy though the intensity l(n)/sn is derived using
the actual value of sn in bytes).

We use the per-chunk popularity law below for our
evaluations of the memory-bandwidth tradeoff. More pre-
cisely, we fit a sequence of power law segments to represent
this law, as shown in Figure 2. This law has three main
components that we label “head”, “body” and “tail”. The
head is flat and roughly parallel to a power law 1/n.6. In
the following, we refer to such a power law with exponent α
as Zipf(α). The body is somewhat steeper and parallel to
Zipf(.8). Lastly, popularity drops rapidly in the tail and
we fit it by a sequence of Zipf segments with exponent
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Fig. 3: Hit rate as function of cache size for different
popularity laws: real from Figure 2, head + body, body
alone, body + tail, head + Zipf(1.2) body.

increasing from 1 to 15.
Given the number of chunks in each segment and their

individual popularities, we can apportion download traffic
as follows: the head represents roughly 10% (for 105

chunks), the body 59% (108 chunks) and the tail 31%
(1.5×109 chunks). Note the significant volume contributed
by the tail despite the very low popularity of the torrents
from which it is composed.

C. Hit rate as function of cache size
We evaluate the sensitivity of hit rate estimates to the

degree of approximation in representing the popularity
law. Numerical results derived using the Che approxima-
tion are presented in Figure 3. The hit rate for the “real”
3-component law of Figure 2 is given by the bold line.
The simple expedient of assuming popularity is Zipf(.8)
for 1 ≤ n ≤ 1.6×109 is inaccurate for both small and large
caches. The other two curves show how the head and tail
are important to accurately predict hit rates of small and
large caches, respectively (when head or tail is missing, the
body is extended to ranks 1 or 1.6× 109, respectively).

Lastly, we recall the impact of supposing the popularity
is more accentuated than measurements suggest. Specifi-
cally, we suppose q(n) follows the head up to n = 105 and
then decreases rapidly as Zipf(1.2). It is clear from Figure
3 that such an assumption would lead to widely inaccurate
hit rate estimations.

Consider now the impact of the catalogue size. We
assume the shape of the popularity law is retained while
scaling the rank in proportion to catalogue size. We refer
below to this scaled function as the “empirical popularity
law”, for whatever catalogue size N is appropriate. For
example, a catalogue of N = 1.6 × 106 chunks has
components delimited by n = 100 and n = 105 with the
same slopes on the loglog plots. It is known that for Zipf(α)
popularity with α < 1, the hit rate for cache size C and
catalogue N tends to a limit function θ(C/N) as N →∞
[9]. Unsurprisingly, the hit rate for the empirical law of
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Fig. 4: Hit rate as function of C/N for different values of
N using the empirical popularity law.
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Fig. 5: Popularity law of chunks assuming either all chunks
inherit object popularity (flat) or chunk popularity de-
creases linearly to 30% of initial value

Figure 2 has the same behaviour, as illustrated in Figure 4.
The hit rate θ expressed as a function of C/N is practically
the same for N > 106.

D. Impact of decreasing chunk popularities
In the absence of more precise real data, we use the

popularity law of Figure 2 as if it were universal for all
content. One possible objection is that, while torrents are
useful only when their download is complete, other forms
of content retrieval suffer from user impatience so that it
is not correct to assume all chunks of the same object
have equal popularity. To evaluate the impact of users
interrupting a streaming video, say, we take the empirical
data of Figure 1 and modify it as follows.

We retain torrents of size s satisfying 10 MB ≤ s ≤ 1
GB, both to limit the data set volume and because this
range would be typical of video content. For each torrent
with l leechers and size s, we assume the popularity of
chunks decreases linearly from l/s to 0.3 × l/s implying
that only 30% of objects are downloaded to the end. The
chunks are then resorted in order of decreasing popularity.

Figure 5 compares the popularity laws of this model
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and that of the original where all chunks have popularity
l/s. Except for the most popular chunks on the left,
the impact of impatience is to reduce popularity by a
factor of about 1/3 while preserving the slope of the law.
Since hit rates in the IRM are determined by the relative
values of the q(n), we conclude that the hit rate is hardly
changed by the assumed downloader impatience (see Sec.
III-A). This is so because the difference in popularity
between distinct objects largely outweighs the difference
in popularity between chunks of the same object.

In the following we use the derived empirical popularity
law as if it applies to all content and not just torrents. We
might vary the catalogue size but we assume the shape
of the law, its head, body and tail, remain the same.
The justification is that this law is derived from the best
popularity measurements we have and that no published
measurements for other types of content suggest the shape
would be radically different. Popularity against rank has
consistently been shown to exhibit power law behaviour
for the body with an exponent less than 1 and not too
different to .8. Moreover, the petabyte catalogue size is
also representative of other types of content like web pages
or user-generated content [11].

IV. A two-level cache hierarchy

Fig. 6: Two-level cache hierarchy with S = 12 level-1 sites
and 1 level-2 site

We use the Che approximation and the empirical pop-
ularity law to quantify the memory-bandwidth tradeoff
for a simple, symmetrical 2-level cache hierarchy (Fig. 6).
Level-1 caches serve distinct sets of local users and have
identical demand characteristics. If a requested chunk is
absent at the local level-1 cache, the request is forwarded
to the single level-2 cache. Replacement is LRU at each
level. Level-1 caches occupy S sites. They have capacity
for C chunks while the level-2 cache has capacity C̄. Users
generate a total busy period download traffic of T bit/sec.
The entire content catalogue consists of N chunks with
the empirical popularity law of Figure 2.

A. Cost difference
To evaluate the memory-bandwidth tradeoff we consider

the cost of the considered network as a function of C,
excluding fixed costs. We refer to this as the cost difference.
In particular, we fix S, and therefore ignore the cost of the
access network, and fix an overall network hit rate target
Θ, and therefore ignore the cost of retrieving content

from beyond the considered network. Fixing Θ implies
C̄ is a function of C and can be calculated using the
Che approximation, on assuming cache occupancies are
independent [11]. Denote the level-1 hit rate by θ. It is a
function of C and N but not of T .

We assume bandwidth costs are proportional to the
traffic flowing between level-2 and level-1 with a constant
of proportionality kb. Bandwidth thus costs T (1− θ)kb.

We assume the cost of caching is due to two factors:
the cost of memory, supposed proportional to capacity,
and the cost of serving content, supposed proportional
to peak demand in bit/sec. Denoting the constants of
proportionality by km and ks, respectively, total caching
costs are (SC + C̄)km + T (1 + (1− θ)) ks. The last term
sums all traffic served by level-1 and the fraction (1 − θ)
also served by level-2.

Excluding the constant service cost Tks, the memory-
bandwidth tradeoff is characterized by the cost difference,

∆(C) = T (1− θ) (kb + ks) + (SC + C̄)km. (4)

B. Cost estimates

To progress we need plausible estimates for the con-
stants kb, km and ks.

We set kb = $15 per Mbps as a nominal monthly charge
for bandwidth. There are no publicly available references
to justify this choice. It is derived from some leased-line
pricing reported on the web and some data given privately
by an operator. Factor kb is intended to cover the cost of
both transport and routers.

It is noteworthy that the price of bandwidth is decreas-
ing quite rapidly. For instance, the blog DrPeering2 reports
that the average monthly price per Mbps for IP transit was
only $5 in 2010 and declining fast. The Ethernet alliance
states the price of Ethernet bandwidth needs to decrease
at an annual rate of 20% to meet demand forecasts3.

We set the nominal monthly unit cost of memory to
km = $0.15 per gigabyte. This estimate is derived from
advertised storage costs from cloud providers like Amazon
and is meant to cover all costs of storage using whatever
devices are appropriate.

This cost appears to be decreasing more rapidly than
that of bandwidth. Cost trends have been tracked between
1957 to 2012 by J. C. McCallum4 revealing a regular
decrease rate of 40% per annum.

We estimate the cost ks of serving content to be neg-
ligible relative to kb. This observation derives from cloud
service download charges of around $.10 per GB or roughly
$.10 per Mbps peak rate. In other words, in the evaluations
below, we assume kb+ks ≈ kb = $15 per Mbps per month.
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C. Evaluation
Figure 7 plots ∆ as a function of C with parameter

values T = 1 Tbps, S = 100, and C̄ ≡ N , corresponding
to an overall hit rate Θ = 1. These data are intended to
be representative of a national ISP network in a country
like France. We use the empirical popularity law with a
total catalogue size N = 1.6 × 109 chunks of 1 MB. The
impact of varying these parameters is considered later.

The middle curve is plotted using the constants kb and
km given in Section IV-B. The maximum monthly cost
of bandwidth (for C = 0) is $15M while the maximum
cost of caching (for C = N) is $24M. Cost is minimized
at $7.5M for C = 200 TB with a level-1 hit rate of 80%.
The upper and lower curves show the impact of an order
of magnitude error in the estimated cost factor kb. The
shapes of the curves would be the same had we instead
made the same order of magnitude errors in km.

The curves demonstrate that there is limited scope for
optimization by splitting required cache capacity between
levels 1 and 2. For most estimates of kb and km it is
either best to cache (nearly) all content at level-1 or none
at all. The choice depends on the relative values of the
maximum cost of memory (C = N) and the maximum
cost of bandwidth (C = 0). The cost gain in the nominal
data case is 50% of the maximum cost of bandwidth. To
more fully explore the tradeoff, we consider a normalized
cost comparison in the next section.

D. Normalized costs
For the sake of simplicity, we again suppose the overall

hit rate objective is Θ = 1 implying C̄ ≡ N . We can then

2http://drpeering.net/white-papers/Internet-Transit-Pricing-
Historical-And-Projected.php

3http://www.networkworld.com/news/tech/2012/041012-
ethernet-alliance-258118.html?page=1

4http://www.jcmit.com/memoryprice.htm

remove the term in C̄ from the cost difference (4). We also
suppress ks, supposed negligible compared to kb. Denote
by Γ the ratio of the maximum cost of bandwidth to the
maximum cost of memory at level-1,

Γ = Tkb
SNkm

.

From the results of Section III-C (cf. Fig. 4), θ for given C
and N is actually a function θ(c) of the normalized cache
size c = C/N . We can therefore quantify the tradeoff in
terms of a normalized cost difference,

δ(c) = Γ(1− θ(c)) + c, (5)

where units are normalized such that δ varies between Γ
and 1 as c increases from 0 to 1.

Figure 8 shows how δ(c) depends on different param-
eters. Figure 8a generalizes Figure 7, demonstrating how
the optimal level-1 cache size increases from 0 to nearly
the entire catalogue as Γ increases. As Γ encapsulates all
the model parameters it is possible to make the following
general observations:
• since the number of sites S determines the position

of caches in the access, aggregation or core network,
the relative values of T and N determine the network
position at which it is most cost-effective to cache
content,

• if the catalogue N were smaller (if, say, it relates only
to some limited, identifiable set of VoD content), it
tends to be optimal to cache (nearly) all chunks at
level-1, even for large S,

• as costs evolve (e.g., kb decreases by 20% per year,
km decreases by 40%) while traffic T increases (e.g.,
by 40%), the trend is for Γ to increase quite quickly
(e.g., increasing 10 fold in less than 4 years),

• if Γ > 10, it is not useful for cost reasons to cache any
content at level-2,

• it is unlikely to be worthwhile to use level-1 caches
that can hold just a small fraction of the catalogue.

Figure 8b shows the effect of limiting the overall hit
rate objective to 90% (we then have C̄ < N but this
discrepancy has negligible impact on costs). It reveals that
the cost difference can be derived in practice by truncating
the curves of Figure 8a such that θ(c) ≤ .9. If Γ ≥ 10, for
example, it makes no sense to limit the hit rate to a value
less than 99%, even without considering the cost of content
retrieval from outside the considered network.

For Figure 8c we suppose bandwidth costs are sub-
linear in offered traffic as this may more realistically reflect
scale economies. Specifically, and somewhat arbitrarily,
we suppose costs are proportional to traffic to the power
.75 (cf. [18]) and set Γ = T .75kb/(SNkm). Γ is the
ratio of maximum bandwidth cost to maximum memory
cost for this model. Results show that scale economies
reinforce our observation that optimal level-1 cache sizing
is typically “(nearly) all or nothing”.
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Fig. 8: Normalized cost difference δ(c) against normailized cache size c for empirical popularity law: five curves for
each graph correspond to different values of Γ (= δ(0)) ranging from .01 to 100; vertical lines indicate level-1 hit rates.

It is never optimal to cache the entire catalogue at level-
1 because of the significant tail of the empirical popularity
law. Had we ignored this and assumed a Zipf(.8) law for
body and tail, an “all or nothing” rule of thumb would
be more appropriate. If the body of the popularity law
were Zipf(α) with α > 1, on the other hand, our numerical
results (not shown here) suggest the scope for optimization
would be more pronounced. We recall, however, that all
published measurements of content popularity confirm
that α > 1 would be an unrealistic assumption.

V. Alternative cache networks

We consider how the observations of the last section
for a two-level hierarchy generalize to alternative cache
networks.

A. Hierarchy with more than two levels
We have not explicitly evaluated a hierarchical cache

network with more than 2 levels, agreeing with Borst and
co-authors that “it rarely pays off to install caches at more
than one or two levels” [3]. It is necessary, however, to
choose the right level in the network for placing the caches.
This determines the number of sites S and the respective
network costs above and below these sites. The results in
Section IV together with a cost estimate of access networks
would allow an appraisal of the best choice.

B. Load sharing

Fig. 9: Mesh of level-1 caches with S = 12 sites and P = 3
content partitions depicted by the node shading

When cache size is limited, it is desirable to aggregate
their capacity by load sharing. For instance, the proposal
by Li and Simon [16] is to divide the chunk catalogue
into P partitions and assign these to neighbouring level-1
caches. Users address their requests to the nearest cache
responsible for the partition the chunk belongs to. The
partition would typically be determined from a hash of the
chunk name and a simple routing protocol would designate
the nearest cache.

Figure 9 illustrates this idea using dashed lines to
represent paths between level-1 caches. Cache misses at
level-1 overflow to the level-2 cache as before. We assume
partitioning preserves symmetry: all caches manage the
same size catalogue N/P and receive identical demand.
Let the level-1 cache size be C/P , other notation being as
in Section IV.

First observe that the level-1 hit rate is still θ(c) where
c = C/N . This follows from the convergence results
depicted in Figure 4. To evaluate the normalized cost
difference δls(c) for this network we introduce a new factor
k′b for the unit cost of inter-cache bandwidth at level-1. It
is straightforward to show that

δls(c) = δ(c) + (1− 1
P

)(Γk
′
b

kb
− c) (6)

where δ(c) is given by (5).
This formula shows that no partitioning (P=1) is prefer-

able if Γk′b/kb > c. In general, it is necessary to account
for the dependence of k′b on P and the optimal choice
is difficult to characterize. However, the cost data and
trends discussed in Section IV suggest partitioning would
be of limited utility in practice unless there is an imposed
capacity limit. For example, if Γ ≥ 10 it is not worth using
partitions unless k′b < kb/10.

C. Cooperative caching
A possible cooperative caching scheme proposed by Ni

and Tsang [17] builds on load sharing. Users first address
requests to their local cache. If this is unsuccessful, the
request is forwarded to a cache designated for the partition
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Fig. 10: Hit rates for cooperative cache networks

to which the requested chunk belongs (except if the local
cache already belongs to this partition). If this “interaid”
fails requests go to the level-2 cache as before. This
scheme allows simple request routing, like load sharing,
while avoiding longer paths for the most popular chunks.
For simplicity, we again assume partitioning and routing
preserve symmetry.

To calculate hit rates we adapt the Che approxima-
tion (cf. Sec. III-A). The popularity of any chunk n
that belongs to a cache’s designated partition increases
to q′(n) = q(n)(1 + (P − 1)e−q(n)tc). The equation to
determine the characteristic time tc is modified as follows:

N∑
n=1

1
P

(1− e−q
′(n)tc) + (1− 1

P
)(1− e−q(n)tc) = C.

Given tc and assuming cache occupancies are statistically
independent, we can calculate both the hit rate at the local
cache, denoted θ′, and the overall level-1 hit rate, θ:

θ′ =
N∑
n=1

q(n)
(

1
P

(1− e−q
′(n)tc) + (1− 1

P
)(1− e−q(n)tc)

)

/

N∑
n=1

q(n),

θ = θ′ +
N∑
n=1

q(n)(1− 1
P

)e−q(n)tc(1− e−q
′(n)tc)/

N∑
n=1

q(n).

We have tested the accuracy of this approximation by
simulation for a particular case: 10000 chunks with Zipf(.8)
popularity are divided into 10 partitions. Results shown
in Figure 10a demonstrate remarkable accuracy. We ran
the simulation long enough that the results do not change
when the run time is multiplied by 10. Since the accuracy
of the Che approximation increases with system size (cf.
[10]), we are confident the hit rates derived below for a
large catalogue of 1.6× 109 chunks are very accurate.

Figures 10b and 10c plot θ′ and θ against local cache
size C and overall cache capacity PC, respectively, for
4 values of P including 1 (corresponding to the 2-level

hierarchy of Section IV). Note first from Figure 10b that
θ′ as a function of C is practically independent of P . Level-
1 interaid significantly increases the request rate of some
chunks but since these are distributed uniformly over the
catalogue, the shape of the popularity law plotted against
rank hardly changes. This is similar to the lack of impact
of decreasing chunk popularity observed in Section III-D
(Fig. 5).

Figure 10c shows that θ as a function of PC converges
rapidly as P increases. The limit θ(PC,N) is somewhat
lower than the hit rate θ(C,N) obtained without par-
titions (P=1). Results show the considered cooperative
scheme requires (about 3 times) more memory for the same
hit rate θ as a single cache in the 2-level hierarchy with
S/P sites.

To compare this with previous approaches we suppose
caches are sized so that the level-1 hit rate θ is the same
for all. Let the cache size for coordinated caching be C̃.
Let h̃ be the hit rate at the local cache for chunks that
do not belong to its own partition. Using cost factors km,
kb and k′b introduced above, the normalized cost difference
for this scheme can be written,

δcc(c) = C̃

N
+ Γ(1− θ(c)) + Γk

′
b

kb
(1− 1

P
)(1− θ̃(C̃,N)).

From the numerical results of Figure 10 we have C̃ > C/P .
Moreover, since θ′(C̃,N) ≈ h(C/N) and θ̃ . θ′, since
the foreign chunks are less popular, we have θ̃(C̃,N) .
θ̃(c/P ) . θ(c/P ) where . means “less than” in the sense
of the approximate convergence of hit rates in Figure 4.
These inequalities allow us to deduce,

δcc(c) & δ(c) + (1− 1
P

)
(

Γk
′
b

kb
(1− θ(c/P ))− c

)
. (7)

As for load sharing, it is impossible to make a definitive
statement about the value of this type of cooperation.
However, if we are correct to believe the cost of band-
width increasingly outweighs that of memory, the simple
duplication of large caches at a suitably chosen level in the
network is unlikely to be far from optimal for the future
Internet.
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VI. Conclusions
The ICN memory-bandwidth tradeoff depends crucially

on the hit rate realized by a cache of given capacity. To
evaluate this we have used the Che approximation with a
realistic traffic model derived from measurements of the
popularity law of BitTorrent content retrieval. We showed
that this approximation remains accurate when applied
to chunks, despite the correlated request process and even
accounting for decreasing chunk popularity due to frequent
incomplete downloads.

Our analysis is based on the performance of symmetric
cache networks assuming linear dependence of cost on
capacity. These simplifications reveal quite robust struc-
tural properties that are unlikely to be disproved by more
detailed models. We note also that such refinements would
still be very hard to correctly parameterize.

Under our best guess cost and traffic assumptions, a 2-
level cache hierarchy realizing the optimal tradeoff would
equip level-1 caches to capture around 70% of download
traffic with a capacity equivalent to 10% of the entire cata-
logue (i.e., caches of around 100 TB). However, accounting
for cost and traffic trends, it will soon (within 4 years, say)
be optimal to achieve a hit rate of 99% by caching up to
75% of the catalogue.

The above figures apply to a choice of traffic and
network parameters that is meant to be representative
of a country like France. More general understanding is
derived from normalized cost formulas where the critical
quantity is shown to be the ratio of the total cost of
bandwidth without caching to the total cost of storing
the entire catalogue in each level-1 cache. The normalized
tradeoff formulas can be used to determine the optimal
siting of caches for given costs and traffic volumes. We can,
for instance, evaluate the advantage of isolating popular
content (e.g., a particular VoD catalogue) to be cached
very close to end-users, while storing the petabytes of
general content (web, UGC, file sharing) somewhere much
closer to the network core.

Cooperation between level-1 caches may lead to cost
reduction but this again depends on relative costs of mem-
ory and bandwidth. We have considered two cooperative
strategies and derived cost formulas that characterize the
tradeoff. Under our best assumptions about unit costs and
their evolution, the formulas suggest cooperation brings
little cost advantage over the simple cache hierarchy.

Our deduction from the above is that the future Internet
is less likely to be a network of content store augmented
routers than a loosely interconnected network of local data
centers. Since these data centers should be equipped to
cater for the large majority of content downloads, and
these count for the majority of Internet demand, traffic
circulating above them would be reduced by an order
of magnitude. A further advantage is that a data center
would be better able to perform the necessary higher level
functions of a content distribution network.
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