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Abstract—Going back to the Internet of one decade ago,
HTTP-based content and web services were provided by central-
ized or barely distributed servers. Single hosts providing exclusive
services at fixed IP addresses was the standard approach. Current
situation has drastically changed, and the mapping of IPs to
different content and services is nowadays extremely dynamic.
The adoption of large CDNs by major Internet players, the
extended usage of transparent content caching, the explosion
of Cloud-based services, and the decoupling between content

providers and the hosting infrastructure have created a difficult
to manage Internet landscape. Understanding such a complex
scenario is paramount for network operators, both to control the
traffic on their networks and to improve the quality experienced
by their customers, specially when something goes wrong. Using a
full week of HTTP traffic traces collected at the mobile broadband
network of a major European ISP, this paper studies the
associations between web services, the hosting organizations/ASes,
and the content servers’ IPs. By mining correlations among these,
we extract useful insights about the dynamics of the IP addressing
space used by the top web services, and the way content providers
and hosting organizations deliver their services to the mobile end-
users. The extracted knowledge is applied on two specific use-
cases, the former on hosting and service delivery characterization,
the latter on automatic IP-based HTTP services classification.

Keywords—IP Addressing Space; HTTP Traffic; Content De-
livery Networks; Traffic Classification and Analysis

I. INTRODUCTION

A big share of today’s Internet ecosystem is shaped by the
success and influence of the most popular services running
on top of HTTP (e.g., video and audio streaming, social
networking, on-line gaming, etc.). HTTP is doubtlessly the
dominating content delivery protocol in today’s Internet, ac-
counting for more than 75% of the residential customers traffic
[1], [2]. HTTP-based services such as YouTube and Facebook
are forcing the Internet to shift the content as close as possible
to the end-users, which in turn is modifying the way content
is hosted, addressed, and delivered. The very last few years
have seen an astonishing development in Content Delivery
Networks (CDNs) technology and Cloud Services provisioning
platforms. It is therefore not surprising that todays’ Internet
content is largely delivered by major CDNs like Akamai or
Google CDN, and traditional services are now running on
Cloud platforms such as Amazon EC2.

In this complex scenario, content and services are no longer
located in centralized delivery platforms, owned by single
organizations, but are distributed and replicated across the
Internet and handled by multiple players. Understanding issues
such as HTTP traffic composition, usage patterns, content
location, hosting organizations, and addressing dynamics is

highly valuable for network operators. The application areas
are multiple, spanning network planning and optimization
(e.g., content caching), traffic engineering (e.g., traffic dif-
ferentiation/priorization), network measurements (e.g., CDN
traffic/network characterization), trend analysis and service
profiling (e.g., heavy-hitter applications), just to name a few.

In this paper we study the addressing dynamics of the
top Internet services running on HTTP. Using a full week of
HTTP traffic traces collected at the mobile broadband network
of a major European ISP, we study the associations between
services, the hosting organizations, and the IPs assigned to the
servers providing the content. The complete dataset consists
of more than half a billion of passively observed HTTP flows,
aggregated in a per-hour basis. For each flow, the dataset
contains the contacted URL, the contacted IP address (i.e., IP
of the server), the total bytes exchanged with the server IP, and
a timestamp. The dataset includes the name of the organization
owning the server IP, extracted from the MaxMIND ASes
databases [24]. In addition, the Full Qualified Domain Name
(FQDN) is automatically extracted from the contacted URL,
which is used to deduce the corresponding service being
accessed at the server IP, using HTTPTag [19].

HTTPTag is a flexible on-line HTTP classification system
based on pattern matching and tagging, which associates a
set of labels or tags to each observed HTTP flow, based on
the contents and service being requested. This association is
performed by simple regular expressions matching, applied to
the host field of the corresponding HTTP flow’s header (i.e.,
host name of the contacted server). HTTPTag currently recog-
nizes and tracks the evolution of more than 280 services and
applications running on top of HTTP, including for example
tags such as YouTube, Facebook, Google (i.e., Google
Search), Twitter, Zynga, Gmail, etc. Due to the highly
concentrated traffic volume on a small number of heavy hitter
applications, current list of services spans more than 70% of
the total HTTP traffic volume on the 3G network of a leading
European provider.

Our traffic analysis targets two specific use-cases: (i) char-
acterization of the top HTTP-based services, their provision-
ing, and the underlying hosting servers, and (ii) automatic
HTTP services classification based on IP addresses. In the first
use-case, we identify the top web services running on HTTP
and shed light on the way they are delivered by the underlying
hosting organizations and CDNs, including a characterization
of the number of server IPs used to deliver each service, the
placement of the servers, the identification of load balancing
techniques, and the temporal provisioning of resources. The
goal of the second use-case is to evaluate the feasibility of



using a minimalist approach for classifying HTTP flows on the
fly, relying exclusively on the IP address of the server hosting
the requested content. Such an approach is extremely light-
weight and can be applied for on-line high speed classification.
The question we try to answer is to which extent such an
approach can provide useful results? The reason behind using
IP addresses is simple: mappings between services and IPs are
reasonably stable in time. Services running on top of HTTP are
provided by companies with delivery infrastructures that tend
to be either very stable in time, or in the case of CDN-based
distribution, use well-known IP ranges with stable dynamics.
After all, even if content is potentially served from multiple
different datacenters, it is reasonable to accept that the number
of datacenters serving some specific content varies slowly.

The remainder of the paper is organized as follows: section
II presents a brief state of the art in the field of HTTP traffic
analysis, CDN characterization, and automatic traffic classifi-
cation. In section III we describe the labeling technique applied
by HTTPTag to identify services running on top of HTTP,
additionally providing some initial results on the analysis of
the top web services present in the mobile traffic traces. Section
IV tackles the first use-case on HTTP services provisioning,
characterizing the top HTTP-based services and the underlying
hosting infrastructure. In section V we introduce and evalu-
ate the services classification approach, including its global
accuracy and the per-service recall and precision for the top
services in the traces. Section V concludes this work.

II. RELATED WORK

The study and characterization of the Internet traffic hosted
and delivered by the top content providers has gained important
momentum in the last few years [3]–[7]. In [3], authors
show that most of today’s inter-domain traffic flows directly
between large content providers, CDNs, and the end-users,
and that more than 30% of the inter-domain traffic volume is
delivered by a small number of content providers and hosting
organizations, being Google the largest and fastest growing
contributor to inter-domain traffic. According to [4], the top
10 organizations handle 65% of the total web traffic in a major
European ISP, including companies such as Google, Akamai,
Limelight, and Level3. Several studies have focused on CDN
architectures and CDN performance, analyzing features such
as CDN size, servers’ location, and latencies to content among
other [5]–[7]. In particular, [6] focuses on user-content latency
analysis at the Google CDN, [7] provides a comprehensive
study of the Akamai CDN architecture, and [5] characterizes
the performance of both Akamai and Limelight in terms of
server availability and delay.

Regarding Internet Traffic Classification (TC) and analysis,
there has been an extensive research activity during the last
decade [10]. Commonly deployed traffic classification methods
rely on port and payload-based analysis techniques. These
techniques present important limitations that highly reduce
their effectiveness, particularly due to the emergence of new
dynamic applications and the widespread use of encryption,
tunneling, and protocol obfuscation. Standard classification
approaches rely on Deep Packet Inspection (DPI) techniques,
using pattern matching and statistical traffic analysis [11].
Probably the most popular approach for TC exploited in recent
years by the research community is the application of Machine

Figure 1. Passive HTTP traffic analysis in an operational 3G Network. HTTP
flows observed at the Gn interface are analyzed and tagged on the fly.

Learning (ML) techniques [12]. A standard non-exhaustive
list of supervised ML-based approaches includes the use of
Bayesian classifiers [13], linear discriminant analysis and k-
nearest-neighbors [14], decision trees and feature selection
techniques [15], and support vector machines [16]. Unsuper-
vised and semi-supervised learning techniques have also been
applied for traffic analysis and classification [17].

In the specific case of HTTP traffic, classification and
analysis has been the focus of many recent studies [2], [8],
[9], [19]–[21]. In [20], authors use payload-based analysis
heuristics to classify 14 different HTTP classes. In [19] we use
pattern matching techniques applied to the host field of HTTP
headers to recognize more than 280 applications and services
running on top of HTTP. In [2], [9], authors use DPI techniques
to analyze the usage of HTTP-based applications on residential
connections, showing that HTTP traffic highly dominates the
total downstream traffic volume. Authors in [8] study the
extension of HTTP content caching in current Internet, charac-
terizing HTTP traffic in 16 different classes using port numbers
and heuristics on application headers. Recently, the authors
of [21] provide evidence on a number of important pitfalls
of standard HTTP traffic characterization techniques which
rely exclusively on HTTP headers, showing for example that
around 35% of the total HTTP volume presents a mismatch
in headers like Content-Type, extensively used in previous
studies.

In this paper we present the characterization and analysis of
a full week of HTTP traffic traces collected at the 3G network
of a major European ISP. The analysis spans both the web
services and their underlying hosting organizations, as well as
the possibility of using only IP addresses for classifying HTTP
traffic flows. We acknowledge that, despite the large size of
our traffic dataset, we analyze packets from a single mobile
vantage point, which is far from providing a complete view of
the global IP address space and HTTP services.

III. HTTPTAG: MAPPING SERVER IPS TO SERVICES

In this section we provide a description of HTTPTag, which
is used to label the traffic dataset presented in this paper.
HTTPTag works with passively captured packet data. Figure
1 shows the deployment of HTTPTag in the operational 3G
Network that serves as vantage point for our study. Packets
are captured on the Gn interface links between the GGSN and
SGSN nodes, using the METAWIN passive monitoring system
[23]. HTTP packets are detected and analyzed on the fly:
every new HTTP transaction is parsed and the contacted host
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(a) HTTP traffic volume per service.
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(b) Unique HTTP users per service.
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(c) Daily HTTP traffic volume per service.

Figure 2. HTTP traffic classification using HTTPTag. HTTPTag labels more than 70% of the overall HTTP traffic volume caused by more than 88% of the
web users. The top 10 services w.r.t. volume account for almost 60% of the overall HTTP traffic, and the top 10 services w.r.t. popularity are accessed by about
80% of the users. In (c), HTTPTag is able to label between 69% and 74% of the total HTTP volume on the studied traces, for the complete week.
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(a) Unique server IPs per hour.
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(b) Cumulative number of unique server IPs.
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(c) Normalized number of flows per hour.

Figure 3. Evolution of unique server IPs and normalized number of flows for the top 7 services on a single day. Google Search, Facebook and YouTube
dominate the IP space and account for the majority of the flows. Thanks to Akamai, Facebook is the most IP-distributed service, using more than 2000 different
IPs on a single day.

name is compared against a set of defined regular expressions
or patterns describing different services and applications. If
a matching pattern is found, the transaction is assigned to
the corresponding service. To preserve user privacy, any user
related data (e.g., IMSI, MSISDN) are removed on-the-fly, and
payload content beyond HTTP headers is discarded.

HTTPTag uses TicketDB [22], a fast and scalable parallel
database system tailored to meet the requirements of network
monitoring in 3G networks. For every new HTTP transaction
analyzed by HTTPTag, a summary ticket is stored and indexed
in TicketDB, providing long term traffic analysis capabilities.
Each ticket contains a timestamp, the IP address of the con-
tacted server, the requested URL, volume stats (i.e., transferred
bytes up/down), and the corresponding service resulting from
the pattern matching step. As such, for every observed HTTP
flow, HTTPTag provides a mapping or association between the
hosting IP address and the corresponding service.

To improve pattern matching speed, patterns are ordered by
probability of occurrence, which are computed from the history
of successful matches. HTTPTag tagging approach is based on
manual definition of tags and regular expressions, which might
a priori impose scalability issues. Indeed, there are millions of
websites on the Internet and it would be impossible to define
enough patterns to classify every possible requested URL.
However, the well known mice and elephants phenomenon
also applies to HTTP-based services, and limiting the study
to the most popular services already captures the majority of

the traffic volume and users in the network. While the initial
definition of tags is a time-consuming task, regular expressions
identifying applications tend to remain stable in time, basically
because they are associated to the name of the application itself
and thus recognized and used by the end-user. This is specially
true for popular services, which carry the most of the traffic.
HTTPTag does not currently recognize HTTPS traffic, since
the requested URLs are encrypted. An on-going extension of
HTTPTag to solve this issue is to rely on DNS queries analysis,
similar to the approach introduced in [18]. HTTPS analysis is
out of the scope of this paper.

Figures 2(a) and 2(b) depict the distribution of HTTP
traffic volume and number of users covered by HTTPTag in
a standard day. Using about 380 regular expressions and 280
tags (i.e. services) manually defined, HTTPTag can classify
more than 70% of the overall HTTP traffic volume caused
by more than 88% of the web users in the studied network.
Note that a small number of heavy hitter services dominate the
HTTP landscape: the top 10 services w.r.t. volume account for
almost 60% of the overall HTTP traffic, and the top 10 services
w.r.t. popularity are accessed by about 80% of the users. These
results reinforce the hypotheses behind HTTPTag: focusing on
a small portion of the services already gives a large traffic
visibility to the network operator.

Figure 2(c) shows the total daily HTTP volume labeled by
HTTPTag on the week of traces used in the study. The week
corresponds to 7 days during the second quarter of 2012, from
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Figure 4. Distribution of the server IPs used by the top 7 services among
the top hosting organizations.

Sunday to Saturday. HTTPTag is able to label between 69%
and 74% of the total daily HTTP volume on the studied traces.
The study performed in the following sections considers only
the labeled HTTP flows, and the approximately remaining 30%
of unlabeled HTTP volume is ignored.

As previously mentioned, the top 10 services (in terms
of traffic volume) flagged in figure 2(a) are responsible for
almost 60% of the total daily HTTP volume during the whole
evaluation week, which represents about 85% of the labeled
services in terms of traffic volume. The list of most important
services volume-wise includes services such as Apple (i.e.,
App Store and iTunes - APP), Facebook (FB), YouTube
(YT), Google (i.e., Google Search - GO), two well-known
Adult Video Streaming services AVS 1 and AVS 2, and
Microsoft Windows Update (WIN) among others.

IV. UNDERSTANDING HTTP SERVICES PROVISIONING

In this section we focus on the hosting and service delivery
analysis. This includes a characterization of the number and
temporal provisioning of the server IP addresses used for
each service, the placement of the hosting servers, and the
identification of load balancing techniques. To limit the number
of services to study, the analysis is performed exclusively
for the aforementioned top 7 services, which account for the
majority of the HTTP traffic volume.

Let us begin by analyzing the number of unique server IP
addresses used to deliver each of these services on a single
day. Figures 3(a) and 3(b) depict the evolution of the number
of unique server IPs per hour and the accumulated number of
unique server IPs on a single day, whereas figure 3(c) plots
the number of HTTP flows per hour (values are normalized
to avoid disclosing sensitive business-related absolute values).
For 6 out of the 7 services (i.e., all except AVS 1), there
is a clear correlation between usage and number of unique
server IPs delivering the corresponding content. The changes
observed in the unique number of IPs being used by Google
Search, Facebook, and YouTube are impressive, going from
about 250 IPs per service at 5 am to up to 1200 in the case
of Google Search. These three services are provided by large
CDNs (i.e., Google CDN for Google services and Akamai for
Facebook), which justifies the large number of unique server
IPs being used during the day. Thanks to Akamai, Facebook is
the most IP-distributed service, using more than 2000 different
IPs on a single day. The number of unique IPs serving the
video streaming service AVS 1 remains almost constant in

Org. (AS num.) id Org. (AS num.) id Org. (AS num.) id

Hotmail (12076) a Swiftwill (30361) f Apple (714) k

Google (15169) b Facebook (32934) g Microsoft (8075) l

Omniture (15224) c Level 3 (3356) h TeliaNet (1299) m

Akamai EU(20940) d YouTube (36040) i Verizon (701) n

Limelight (22822) e YouTube (43515) j other o

Table I. TOP HOSTING ORGANIZATIONS AND ASES IN TERMS OF

NUMBER OF UNIQUE IPS OF THE TOP 10 SERVICES (NON-ORDERED LIST).

Service #/16 #/24 # IPs top-subnet /24 Org. (AS num.)

YT 10 51 1373 74.125.232.0 Google (15169)

FB 62 140 2031 2.20.182.0 Akamai EU (20940)

GO 9 73 1875 74.125.232.0 Google (15169)

APP 35 71 522 80.239.149.0 TeliaNet (1299)

AVS 1 23 71 92 204.160.106.0 Level 3 (1299)

AVS 2 6 13 456 87.248.217.0 Limelight (22822)

WIN 41 200 743 2.20.182.0 Akamai EU (20940)

Table II. NUMBER OF IPS AND BLOCKS HOSTING THE TOP 7 SERVICES.
THE TOP /24 SUBNETWORKS ARE DEFINED IN TERMS OF NUMBER OF

HTTP FLOWS DELIVERED.

time and is below 100 all over the day, suggesting a very
stable delivery infrastructure.

Using the MaxMIND ASes databases [24] we explore now
how distributed are these unique IPs in terms of the different
organizations owning them. Figure 4(a) shows the fraction of
unique IPs per service hosted by the list of organizations and
ASes described in table I. The organization labeled as “other”
(i.e., id o) consists mainly of ISP ASes which cache the content
at the edge of their own networks.

As expected, Google Search and YouTube IPs are mainly
hosted by Google Inc. ASes, Facebook IPs are mainly hosted
by Akamai and Facebook ASes, and Windows Update IPs are
mainly hosted by Microsoft ASes. For example, in the case
of Facebook, it is well known that the static content is hosted
by Akamai, whereas Facebook ASes host the dynamic content
[4]. Almost all of the AVS 2 IPs are hosted by Limelight,
and this organization is additionally hosting only a small
fraction of AVS 1 IPs, with no other service being hosted there.
This concentration of IPs on an almost exclusive organization
explains the high classification accuracy obtained for AVS 2
flows in section V. In all the cases, a small fraction of the
IPs used to deliver the services belong to ASes caching the
content. Figure 4(b) depicts the top ordered organizations in
terms of unique IPs providing the studied services. Google and
Akamai are clearly the most distributed organizations in terms
of IPs providing the top HTTP services. Limelight is the third
CDN in our traces, in this case mainly providing the AVS 2
content.

Table II provides a summary on the number of IPs and
potential /16 and /24 sub-networks or IP blocks hosting
the studied services. The term potential comes from the fact
that we only consider an aggregation of IPs using /16 and
/24 net-masks for counting purposes, but we are actually not
sure if the corresponding subnetworks are configured as such.
The table also reports the top /24 subnetworks in terms of
number of delivered flows, together with the corresponding
AS and hosting organization. We can appreciate that the
three services hosted by Akamai (i.e., Facebook, Apple, and
Windows Update) are highly distributed in terms of disjoint IP
blocks. This is coherent with the fact that the Akamai CDN
deploys a highly distributed architecture with many thousands
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(a) IP range of unique server IPs. (b) Weighted IP range.

Figure 5. Distribution of the IP range associated to the tagged services on a
single day. AVS 1 is highly distributed in terms of different IP blocks, whereas
AVS 2 is mostly served from a small number of blocks.

of servers (e.g., more than 27.000 in 2008 according to [5])
following the enter deep into ISPs approach [5], by deploying
content distribution servers inside ISP POPs. The idea behind
such an approach is to get as close as possible to the end users,
improving user-perceived performance in terms of both delay
and throughput. Such a design results in a large number of
server clusters scattered around the globe. On the other hand,
the AVS 2 service is the most concentrated one in terms of
IP blocks, having around 450 different IPs scattered around 6
/16 IP blocks. As shown in 4(a), AVS 2 is mainly hosted by
Limelight, which follows a completely different architectural
design to that of Akamai; Limelight follows the bring ISPs to
home approach [5], building large content distribution centers
at only a few key locations and connecting these centers using
private high speed connections.

A very interesting observation from figure 4(a) is that
many IPs delivering different services are usually hosted by
the same organization. For example, Akamai hosts content
from Facebook, Apple, and Windows Update, whereas both
YouTube and Google Search belong to Google and YouTube
ASes. Specially in the case of Facebook and Windows Update,
the majority of their flows are served from the /24 Akamai
block 2.20.182.0/24, and the same happens to Google Search
and YouTube, being served by IPs in the /24 Google block
74.125.232.0/24.

To further explore the ranges of used IPs, figure 5 depicts
the distribution of the IP address ranges associated to the
different top 7 services on a single day. Figure 5(a) depicts
the distribution of IPs without considering the actual number
of HTTP flows being served by each IP, whereas 5(b) weights
each of the IPs by the number of flows delivered. The
separation between blocks of IPs is remarkable, being AVS
1 the most notorious case. Indeed, according to table II, AVS
1 has only 92 unique IPs delivering its content, which are
distributed along 23 different /16 IP blocks. Figure 5(b) shows
the aforementioned blocks used by Akamai for Facebook and
Windows Update, and by Google CDN for Google Search and
YouTube. The highly concentrated group of IP blocks used by
Limelight to deliver AVS 2 are also noticeable, with the block
87.248.217.0 serving the majority of the flows.

We move on to the analysis of the temporal evolution of
the IPs used by some selected services and CDNs. Figure 6
depicts the temporal evolution of the number of hourly unique

IPs per service, for some selected /16 blocks. Let us first
focus on YouTube and Facebook, depicted in figures 6(a) and
6(b) respectively. Two /16 blocks are plotted in each case,
the former remains reasonably stable during time in terms of
number of unique IPs, the latter presents a big increase in the
number of used IPs when traffic load increases. In the case
of YouTube, the number of IPs in the block 74.125.0.0/16
varies between around 200 and 300 IPs, whereas the variation
in the block 173.194.0.0/16 is between 50 and 300 different
IPs approximately. Such differences suggest different location
of content or different server roles at different blocks, load
balancing techniques, or both. In the case of Facebook, the
Facebook block 69.171.0.0/16 has an almost constant number
of active IPs being accessed during the day, whereas the
Akamai block 92.122.0.0/16 presents strong variations, reflect-
ing once again different provisioning policies; in particular,
Facebook servers might be continuously active due to specific
service requirements (e.g., Facebook servers handle all the
control metadata of Facebook sessions). Figures 6(c) and 6(d)
show similar behaviors for 3 different IP blocks used by
Apple and Windows Update, with some additional and very
interesting spiking activity consisting of short periods of time
with large increases in the number of IPs being contacted. For
example, in the case of Apple, the Akamai block 92.122.0.0/16
presents a spiking behavior every a couple of hours in the
afternoon, with a markedly change from 20 to 70 unique IPs
in one single hour, at 23:00hs. Windows Update also presents
spiking behavior out of the high-load time period, with an
important increase of active IPs between 10:00hs and 12:00hs
in the Microsoft block 94.245.0.0/16. Such changes reflect both
the flexibility of Akamai to handle crowds with an increasing
number of IPs, and the probable scheduling of certain activities
in specific services (e.g., specific Microsoft software updates).

The last part of this section is devoted to the identification
of CDN servers location and load balancing policies. Similar
to [4], we consider the Round Trip Time (RTT) to the hosting
servers as a measure of the servers distance from the vantage
point. The RTT to any specific IP address consists of both the
propagation delay and the processing delay, both at destination
as well as at every intermediate node. Given a large number of
RTT samples to a specific IP address, the minimum RTT values
are an approximated measure of the propagation delay, which
is directly related to the geographical location of the underlying
server. It follows immediately that IPs showing similar min
RTT values are most probably located at similar locations,
whereas IPs with very different min RTTs are located in
different locations (e.g., datacenters in different countries).
RTT values are obtained from active measurements, performed
during the complete week of measurements, using a standard
ping tool. In order to identify the min RTT values, all the
IPs assigned by HTTPTag to a specific service during each
measurement hour are periodically pinged. In particular, every
unique IP is pinged with trains of 100 IMCP echo request
packets every 10 minutes, resulting in a total of 6 individual
values of min RTT per hour and per IP. We are very aware
that obtaining such min RTT measurements by active probing
is not always the best approach, as many servers would simply
not answer to an echo request, ICMP packets can be altered or
differently treated by the ISP or the CDN, the content provider
might make use of IP Anycast in its network, just to name
a few of the possible shortcomings. In order to reduce the
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(a) YouTube IPs. (b) Facebook IPs. (c) Apple IPs. (d) Windows Update IPs.

Figure 6. Temporal evolution of number of hourly unique server IPs per service, for selected /16 blocks of IPs. The number of unique IPs used by Akamai to
deliver different services from different IP blocks is highly dynamic during the day, and presents big changes under high-load or other on-demand situations.

impacts of such shortcomings, we filter out all the inconsistent
results providing different min RTT values at different hours
of the day.

Figures 7(a) and 7(b) depict the distribution of min RTT
values per service and per hosting organization/AS respec-
tively. Frequencies are weighted by the number of flows com-
ing from each specific IP during one single day of measure-
ments. Modes or steps in the distributions suggest the existence
of different geographically separated hosting locations. Figure
7(a) shows that a large fraction of the Facebook, Apple, and
Windows Update flows come from servers probably located
in the same city of the vantage point, as min RTT values
are below 5ms. These three services are largely provided by
Akamai, thus results are very in-line with the min RTT values
depicted for Akamai IPs in figure 7(b). Indeed, more than
60% of the Akamai HTTP flows come from servers inside
the ISP, justifying the aforementioned low min RTT values.
Apple flows seem to be served from three markedly different
locations, given the three modes clearly visible in the CDF.
Two of them are probably located in the same country of the
vantage point, as min RTT values are below 10ms, whereas
the third location is located outside Europe (i..e, min RTT
> 160ms), probably in the US due to Apple and Verizon
IPs. The AVS 2 service seems to be mainly served from two
locations in Europe (min RTT ≈ 30ms), perfectly matching the
results depicted in figure 7(b) for the Limelight CDN. The two
marked and very similar modes for Limelight min RTT in 7(b)
reinforce the comments on the bring ISPs to home approach.
A deeper analysis of the underlying IPs with the MaxMIND
GeoIP data [24] reveals Limelight IPs in Italy and UK. AVS 1
is served from three different locations, including a Limelight
CDN datacenter in Europe and two locations outside Europe,
with at least one of them being Level3 according to table I.
According to 7(b), most of the Facebook flows provided by the
Facebook AS come from the US, and a very marginal fraction
comes from inside Europe, more precisely Ireland according
to manual inspection with MaxMIND. Interestingly, most of
the YouTube flows come from servers under Google ASes and
not YouTube ASes, which will have a major impact in the
classification confusion matrix between Google Search and
YouTube flows in section V.

To conclude with this part of the study, we analyze now
the temporal evolution of the min RTT for some selected
services, aiming to show evidence on load balancing tech-
niques employed by the Google CDN, Akamai, and Limelight.
Figure 8 depicts the hourly evolution of the min RTT for
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Figure 7. Distribution of min RTT per service and per hosting organization. A
big share of Facebook, Apple, and Windows Update flows come from servers
located in the same city of the vantage point. More than 60% of the Akamai
HTTP flows come from servers “inside the ISP”, with min RTT values smaller
than 5ms.

different service flows during 4 consecutive days, from Mon-
day to Thursday, including YouTube (mainly Google CDN),
Facebook (mainly Akamai), and AVS 2 (mainly Limelight).
Each column in figure 8 depicts the CDF of the min RTT of
all the corresponding service flows, using a heatmap-like plot
(i.e., the darker the color, the more concentrated the CDF in
that value). Figure 8(a) plots the results for YouTube flows.
The majority of the flows are delivered from the two Google
locations depicted in figure 7(b) at 61ms and 63ms, about 15%
of the flows are served from a third location at 30ms, and the
remaining flows are served from different locations at around
44ms and 51ms. The interesting observation is that markedly
min RTT shifts occur every day at exactly the same time
slots, showing a min RTT periodic pattern. These temporal
patterns are flagged by dotted rectangles. Such traffic shifts
suggest either some regular content access pattern (i.e., users
access the same contents every day at the same time-slots),
periodical network congestion events, or much more likely,
the presence of load balancing techniques which permit the
CDN to serve the content from different locations according
to some internal decision policies. Similar patterns can be
observed for the Facebook static content hosted by Akamai as
depicted in figure 8(b); we mention the static content as the min
RTT values correspond to Akamai servers, i.e., RTT < 40ms.
Both results suggest that Google CDN and Akamai make use
of internal load balancing policies to serve the content from
their different hosting locations. Finally, figure 8(c) depicts the
same analysis for the AVS 2 service. As expected, most of the
flows are served from the two previously mentioned Limelight
locations at 30ms and 32ms. However, in this case there are
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Figure 8. Daily min RTT for YouTube, Facebook, and AVS 2. Google CDN
and Akamai make use of internal load balancing policies to serve content from
different hosting locations.

no observable temporal patterns, suggesting that Limelight is
not applying load balancing techniques in Europe, at least not
for provisioning the corresponding service.

V. HTTP TRAFFIC CLASSIFICATION USING IPS

We shall now shift the analysis towards the second use-case
tackled in this paper: automatic classification of HTTP flows
based solely on the IP address of the server being contacted.
The approach we follow is straightforward; in a nutshell, given
a specific service Si to be identified, we build a set of ki well-
known IP addresses IPi = {ipi(1), ipi(2), . . . , ipi(ki)} host-
ing Si, using the associations Ai = {Si.IPi} between server
IPs and services provided by HTTPTag on a certain learning
period. Given a list ofm services Si, {i=1..m} to classify and an
HTTP flow fnew coming from IP address ipnew, we apply the
following classification rule: F(fnew) = Si ↔ ipnew ∈ IPi.

As we showed in previous section, given the widespread
usage of third-party hosting organizations serving the content
of multiple services (e.g., Akamai), the big number of com-
panies hosting multiple services in the same locations (e.g.,
Google CDN), and the ISPs content caching policies, multiple
different services Si might be associated to the same server
IP address, which actually means that the m sets IPi are
not necessarily disjoint sets. We shall refer to this IP sets
intersection issue as IP hosting collisions. Such collisions are
observed both in figure 5 and 7. For example, figure 5(a) shows

that about 8% of the Facebook IPs are in the same range of
about 17% of Windows Update IPs and 3% of Apple IPs,
and that about 16% of the IPs used by AVS 1 also intersect
with Windows Update IPs. There are also IP hosting collisions
between Google Search and YouTube, AVS 1 and AVS 2, and
among Facebook, Apple, and Windows Update on a different
IP range. In this case, the previous classification rule would
associate fnew to all those services mapped to ipnew. To solve
this multi-classification issue and decide for one single output,
we use a simple random selection approach, in which the
decided service is randomly chosen among the potential ones.
Such a straightforward decision approach could be improved
by heuristics, for example by adding weights to the candidate
services based on different criteria (e.g., size of the IP sets),
but we shall keep it simple in this paper.

To test the classification performance achieved for each
of the analyzed top 7 services, we divide the complete
week of labeled HTTP flows in n = 8 classes: the first
7 correspond to the top 7 services, whereas the 8th class
corresponds to all the rest of the labeled flows and will be
referred to as the other class. Using the labeled traffic
flows from Monday as learning dataset, we construct 7 IP
sets IPi containing all the unique IPs per service observed
during the day. The size of each of this sets is available from
table II: {#IPi} = {1373, 2031, 1875, 522, 92, 456, 743}. The
classification associated to the class other is simply done by
a complementary decision rule: if according to F(fnew), flow
fnew is not assigned to any of the top 7 services, then it is
assigned to the other class.

To asses the classification performance of the aforemen-
tioned approach, we employ three traditionally used perfor-
mance metrics in the traffic classification literature: the Clas-
sification Accuracy (CA), the Recall (Ri), and the Precision
(Pi) per class:

CA =

∑m
i=1 TPi

n
, Ri =

TPi

TPi + FNi
, Pi =

TPi

TPi + FPi

where TPi corresponds to the number of correctly classi-
fied flows in class i (i.e., number of true positives), and FNi

and FPi correspond to the number of false negatives and false
positives in class i. The classification accuracy indicates the
percentage of correctly classified flows among the total number
of flows n. Recall Ri is the number of flows from class i
correctly classified, divided by the total number of flows in
class i. It measures the per-class accuracy. Precision Pi is
the percentage of flows correctly classified as belonging to
class i among all the flows classified as belonging to class i,
including true and false positives. It measures the fidelity (i.e.,
variance of the classification error) of the classifier regarding
each particular class.

Figure 9 depicts the classification performance achieved in
the learning day (i.e., Monday), on an hourly basis. Given the
random decision process used in case of IP hosting collisions,
the algorithm is run 20 consecutive times, and the provided
results correspond to the obtained average values. Figure 9(a)
depicts the classification accuracy for the 8 defined classes,
including the error variance bounds resulting from the 20
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Figure 9. Classification performance achieved in the learning day. The overall classification accuracy is remarkably high and stable during the day, rounding
about 75% of correctly classified HTTP flows. More than 60% of all the Facebook, Adult Video, Google Search, and Windows Update HTTP flows are correctly
classified.
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Figure 10. Confusion matrix for traffic classification. Many YouTube flows
are classified as Google Search. Windows Update flows are misclassified as
Facebook and Apple, given the previously mentioned IP hosting collisions
within Akamai.

consecutive runs, which are negligible. The overall classifi-
cation accuracy is remarkably high and stable during the day,
rounding about 75% of correctly classified HTTP flows. These
a-priori excellent results achieved by only using IP addresses
can be in fact misleading, because we are considering the
other class inside the classification process, which contains
a much larger number of unique IPs. Figure 10 shows the
confusion matrix for the classification results. Many YouTube
flows are classified as Google Search, and vice versa. Win-
dows Update flows are misclassified as Facebook and Apple,
given the previously mentioned IP hosting collisions within
Akamai. Similar behavior is observed for Apple. As previously
observed, the AVS 2 service is accurately classified with a very
low false negatives rate.

Let’s focus now on the per service recall and precision,
depicted in figures 9(b) and 9(c) respectively. The recall or
per-service classification accuracy is still remarkably high and
stable during the day, with more than 60% of all the Facebook,
Adult Video Streaming, Google Search, and Windows Update
HTTP flows correctly classified. Specially in the case of the
AVS 2 service, recall is as high as 98%, and both Facebook
and Windows Update HTTP flows are identified with a per-
class accuracy above 80%. However, YouTube flows are poorly

classified, and the recall achieved is between 40% and 50%.
The main reason for these poor results comes directly from the
IP hosting collisions associated to Google CDN and Akamai,
as many of the YouTube and Apple flows are classified
as Google Search and Facebook or Windows Update flows
respectively, as depicted in figure 10.

When it comes to evaluate the per-service precision, the
achieved results are much less encouraging, and show in all
the cases that many of the flows are assigned to classes sharing
similar IP ranges. The recall obtained for Google flows is still
pretty high and above 80% from 9 am onwards, but results for
YouTube, AVS 1, and Windows Update show a big number
of false positives associated to these services. As expected,
the precision for the other class is of 100% during the
complete learning day, which comes directly from the applied
classification technique for this specific class.

The final analysis consists in the classification performance
evaluation on the complete week of traffic traces, using the
IPs of Monday as learning data. Figure 11 depicts the per-day
accuracy, recall and precision achieved in the 7 days of the
study. Figure 11(a) shows that the classification accuracy is
remarkably stable during the full week, clearly suggesting that
the sets of IPs delivering the different services are stable in
time, at least in a weekly-basis. The figure additionally shows
the normalized number of analyzed flows per day, to have an
idea of the volume variations during the week. Figures 11(b)
and 11(c) additionally present the daily recall and precision
for the full week, showing once again that classification per-
formance is very stable in time. In fact, achieved results remain
almost unchanged from those obtained during the training day,
achieving a classification accuracy close to 75%.

VI. CONCLUDING REMARKS

In this paper we have addressed the problem of extracting
useful knowledge from the dynamics of the Internet addressing
space, specially targeting the characterization of the top web
services, their hosting organizations and the way services are
delivered to the end-users, as well as the problem of HTTP
traffic classification from network measurements. Using a full
week of HTTP traffic traces collected at the mobile broad-
band network of a major European ISP, we have investigated
the associations between services and the IPs assigned to
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Figure 11. Classification performance achieved in the analyzed week of HTTP traffic. The classification accuracy is stable during the complete week, and
around 75% of the HTTP daily flows are correctly classified.

the servers providing the content, additionally evaluating the
performance of a very simplistic approach to classify the top
services accessed by the users of the studied network.

Among our main findings regarding web services and their
hosting/delivery servers, we have shown how dynamic and
distributed are current major CDN players like Google and
Akamai, providing not only large numbers of servers or IPs
at very distributed locations, but also making use of load
balancing techniques to shift HTTP flows among their pre-
ferred hosting locations. We have also shown evidence on the
more static approach followed by other CDNs like Limelight,
reflecting a different philosophy for CDN architectures.

Regarding HTTP flows classification, we have shown that
despite its simplicity, the IP-based approach is able to classify
the HTTP flows of the top services with a classification
accuracy as high as 75%. However, we have also seen that
the classification recall and precision are highly impacted by
IP hosting collisions, seriously impacting its performance as
a robust traffic classifier. Still, results obtained for some of
the analyzed services like Google Search, Facebook, Windows
Update, and AVS services were encouraging, achieving a
daily per-class accuracy above 70% in all the cases, with
precision values above 65% for Google Search and AVS 2.
This paper has therefore provided evidence on the possibilities
of using such a minimalist approach for recognizing the top
HTTP services in terms of end-user consumed traffic volumes,
offering a practical and very flexible solution for traffic aware
networking.
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