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Abstract—This paper addresses the observability and inde-
pendence of a system monitored using networked distributed
sensors under the assumption that some sensing results are
indiscriminable. We theoretically analyze the independence of
sensing templates, that is, whether sensing systems are not
redundant, and the observability of such systems, that is, whether
we can determine the state of a system from the sensing results.
Application examples to which the results given in this paper
can be applied are: (1) end-to-end network quality monitored
by end users in which the route actually used is not known and
(2) object detection/non-detection by binary sensors randomly
deployed without positioning mechanisms.

I. INTRODUCTION
As a system becomes larger, it becomes more difficult to

monitor what is happening inside the system or observe the
entire system. Therefore, it is beneficial for a system operator
to use information from outside a system or information
brought into it by using distributed probing mechanisms from
the outside and to estimate the inside of a system.
For such a situation, a natural question is: Can we esti-

mate (observe) the inside of a system or extract meaningful
information for the global view of the system by collecting
and processing small pieces of distributed information? This
question regarding observability seems general because we can
easily find such examples.
– Network quality: Each subscriber communicates with

another through a network. Some subscribers may submit
a report to a network operator about quality. The quality
of each link is either one of two states, GOOD or BAD.
The route occasionally changes due to load balancing or
other reasons. Subscriber reports include information about the
source, destination, and quality for the source and destination,
but it does not include the route. Can a network operator know
the quality of each link based on subscriber reports?
– Sensors detecting targets: Sensors are randomly deployed

(or many people deploy each sensor as a part of participatory
sensing) to detect whether there are target objects. If there
is a target object within the sensing area of each sensor, the
sensor sends a sensing report of DETECT to a sensor data
center; otherwise, it sends a sensing report of NON-DETECT.
Each sensor has sensing and communication capabilities, but it
does not have a positioning function (or it does not inform its
location due to location privacy). Therefore, we do not know
the location of sensors. Can we determine the number, size,
shape, and location of targets?

These examples have the same structure: binary sensing
reports from distributed sensors under partially unknown con-
ditions are collected to estimate the state of the system. The
analysis of this paper covers these examples.
Observability for binary information systems is being dis-

cussed in multiple research areas such as networking, testing,
and sensing.
In networking research, fault localization [1], [2] and net-

work tomography [3]–[10] are concrete examples. The former
is a technology for identifying the location of faults/failures
mainly used in the wavelength-division multiplexing network.
For example, Talpolcai et al. [1] proposed a localization
method by using -trail, which is a supervisory lightpath
dedicated for failure localization. The ON-OFF status of this
lightpath indicates whether or not a link failure event occurs
along the lightpath. Each node identifies the failure link by
a set of the detected statuses of -trails. The latter is a
technology that estimates the quality of each link of a network
by using probes for monitoring the quality of each route (path),
although it sometimes means the inference of routing topology
or traffic matrix. The probe is normally an end-to-end unicast
packet, though some researchers assume the use of multicast
[11]–[14]. In general, network tomography does not model the
network states or the observation results as binary variables,
but the following studies model them as binary; thus, they
are relevant to this paper. Zeng et al. discussed the generation
of automatic test packets covering the points that may have
problems [15], which also belongs to the testing research area.
By using the test packets, identifying the problematic points
is also discussed. Nguyen et al. [16] investigated a method of
identifying a link as BAD by observing the binary state of the
path. They introduced the concept of “identifiability”, meaning
that the link state probability vector can be identified by the
observation of the path. Duffield [17] proposed an algorithm
called the Smallest Consistent Failure Set (SCFC) inference
algorithm for a tree network. The SCFC algorithm estimates
BAD links based on the quality observations for the paths
between the root and leaves. Nguyen et al. [18] investigated
the probe selection problem to efficiently perform network
tomography. The results shown in [18] are useful in discussing
the results discussed in this paper. It is normally assumed
with network tomography that the route is fixed, although we
assume that the route can change in the example of network
quality in this paper.



In testing research, the testability theory for digital circuits
is the most relevant. Test patterns randomly chosen are offered
to a combinatorial circuit with a fault. Research objectives are,
for example, to generate test patterns to efficiently cover a
given fault [19] and to compute the probability of detecting the
fault [20]. It is known that generating a test for a single stuck-at
fault in a circuit requires solving an NP-complete problem, and
identifying the redundancy of a single stuck-at fault requires
solving a co-NP-complete problem [19]. A model commonly
used in testability theory for digital circuits is specific case of
the model proposed in Section III-A.
There are studies we need to mention in sensing research.

By obtaining a sensor report that provides binary information
on whether a sensor detects a target object through a network
such as that proposed in [21], [22], some parameters of target
objects, such as size, perimeter length, and angles, can be
estimated but other parameters cannot be [23]–[27]. These
methods can be regarded as software sensors (soft sensors)
with which sensors are randomly placed. In particular, [26]
introduced the concept of a composite sensor node, which con-
sists of multiple sensors arranged in a predetermined layout,
such as a line, and defined observability by the existence of
composite sensor node parameter values that distinguish two
sets of parameter values of the target object shape. That is, if
observable, we can expect that obtained binary sensor reports
can uniquely determine the target object shape parameters
under an ideal situation by using sensing results and a certain
set of composite sensor node parameter values.
Another research area in sensing research is observability

under sensor failure or sensing schedule [28]–[31]. These
studies discussed methods for (i) determining if a given system
remains observable in case of sensor failure, (ii) finding the
minimum set of sensors to maintain observability, (iii) opti-
mally placing sensors, and (iv) finding the policy for achieving
optimum observability. However, these studies do not cover the
topics discussed in this paper. In addition, although Kar et al.
[32] studied parameter estimation with sensing results where
a sensor may be under failure and sensing results may include
errors, it does not cover the concept that we cannot distinguish
sensing results for the sensing templates in the same class.
This concept is one of the main features differentiating other
studies from ours.
This paper introduces classes of sensing templates and mod-

els the fact that we cannot determine which sensor (sensing
template) corresponds to a sensing result. In each class of
sensing templates, a sensor is chosen with a given probability.
This model covers a large class of problems, including those
mentioned above, and bridges existing results in different
research areas. This paper argues that observability is more
applicable in a wider variety of applications than in conven-
tional literature if it is unifiedly defined, and can contribute
to determining whether meaningful results can be extracted
from collected and processed small pieces of distributed binary
information. We should note that there are unobservable cases.
For such cases, no appropriate solution is a correct solution
even though computer programs may derive some solutions.

II. NOTATIONS
In the remainder of this paper, a (row) vector is denoted in

boldface if explicitly indicated otherwise. The following is a
list of notations used in this paper.

if is true
otherwise : an indicator function.

: the -element zero vector.
: the -th elementary -element

vector where .
: the -element vector of which elements

are 1.
: the -th element of any vector .

for .
for any binary vector

and . That is, is
the element-wise OR operation for and .

: the element-wise AND operation for and .
. The operator means

“sensing”, as discussed in a later section.
for a binary vector . That is,

is an operator that regards as a binary number
and expresses it as a decimal integer. For a given integer
, we can define an operator of the inverse of ,
that is, .
: the number of elements in .

: the set for an
element .

III. MODEL

A. Model description
Let be a binary state vector, where

is a given set of possible states. When there is (is
not) a target at , (0).
Let be a sensing template, where means that

we can observe (Normally, a deployed sensor corresponds
to a sensing template, which is similar to a sensing area.
However, it is likely that the sensing area is a continuous area
or a set of contiguous points on the discrete domain. On the
other hand, the sensing template may not be composed of
consecutive points.) The operator means “sensing” because

is the sensing result of by .
Here, (0) means that the sensing template detects
(does not detect) a target or targets in . That is, when there is
a target occupying at least one of the observed points defined
by the sensing template , ; otherwise, . The
sensing templates mentioned in the remainder of this paper are
not identical to unless explicitly indicated otherwise. Let

be the set of all the sensing templates
available, where and for any .
Let be an -element column vector of which the -th

element is given by for
and define the matrices
and , where and

.
We now introduce the concept of “classes of sensing tem-

plates.” If multiple sensing templates are in the same class,



we cannot determine which sensing template corresponds to
a sensing result. Let be the number of classes, be
the -th class of sensing templates, and be the number
of sensing templates in class . When class- is used, the
sensing template is independently used with probability

. If the sensing template is not included
in , . Define , which
is the probability that a sensing result is 1 when a class-
sensing template is used, and .
Define .
When , we call this class the reduced class. The

conventional model discussed in [15]–[18] corresponds to
with or 0 for all and or 0 for all .

In [15], the greedy algorithm provides a good approximated
solution for the minimum set covering all the state, although
the minimum set coverage problem is NP-complete.
The following is the summary of variables.

: the set of all available sensing templates.
: a sensing template.
: the -th sensing template.

.
.

, where and
.

: the -th class of sensing templates.
: the number of sensing templates in class .

.
: the number of classes.
: the prob. that the sensing template is used in .

. ... .

: a binary vector describing the state.
: a set of possible states.

. .

B. Example
Consider a ring network with nodes as a concrete

example of “network quality” as mentioned in the Introduc-
tion. The state can be described as , where
(1) means the GOOD (BAD) quality of the link between the
-th node and -th node and . If and only
if all the links included in the route between a source and
a destination are GOOD quality, the quality of the source-
destination pair is GOOD (this property is called separable
[17]). Let be the sensing template corresponding
to the -hop route (mod ). Here,

(0) means that the link between the -th
node and -th node is included (not included) in this route.
Between each pair of nodes, a shorter hop route is chosen

with probability , and the other route is chosen with prob-
ability . For simplicity, the quality of both directions
of a link is assumed to be the same. Because we observe
the quality between a source-destination pair without knowing
the route used for the observed quality, each pair of nodes
corresponds to a class of sensing templates with two members:

one template for the shorter route around the ring, and another
for the longer. Therefore,
and .
For simplicity, consider . Then, for example,

corresponds to the quality report for the direct link
between nodes 1 and 2. Similarly, corresponds
to the quality report for the route 1-2-3. When the link between
nodes 1 and 2 is BAD and other links are GOOD,

. Hence, . Similarly,

. Between nodes 1 and 2,

the one hop route corresponds to and the two hop route cor-
responds to . Therefore, if the first, second, and third classes
correspond to the node pairs between nodes 1 and 2, 2 and 3,
and 3 and 1, respectively, .

For example, is if the link
between nodes 1 and 2 is BAD and other links are GOOD,

if the link between nodes 1 and 2 is GOOD and one
of the other links is BAD, 0 if all the links are GOOD, and 1
otherwise.

IV. ANALYSIS
A. Definition
Definition 1: “ can distinguish from
” means that for given and . “ is

observable by ” means that we can distinguish
from any other state by .
For the conventional model, the definition of “distinguish”

given above is identical to that defined in [18].
Definition 2: If and only if there exists a (linear) function

such that for any binary vector
, is (linearly) constructible from the set .
If and only if is not (linearly) constructible from the set

, is strongly independent (linearly indepen-
dent) from the set .
The independence defined in [18] is equivalent to that

defined above with in which
( ) for the conventional model.

B. Main theorem
In this subsection, we discuss how we determine that

sensing template classes are mutually redundant and that
observability is achieved through sensing template classes.
Theorem 1: For any , (i) any given state is observable

if and only if no two columns in are identical, and
(ii) any given class is linearly independent if and only if all
the row vectors in are linearly independent.

Proof: Note that is given by a column vector
in , where . According to the definition of
observability, any state is observable if and only if no two
columns in are identical.
Note that the -th row vector of is

, where and



. According to the definition
of linear independence, any class is linearly independent
if and only if all the row vectors of are linearly
independent.
Theorem 2: Consider two sets of possible states and

such that .
(1) Any state observable in is observable in .
(2) A class is linearly constructible from

for if is linearly constructible from for .
Proof: The set of column vectors in is a subset

of column vectors in . Therefore, if no two column
vectors in are identical, no two column vectors in

are either identical.
Assume that there exists a linear function such that

for any binary vector .
Because , satisfies for
any .
The meaning of this theorem is intuitive. The former part of
this theorem means that a state we can uniquely identify in
a set of states , can, of course, be uniquely identified in a
smaller set of states than . The latter part roughly means
that if for any state can be constructed using other classes
of sensing templates for a large state space, it is possible to
construct using these other classes for a small state space.
Theorem 2 provides us with an important suggestion: If we

can reasonably limit the possible states, it is likely that we can
identify each state, even when the system is not observable for
a large possible state set. On the other hand, if we can limit the
possible states, sensing results may become redundant even
when the original classes of sensing templates are linearly
independent for a large possible state set.
Consider the example in Section III-B. Its possible state set
typically consists of all the combinations of BAD/GOOD

links. However, if it is unlikely that all the links are BAD, we
can limit possible states to a subset . For , we may not be
able to determine which links are BAD in quality. However,
Theorem 2 shows that we may be able to determine these for
.
Lemma 1: .
Proof: Because has elements and ,

there are at most variations except for .
Lemma 2: The rank of matrix is .

The proof is shown in Appendix.
Theorem 3: If the rank of is equal to ,

are linearly independent of each other
when . If the rank of is less than , at least one
of is linearly constructible by other

for any .
Proof: Assume . For a vector

and a given state ,
. Therefore,

. Note that columns of include

... for any . Hence, “linearly constructible”

means that for . If the rank
of matrix is equal to , for

. Because of Lemmas 1 and 2, the rank of matrix
is equal to the rank of . Thus, if the rank of

is equal to , are linearly independent of
each other.
If the rank of is less than , there exists a vector
such that . Thus, . This

means that at least one of is linearly
constructible when . By using Theorem 2, at least
one of is linearly constructible for
any .
In the example of network quality, consider the ring net-

work discussed in Subsection III-B with . Because
, its

rank is 3. Thus, according to Theorem 3, are
linearly independent. On the other hand, when we limit
the possible states to be
(that is, the possible states are those in which one of the
transit links is BAD), is the matrix made from the
second, third, and fifth columns of . Then, the rank

of is 1 for and 3

for . Therefore, according to Theorem 3,
are linearly constructive from each other when . In
practice, because ( ) for this ,

for all when .
Theorem 4: If for any and if

the rank of is , observability is achieved. If there exist
such that , observability is not

achieved.
Proof: Because of Theorem 1, observability is equivalent

to that in which no two column vectors in are equal.
If for any and if the rank of
is , the two column vectors corresponding to and in

cannot be the same. Thus, observability is achieved. If
there exist such that ,

. Thus, observability is not achieved.
Theorems 3 and 4 show that the rank of plays an

important role. Because the condition “
for any ” is the observability for the conventional model,
we can say that the rank of determines the independence
and observability of the proposed model. Reduction in the rank
of normally occurs when elements of satisfy a certain
equation such as a linear equation. Therefore, independence
is normally achieved almost everywhere in the parameter
space in . Observability is also normally achieved almost
everywhere in the parameter space in if the system without
the probabilistic mixture (that is, the conventional model) is
observable. In the numerical examples given in Section VI,
however, the accuracy of parameter estimation deteriorates
around the point at which observability is not achieved in
the parameter space when the number of samples is finite.
Simultaneously, we can say that, if we can design , we
should set and make whose rank is



to satisfy linear-independence and observability.
For the conventional model, Theorems 3 and 4 seem in-

consistent with the results given in [18]. This is because the
definition of independence in [18] differs from the definition
of the linear independence in this paper to discuss the effect
of introducing classes. In fact, this is not inconsistent.
When we focus on the example of network quality, we can

derive the concrete result shown below. In this corollary, the
case that the rank of becomes less than can typically
occur when we observe some links with prob. 1 in a tree
network and there is a source-destination pair for which these
links form the route.
Corollary 1: Consider probing a network. Each class cor-

responds to a source-destination pair, and each sensing tem-
plate corresponds to a route between them. Then, the rank of
is , and the sensing template classes are linearly independent
when .

Proof:We should note that each sensing template appears
only in a single sensing template class and does not appear in
other sensing template classes. This means that each column
of has a single non-zero element. Therefore, the rank of is
, and the sensing template classes are linearly independent

if we consider as a set of possible states.

V. ERRONEOUS SENSING
We extend the model discussed in Section III-A to the model

in which there are sensing errors. Define an erroneous sensing
result using (the sensing result without errors).

with prob. when
with prob. when . (1)

For the erroneous sensing result, define
, which is the probability that an erroneous

sensing result is 1 when a class- sensing template is used.
Then,

(2)

Consequently, if and we know
and , Definitions 1 and 2 using are equivalent to
Definitions 1 and 2 using . Therefore, we can use the results
under the assumption that there are no sensing errors.

VI. NUMERICAL EXAMPLES
A. Network quality 1
Consider the ring network described in Subsection III-B.

The possible states we assume are those in which at most
links are BAD.
Note that for any . This

is because if , then for the
sensing template . We should also note that

, where is a sensing
template for the shorter hop route between a certain pair of
nodes and is that for the longer hop route between these
nodes. For two states ( ), there exists such that

. This is because, if ,
makes . Thus, we can assume that ,

without loss of generality. Then, if ,
for . If , ,

for . As
a result, if , . According to
Theorems 1 and 2, the system is observable, for any for

. In addition, if , ,
that is, the system is not observable.
The relationship between the observability and the state

estimation errors is now investigated. The theoretical results
mentioned in this paper are based on the sensing results .
Unfortunately, however, we cannot obtain because of the
finite number of sensing samples. Therefore, even when the
system is observable, it may be difficult to estimate the system
state with the finite number of sensing samples.
We assume that layer-3 reports are available for each

pair of nodes but do not include the route information, and
that % of these reports state BAD quality. (The
assumption of no route information is validated when the ring
network is a physical network and is a logically mesh network
where traffic into an incoming layer-3 node is transferred to an
outgoing layer-3 node through layer 1/2 functions at the nodes
between them.) Define .
Based on , we estimate the state of the network by
finding among the possible states to minimize

. (Although this estimation method is
brute force, the following result is almost insensitive to the
estimation method used.)
The results using a computer simulation are in Fig. 1, where

the true state was randomly chosen and 100
cases of were used for each point in this figure. Figure
1 suggests the following. (1) At , the possibility
of correct estimation seriously deteriorates. This is because
some states among possible states are not distinguishable at

. Around , the estimation error becomes
large. Therefore, judgment concerning observability is critical.
(2) Observability is not achieved only at . However,
estimation deterioration occurs around . When the
number of reports is small, the range of at which
estimation errors can occur becomes larger. Practically, caution
is needed for estimation around the point that observability
is not achieved, particularly when the number of reports is
small. (3) The possibility of correct estimation for is
higher than that for . In particular, the ratio of correct
estimation at is sensitive to . This is because any
state in which one link is BAD cannot be distinguished among
other such states. Thus, when , the estimation
method is equivalent to random choice among the possible
states ( ) and the ratio of correct estimation is about .
On the other hand, when even if , a state in
which two links are BAD can be distinguished from any state



in which one link is BAD. This is because can
occur for a certain , but never occurs for any if

. In addition, we can show that any two states in
which two links are BAD can be distinguished even if .
Consequently, for , if the true states are any states in
which two links are BAD, the true state can be identified even
if . Therefore, the ratio of correct estimation is better
for than for at , although any state in
which one link is BAD cannot be observable for . (4)
The deterioration of the ratio of correct estimation at
becomes sharper as the number of nodes increases. This may
be due to the total number of samples used increases as the
number of nodes increases.
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Fig. 1. Results for ring network

B. Network quality 2

Extend the example of network quality described in previous
sections, and consider the network in Fig. 2. This network is
a physical network and a part of a real commercial network in
Japan. The total number of nodes is 45, and the total number
of links is 54. Along the route from the source node to the
destination node, there are one, two, or three rings. If the
source and destination nodes are in different local rings and
if these local rings have a common node, the route between
the source and destination nodes passes through this common
node without using the part of the main ring not belonging
to these local rings. If the source and destination nodes are
in different local rings and if these local rings do not have a
common node, the route passes through the main ring.
There are routes between each pair of source and

destination nodes where is 2, 4, or 8 because there are two
routes (clockwise and counter-clockwise) in each ring (note
that when two nodes are in the same ring). Assume
that the shortest hop route among the routes is chosen with
probability , the second shortest hop route among
the routes is chosen with probability , , and
the longest hop route among the routes is chosen with
probability . When the numbers of hops of the -th
and -th shortest routes are equal, one of them is chosen
as the -th shortest route and the other is chosen as the -

th shortest route. In this example, , , and
.

Local rings

Main ring

Fig. 2. Real network model

Similar to the previous subsection, we analyzed observabil-
ity. The system is observable if and there is a
pair of source and destination nodes with . The reason
is similar to “Network quality 1.” When , the
system may not be observable. However, even when

, observability depends on ( ). This is
because the states that cannot be distinguished by two routes
between any source and destination pair may be distinguished
by routes between another source and destination pair
( ). For example, consider the distinguishability between
“link- is BAD” and “link- is BAD” where links- and are
in the same ring A. These two states cannot be distinguished
by the two routes between a source and destination pair in
ring A with . Consider a source in ring A and
a destination in ring B and assume that there are four routes
between them. The four routes are combinations of two routes
in each ring, and if the probability of choosing a route among
the four routes is the product of those in each ring, we cannot
distinguish these states. This is because these four routes select
these two links with the same probability. However, if we
choose two routes using link- with probability 0.7 and those
using link- with probability 0.3, we can distinguish “link- is
BAD” from “link- is BAD”.
To investigate the relationship between observability and

estimation errors, we calculate and find among the
possible states to minimize for the state esti-
mation, similar in the previous subsection. Here, (1)
is given by ( ) for , (2)
the set of possible states is , (3) the actual number of BAD
links is 1 or 2, and (4) . When there was 1 BAD
link, we tried every case in which one of the links was BAD.
When there were 2 BAD links, we randomly generated 100
cases and used them for various .
Figure 3 shows that the ratio of successful estimation, which

means that the estimated is identical to the true , depends
both on and . Observability is not achieved at the
point . Although there is a huge number of
parameters in real networks, it is likely that observability is not
achieved at a few points determined by a limited number of
parameters. Practically, however, estimation accuracy seriously
deteriorated around that point. Of course, estimation accuracy
depends on an estimation method. However, it is likely that
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there are serious deterioration areas of estimation accuracy in
the parameter space.

C. Sensors detecting targets
Consider a grid plane . The sensing

area of the class- sensor located at is assumed to be
square . When a part of a sensing area is
out of this grid area, we concentrate on the part within the grid
area. Let be the number of class- sensors and
be the probability that a class- sensor is located at .
The location of each sensor is assumed to be independent.
The class- sensing template set is , where

and correspond to the sensing
area of the class- sensor located at .
Assume that somewhere in there is

a single target object, which is a rectangle with unknown side
lengths . Also assume that the object moves within the
grid area and each sensor senses the object at each time .
That is, the object located at occupies positions

, where is
also unknown and ,

.
If the object occupies the position ,

; otherwise, . In
addition, must be expressed as a row vector:

. The sensing
template is used with probability . Define

.
Note that .
For simplicity, assume , ,

and that the location of the target object is not near the rim of
the grid area (that is, ). Then,
for and for all . Because ,

. In addition,
if . (If , for all . In
the remainder of this example, assume if explicitly
indicated otherwise.) Therefore, is given by

, and . As a result,

...
for any , Note

for , and

. We should note
that for because

.
On the other hand, for fixed , and , an

obtained number of class- sensors detecting an object
at is given as follows. For ,

(3)

and for ,

(4)

where is an error meaning the difference between the
expectation of and its observed value. Because there
are four unknown parameters , use four
classes of sensors. That is, .
To concretely consider this example, assume that
, , ,

. The condition must
be satisfied. Thus, , and

.

It is clear that the rank of ... is four for

. If one of the parameters is 0, one
of the classes is linearly constructible: If , class-2 is
linearly constructible by other classes. Similarly, if
( ), class-3 (class-4) is linearly constructible by other
classes. This result is intuitive because, for example, class-2
sensors offer the same information as that from class-1 sensors
when . If we can control the random deployment of
sensors, we should adopt .
Furthermore,

. Therefore,

if ,
. This means that we can distinguish

from if the target object size is different. On the other
hand, even if , there exist and
that we cannot distinguish if .
For example, we cannot distinguish the following two cases
(if we do not know that the target object is a rectangle):
the case in which the target object occupies two points

and but does not occupy any
other states and the case in which it occupies



and but does not occupy any other
states. As a result, we cannot achieve observability when

.
If we limit the possible states to those satisfying the

following two conditions, the conclusion for observability
can be changed: (1) the target object is a single rectan-
gle, (2) we know whether or . By
using the unknown parameters , we can
describe for these possible states:

, where

, , and .
(Note that, for , the vector
is different.) Therefore, if and only if ,

because
is uniquely determined by the given . That is,
observability is achieved.
The method for estimating object parameters is

directly related to in this example.
Equations (3) and (4) become

. As
a result, we can obtain the estimated parameters by the
following equation.

(5)

We conducted a simulation to investigate the relationship
between parameter estimation and observability. The results
are shown in Fig. 4, where , ,

, for and . For
each run of the simulation, sensors were randomly deployed
according to the given , which is a function of and
. Here, and were also randomly generated ac-

cording to the uniform probability distribution over and
, respectively. At the end of the simulation, parameters

were estimated according to Eq.
(5), which uses the fact that there is a single rectangular area.
One hundred runs were conducted to plot

and in Fig. 4,
where denotes the estimate of .
As shown in Fig. 4, the square errors in the estimation of

parameters is insensitive to the values of , and
can be estimated within reasonable estimation errors.

On the hand, the square errors in the estimation of parameters
drastically increases as approaches 0. This

is because these parameters are not observable at .
In other words, we can estimate the location of an object for

as well as the object parameters .

VII. CONCLUSION
We theoretically analyzed the observability of a system

monitored by distributed sensors and the independence of their
sensing results. Because independence means the efficiency
of the sensing system, the theoretical results on independence
are useful when we design a monitoring system. In addition,
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Fig. 4. Estimating and locations of sensors

observability should be satisfied when we estimate the state
of the system by using the sensing results. The definitions of
observability and independence given in this paper cover a
wider range of systems with monitoring mechanisms than in
conventional literature, e.g., networks with end-to-end probing
and systems where randomly deployed sensors are monitoring
an object in a monitored area.
The theoretical results imply that observability is normally

maintained almost everywhere in the parameter space if the
system without a probabilistic mixture is observable. Inde-
pendence is also normally achieved almost everywhere in the
parameter space. Even under erroneous sensing, the results
on observability and independence are valid. In addition, by
limiting the set of possible states, we can make the system
observable (see Theorem 2).
Practically, however, the estimation of the system may be

difficult around areas in which observability is not achieved
in the parameter space. This is because of the finite number
of sensing samples.
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APPENDIX
Lemma 3: If for all (

), .
Proof: for (

) means .
Therefore, . Thus, .
Lemma 4:
Proof: Because ,

for all . Thus, .
Lemma 5: For all , there exists an integer such that

when .
Proof: Define an -element column vector for

by ... . Then, there exists

an integer such that because

...
... Here,

is the -th element of . Therefore,
. Note that . Because

the set includes any combination
of of , there exists an integer such that

.
Lemma 6: For an -element column vector

, there exists an integer vector such that
for all and .

Proof: Define
. Prove that there exists a vector for

any such that by the mathematical
induction on by using Lemma 5.
Proof of Lemma 2: Define a set of integers

. Set .
Define , where is the

-element of a matrix . Here, is the number of
“1” in the -th row of the matrix . Set . Note
that for any because of Lemma 4.
(1) If there exists an integer such that

for any , obtain an integer column vector such
that . The existence of is due to

Lemma 6. Note that for
for .

This is because if for ,
. This contradicts the assumption.

(2) If there exists an integer such that
for any ,

obtain an integer column vector such that
. The existence of is due to Lemma 6.

Note that for
for . This is

because (i) if for ,
. This contradicts the assumption; (ii) if

, or
for all . Due to Lemma 3,

for all means . This contradicts the assumption.
For both (1) and (2), we can obtain , which

for
for for . Set

and and repeat until .
By using a matrix for interchanging the order of rows,

. . .

where the rank of the matrix of the right-hand side is
and that of the left-hand side is equal to or less than
rank rank rank .

Therefore, rank . On the other hand,
rank because of Lemma
1. Hence, rank .


