
Separation of Timescales in a Two-Layered Network
Maria Vlasiou∗, Jiheng Zhang†, Bert Zwart‡, Rob van der Mei‡

∗Department of Mathematics and Computer Science
Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands

Email: m.vlasiou@tue.nl
†Department of Industrial Engineering and Logistics Management

Hong Kong University of Science and Technology, Hong Kong, S.A.R., China
Email: j.zhang@ust.hk

‡Centrum Wiskunde & Informatica
Science Park 123, Amsterdam, The Netherlands

Email: (bert.zwart, mei)@cwi.nl

Abstract—We investigate a computer network consisting of two
layers occurring in, for example, application servers. The first
layer incorporates the arrival of jobs at a network of multi-server
nodes, which we model as a many-server Jackson network. At the
second layer, active servers at these nodes act now as customers
who are served by a common CPU. Our main result shows a
separation of time scales in heavy traffic: the main source of
randomness occurs at the (aggregate) CPU layer; the interactions
between different types of nodes at the other layer is shown to
converge to a fixed point at a faster time scale; this also yields
a state-space collapse property. Apart from these fundamental
insights, we also obtain an explicit approximation for the joint law
of the number of jobs in the system, which is provably accurate
for heavily loaded systems and performs numerically well for
moderately loaded systems. The obtained results for the model
under consideration can be applied to thread-pool dimensioning
in application servers, while the technique seems applicable to
other layered systems too.

I. INTRODUCTION

Communication networks need to support a growing di-
versity and heterogeneity in applications. Examples are web-
based multi-tiered system architectures, with a client tier to
provide an interface to end users, a business logic tier to
coordinate information retrieval and processing, and a data tier
with legacy systems to store and access customer data. In such
environments, different applications compete for access to
shared infrastructure resources, both at the software level (e.g.,
mutex and database locks, thread-pools) and at the hardware
level (e.g., bandwidth, processing power, disk access). Thus,
the performance of such applications is determined by the in-
terplay of software and hardware contention. For background,
see [1]–[3].

In particular, in situations where web pages are created on-
the-fly (think of making a reservation online), the benefits
of caching are limited and sizes of web pages are unknown,

The research of Maria Vlasiou and Jiheng Zhang is partly supported by
two grants from the ‘Joint Research Scheme’ program, sponsored by the
Netherlands Organization of Scientific Research (NWO) and the Research
Grants Council of Hong Kong (RGC) through projects 649.000.005 and D-
HK007/11T, respectively. The research of Bert Zwart is partly supported by
an NWO VIDI grant and an IBM faculty award.

and there is usually ample core network bandwidth available
at reasonable prices. Consequently, the bottleneck in user-
level performance can shift from the network interface to the
application server, and implementing size-based scheduling
policies becomes hard, contrary to the situation considered
in [4], [5].

Application servers usually implement a number of thread-
pools; a thread is software that can perform a specific type of
sub-transaction. Consider for example the web-server perfor-
mance model proposed in [2]. Each HTTP request that requires
server-side scripting (e.g., CGI or ASP scripts, or Java servlets)
consists of two subsequent phases: a document-retrieval phase,
and a script processing phase. To this end, the web server
implements two thread-pools, one performing the first phase
of processing, and the other performing the second phase of
processing. The model consists of a tandem of two multi-
server queues, where servers at queue 1 represent the phase-1
threads, and the servers at queue 2 represent phase-2 threads.
A particular feature of this model is that at all times the active
threads share a common Central Processing Unit (CPU) in a
Processor-Sharing (PS) fashion; cf. [6], [7]. Alternatively, one
can think of scheduling jobs in data centers, where different
parts of a job are taken care of by a different thread-pool.

Motivated by this, we study a relatively simple, but non-
trivial two-layered network. An informal model description
is as follows. The first layer models the processing of jobs
by a network of nodes. Each node consists of several servers
and, therefore, it looks like a (generalized) Jackson network
consisting of many-server queues. The servers in this network
act as customers in a second layer, in the sense that they are
served by a single CPU in a PS fashion. A detailed model
description is provided in Section II.

Variations of the above model have been investigated in
several papers in the literature, but apart from stability analysis
[6], a rigorous analysis of this layered network has been
lacking. The same can be said about other literature on
layered networks. Only a limited number of papers focus
on the performance of multi-layered queuing networks. A
fundamental paper is Rolia and Sevcik [8], who propose the



2

Method of Layers, i.e., a closed queuing-network based model
for the responsiveness of client-server applications, explicitly
taking into account both software and hardware contention.
Another fundamental contribution is presented by Woodside
et al. [9], who propose the so-called Stochastic Rendezvous
Network model to analyze the performance of application
software with client-server synchronization. The contributions
presented in [8] and [9] are often referred to as Layered
Queuing Models. A common drawback of multi-layered queu-
ing models is that exact analysis is primarily restricted to
special cases, and numerical algorithms are typically required
to obtain performance measures of interest (see for example
[9]). Although such methods are important, it is also valuable
to look at layered systems from a more qualitative point of
view, which we do in this paper by considering the system
under critical load.

The most simple example of the layered systems we con-
sider is the case where the first layer consists of a single node.
In this case, the model reduces to the so-called limited proces-
sor sharing (LPS) queue. Recently, there has been considerable
interest in the analysis of LPS systems. Avi-Itzhak and Halfin
[10] propose an approximation for the mean response time. A
computational analysis based on matrix geometric methods is
performed in Zhang and Lipsky [11], [12]. Some stochastic
ordering results are derived in Nuyens and van der Weij
[13]. Large deviation results are presented in Nair et al. [14],
and these results are also applied to show that LPS provides
robust performance across a range of both heavy-tailed and
light-tailed job sizes, as it combines the attractive properties
of a guaranteed service rate of FIFO and the possibility of
overtaking offered by PS.

The work on LPS that is most relevant for this study
is the work of Zhang, Dai and Zwart [15]–[17] who study
the stochastic processes that underlie the LPS queue in the
heavy-traffic regime, i.e. an asymptotic regime where the
traffic intensity converges to 1. The setting is rather general,
allowing the inter-arrival and service times to have general
distributions. Fluid and diffusion limits are derived, leading to
a heavy-traffic analysis of the steady-state distribution of LPS,
showing that the approximation by Avi-Itzhak and Halfin [10]
is asymptotically accurate in heavy traffic.

In the present paper, we perform an analysis similar to the
one performed in [15]–[17]. Under the assumption that job
sizes are exponentially distributed, we expand the work in
[15]–[17] from the single node case to networks. Moreover,
based on our mathematical results, we propose an extension
to general job sizes.

We analyze the system as it approaches heavy traffic. Under
the assumption that there is a single bottleneck (an exact
definition of bottleneck is given later), we derive explicit
results for the joint distribution of the number of jobs in
the system by proving a diffusion limit theorem. This limit
theorem does not only yield explicit approximations but yields
also useful insights: if we look at the system from the CPU
layer, we can aggregate the whole system since the total
workload acts as if we were dealing with a single server queue.

However, information regarding the interaction of several types
of customers at the other layer would then be lost. It turns out,
nonetheless, that those interactions take place at a much faster
time scale in heavy traffic, and that the number of users of all
types converge instantaneously to a piece-wise linear function
of the number of users at the bottleneck. This separation of
time scales property is shown to imply that in heavy traffic,
the joint queue length vector can be written as a deterministic
function of the total workload as seen from the CPU layer.
Such a property is known as state-space collapse (SSC) in the
stochastic network literature.

Thus, our methodological contribution is that it is possible
to rigorously establish a separation of time scales property in
heavy traffic in an important class of layered networks, which
makes these layered networks tractable. Although we focus on
the Markovian case, we believe that such properties hold more
generally as well; we provide some physical and numerical
arguments to support this claim. The result on separation of
time scales result essentially implies that the main source of
randomness in heavy traffic can be observed at the CPU layer,
thus making performance analysis much more tractable. Apart
from supporting these claims by theorems, some numerical
experiments suggest that the resulting approximations perform
well. The results in our paper may be useful to create design
rules, for example to dimension thread-pools. Some first efforts
using heuristic approximations were proposed in [7].

The paper is organized as follows. We provide a detailed
model description in Section II. In Section III we propose
a fluid model for our two-layered system. We use this fluid
model to analyze how users of different types interact if the
system is in heavy traffic. In doing so, we construct a Lya-
pounov function which we use to show that the user population
converges uniformly to a fixed point that is uniquely defined
through the total workload. The fluid model also helps under-
stand which stations will be bottlenecks. Section IV contains
our main results, namely a process limit theorem for the
customer population process. A heavy-traffic approximation
of the steady-state distribution of the customer population is
proposed in Section V. Section VI presents an extension to
general service times based on physical arguments, and some
numerical validation by comparing the proposed approxima-
tions with simulation results. Concluding remarks can be found
in Section VII.

II. MODEL DESCRIPTION

The purpose of this section is to give a formal model
description. We adopt the convention that all vectors are
column vectors, and use aT to denote the transpose of a
vector or matrix. For two vectors x, y we denote xy to be
the vector consisting of elements xiyi. Furthermore, I is the
identity matrix, e is the vector consisting of 1’s, and ei is the
vector whose ith element is 1 and the rest are all 0. Last,
(x)+ = max{0, x} and a ∧ b = min{a, b}.

We consider a network with J nodes. Jobs arrive at node
i ∈ {1, . . . , J} according to a Poisson process with rate λi.
Jobs have a random amount of service requirement, which is



3

exponentially distributed with rate µi. Node i has Ki servers,
which allows for parallel processing for the first Ki jobs at
the node. Customers move between queues according to a
substochastic routing matrix P of dimension J . As in the case
of regular queuing networks, we need to introduce the total
arrival rates of jobs to station i (i.e. including the external
arrival rate λi and internal arrivals from other nodes), which
are denoted by γi. The arrival rates γi can be found as the
unique solution to a system of linear traffic equations. Let
γ be the vector of elements γi, i.e. γ = (γi), and similarly
λ = (λi). Then, in vector form, the traffic equation(s) can be
written as

γ = λ+ PT γ.

Throughout the paper, we need to assume that I − PT is
invertible, as is usual for open Jackson networks, which leads
to the unique solution γ = (I − PT )−1λ. All active servers
interact since they share a CPU working at rate 1. In other
words, from the viewpoint of the individual nodes, we have a
multi-dimensional Markovian queuing network where jobs of
type i are served at rate

Ri(x) :=
min{xi,Ki}∑
j min{xj ,Kj}

, (1)

with xi, i = 1, . . . , J being the number of customers of type
i that are currently in the system. This is consistent with the
fact that min{xj ,Kj} is the number of busy servers of type
j, and all busy servers share the common CPU according to
the PS discipline.

It can be useful to view the system from the CPU layer
(i.e. the second layer), since there is a connection with an
M/PH/1 queue which we now describe: users arrive at rate
λo =

∑
i λi and start their service at node i with probability

ai = λi/λ
o. Define a0 = 0, p00 = 1, and for i ≥ 1,

p0i = 0 and pi0 = 1−∑j pij . Observe that the total service
requirement of a job is the time to absorption in state 0 of a
continuous-time Markov chain with initial distribution (ai),
where the time in state i is exponentially distributed with
rate µi, after which one jumps to state j with probability pij .
Thus, the total service requirement S of an arbitrary customer
has a phase-type distribution with parameters (a, µ, P ), with
µ = (µi). We also denote by βi = 1/µi and β

(2)
i = 2/µ2

i

the first and second moment of service requirements at node
i. The corresponding vectors are denoted by β and β(2).

It is possible to compute the first two moments of this
distribution by using standard methods (see for e.g. [18] and
references therein). Let Ti be the total service requirement
of each user waiting to be served at node i. This includes
their immediate service at node i and all the future services
due to routing. Denote by τi and τ

(2)
i the first and second

moment of Ti, and let τ, τ2 be the corresponding vectors. Then
τ = (I − P )−1β and

τ
(2)
i = β

(2)
i +

∑
j

pij(2βiτj + τ
(2)
j ).

In vector notation, this becomes

τ (2) = (I − P )−1
(
β(2) + 2β(Pτ)

)
.

Notice that the expressions for τ and τ (2) are still valid if the
service requirement of a user at node i is not exponential but
generally distributed. In that case, the total service requirement
is simply the time to absorption of a semi-Markov process. We
need this interpretation in Section VI. Of course, in that case,
it no longer holds that β(2)

i = 2/µ2
i .

We can compute the first and the second moment of the
total service requirement S, obtaining

E[S] = aT τ and E[S2] = aT τ (2).

It is also clear from the M/PH/1 interpretation that the
global stability condition of the system is E[S]

∑
i λi < 1,

or equivalently

ρ := λT (I − P )−1β = βT γ < 1.

We also define ρi = βiγi = γi/µi. Observe that ρ =
∑
i ρi.

Example: We are particularly interested in the simple two-
node tandem case (J = 2), where all users first enter station
1 (λ2 = 0), then move from station 1 to station 2 (p12 = 1)
and then leave (p20 = 1). In this case γ1 = γ2 = λ1, E[S] =
1/µ1 + 1/µ2, and

E[S2] = 2/µ2
1 + 2/(µ1µ2) + 2/µ2

2.

Limited Resource Sharing of Tandem Queues

February 19, 2012

1 Model

buffer 1

(X1 � K1)
+

� µ1

X1 ^ K1

buffer 2

(X2 � K2)
+

µ2

X2 ^ K2

CPU

Figure 1.1: LPS queues in Tandem with a Shared CPU

1.1 Heavy Traffic Parameter Regime

Heavy traffic, as n ! 1,

�n ! �. (1.1)

Let

⇢n =
�n(µ1 + µ2)

µ1µ2
. (1.2)

We assume that

n(1 � ⇢n) ! ✓ > 0, as n ! 1. (1.3)

This implies that in the limit,

�(
1

µ1
+

1

µ2
) = 1. (1.4)

2 Fluid Model

2.1 Definition of Fluid Model

For any x = (x1, x2), denote

R1(x) =
x1 ^ K1

x1 ^ K1 + x2 ^ K2
, R2(x) =

x2 ^ K1

x1 ^ K1 + x2 ^ K2
. (2.1)

1

Fig. 1. LPS queues in tandem with a shared CPU.

We now investigate the system under critical load, i.e. when
ρ is (close to) 1. To this end, we first develop and analyze a
critical fluid model in the next section.

III. FLUID ANALYSIS AND INVARIANT POINTS

In this section we propose a fluid model for our layered
system under the assumption of critical loading, i.e. ρ = 1, or
equivalently, ∑

i

γi
µi

= 1. (2)

In the sequel, we establish that in this scenario the workload
will stay constant, and that the queue length vector will
converge to an invariant point. We also characterize the set of
invariant points, and show this set is one-dimensional under
the assumption that there is a unique bottleneck.



4

Our fluid model is defined by the following ordinary differ-
ential equation (ODE):

X̄ ′i(t) = λi − µiRi(X̄(t)) +

J∑
j=1

pj,iµjRj(X̄(t)). (3)

Here, Rj(x) is defined in the same way as in the original
stochastic model, cf. (1). Moreover, X̄i(t) can be interpreted
as a fluid approximation of the number of jobs at time t, after
an appropriate normalization of time and space. We avoid a
technical discussion on fluid approximations and refer to [19]
for background.

In particular, for our system it is possible to show the
following. Consider a sequence of ‘virtual’ systems indexed
by n, where the number of servers at node i is equal to
nKi (we call such systems virtual since there exists only one,
rather than a sequence of real systems). The network structure,
represented by the routing matrix P , and the service time at
each node is kept fixed. Let Xn

i (t) be the number of type i
jobs at time t in the nth system. Then it can be shown that
{Xn

i (nt)/n, t ≥ 0, i = 1, . . . , J} converges in the space of
functions to {X̄i(t), t ≥ 0, i = 1, . . . , J}; see also [19]. We
will not pursue a proof of this fluid limit result here, since
it is not our main point. The fluid model we present has a
different purpose: it serves as building block for developing a
heavy-traffic approximation.

Regarding the scaling of the number of servers Ki to nKi,
the skeptical reader should consider that this scaling eventually
leads to tractable heavy-traffic approximations in the single-
node case as shown in [15] and, more importantly, also in
the network case as shown later in this paper. In fact, letting
the number of servers grow with n is the only way to keep
the probability of delay strictly between 0 and 1 in heavy
traffic. For example, keeping the number of servers fixed
would lead to a delay probability of 1, which is not a very
useful approximation for design purposes. In Section V, we
come back to this limiting procedure, and explain how we can
utilize the limit of our sequence of ‘virtual’ systems to obtain
performance approximations for the actual system.

Getting back to the fluid model, we can write (3) into vector
form

X̄ ′ = Ψ(X̄), (4)

where Ψ : [0,∞)J → RJ can be represented as

Ψ(x) = λ− µR(x) + PT (µR(x)), (5)

where R(x) is the vector with elementsRi(x) and µR(x)
indicates a component-wise product, as before.

Theorem 1 (Existence and uniqueness). For any X̄(0) = x ∈
RJ+, there exist a unique solution to the ODE (4).

Proof: It is clear that each Ri(x) is Lipschitz continuous
on RJ+. So is the linear combination Ψ(x). The result follows
from Theorem VI in Chapter 10 of [20].

Recall that the system is a work-conserving single-server
queue when considered at the CPU layer. We now show

that this is also the case for our fluid model. We define the
workload for the fluid model as follows:

W̄ (t) = βT (1− PT )−1X̄(t). (6)

Proposition 1. For each solution of (4), W̄ (t) = W̄ (0).

Proof: The proof follows from the computation of the
derivative. From (4),

W̄ ′(t) = βT (I − PT )−1X̄ ′(t)

= βT (I − PT )−1
(
λ− µR(x) + PT (µR(x))

)
= βT γ − βT (I − PT )−1(I − PT )µR(X̄(t))

= 1− βTµR(X̄(t)) = 1− 1 = 0,

where βT γ = 1 is due to critical loading and βTµR(x) =∑J
i=1Ri(x) = 1 by the definition of R(x) in (1).
We now characterize the invariant manifold of the ODE,

which is the set of invariant points. A point x is invariant if

µiRi(x) = γi, i = 1, . . . , J. (7)

This definition of an invariant point is natural. To see this,
observe that the right-hand side of (7) represents the total
(arrival) rate into node i, while the left-hand side of (7) can
be interpreted as rate out of node i, as Ri(x) is the percentage
of CPU dedicated to node i, thus representing the speed that
node i works and µ−1i is the service requirement of a job at
node i.

A crucial notion in the study of invariant points is the
notion of bottleneck. It turns out that the following definition
is appropriate:

Definition 1 (Bottleneck). Node i is a bottleneck if i =
arg minj

µjKj
γj

.

In this paper, we focus on the case where there is a unique
bottleneck. Without loss of generality, we take node 1 as the
bottleneck when we investigate the case of a general network;
For convenience in numerical experiments and presentation,
in the two-node tandem case we may sometimes take node 2
as the bottleneck.

We will now describe the set of invariant points starting
from the number of jobs at the bottleneck, i.e. x1. There
are two cases: if x1 < K1 then it follows from (7) and the
definition of Ri(x) that

µixi = γi
∑
j

xj .

Thus,
∑
j xj = µ1x1/γ1, so that µixi = γi

µ1x1

γ1
.

In the second case, if x1 ≥ K1 then we can write

µixi = γi
µ1K1

γ1
. Thus, the set of invariant points, called the

invariant manifold, is the following:

I =

{
x ∈ RJ+ :

µixi
γi

=
µ1(x1 ∧K1)

γ1
, i = 2, . . . , J

}
.

The invariant manifold is illustrated in the following picture
for the two dimensional case.



5

x1

x2

K1

γ2µ1K1

µ2γ1

K2

Fig. 2. Invariant manifold for the 2-dimensional tandem case, where node
1 is the bottleneck.

We now conclude by formally showing that our notion of
invariant points makes indeed sense.

Proposition 2. X̄(t) = X̄(0) for all t ≥ 0 if and only if
X̄(0) ∈ I.

Proof: The necessity part follows from the above discus-
sion. For sufficiency, it suffices to show that for any x ∈ I,
Ψ(x) = 0. Note that by the definition of the invariant manifold,
we have that for any x ∈ I, µixi

γi
is a constant for all

i = 2, . . . , J . Let c be that constant, i.e. c = µixi
γi

. By (2),
x1 ∧ K1 +

∑J
i=2 xi =

∑J
i=1 c

γi
µi

= c. Moreover, for i ≥ 2
and x ∈ I, we have that xi < Ki. To see this, observe that
c = µixi

γi
≤ µ1x1

γ1
by the definition of I, which is less than

µiKi
γi

by the definition of a bottleneck. Thus, we have shown
that Ri(x) = xi

c , thus µiRi(x) = γi. We have

Ψ(x) = λ− µR(x) + PT (µR(x))

= (I − PT )(γ − µR(x)) = 0.

A. Convergence to invariant points

We now consider the convergence of the solution X̄(t) of
the ODE (4) to the invariant manifold I for any given starting
point. Let x∗ be the point in the invariant manifold where
x∗1 = K1. We easily see that x∗i = βiγi

µ1

γ1
K1. Based on this

point, we define a critical workload level

w∗ = βT (1− PT )−1x∗ = βT (1− PT )−1(βγ)
µ1

γ1
K1.

(Yet another interpretation is w∗ = τTx∗.) This gives rise to
a “critical hyperplane”:

{x : βT (1− PT )−1x = w∗}. (8)

For any w ≤ w∗, let for i = 1, . . . , J

x†i (w) =
γiw

µiβT (I − PT )−1(βγ)
=
µ1K1

γ1

γi
µi

w

w∗
. (9)

Note that

Ri(x
†(w)) =

x†i (w)∑
j x
†
j(w)

=
γi/µi∑
j γj/µj

=
γi
µi
.

This gives an intuitive explanation that on the invariant mani-
fold, the Ri’s, representing outflow of work at station i, should
be equal to the inflow of work at station i. For any w > w∗,
let

x†1(w) = K1 +
(w − w∗)

βT (I − PT )−1e1
= K1 +

(w − w∗)
τ1

(10)

x†i (w) =
µ1K1

γ1

γi
µi
, i = 2, . . . , J. (11)

It is clear that x†(w) is the intersection of the workload
hyperplane W̄ (t) = w and the invariant manifold. It is
now also clear why w∗ is called the critical workload level:
intuitively, if we are restricted to invariant points, congestion
at the bottleneck will occur only if w > w∗.

The following proposition is the main result of this section.
For space limitations, its full proof is postponed to an extended
version of this paper.

Proposition 3 (Convergence to the invariant manifold). For
any solution X̄ to the ODE (4), we have that

X̄(t)→ x†(W̄ (0)), as t→∞,

where x† is as defined by (9)–(11).

Proof: We can define a Lyapunov function:

L(X̄(t))

=
[(
X̄(t)− x†(w)

)T
(I − PT )−1

(
X̄(t)− x†(w)

)]
.

(12)

It is clear that the function L(x) is continuous in x and for
any x /∈ I, L(x) > 0; for any x ∈ I, L(x) = 0. The result of
this proposition will follow immediately if we can show that
for any X̄(t) /∈ I,

d

dt
L(X̄(t)) < 0. (13)

Since for any solution X̄ to the ODE (4), Proposition 1 yields
that the workload load W̄ does not change, for w = W̄ (0) we
have

d

dt
L(X̄(t)) = 2

(
X̄(t)− x†(w)

)T
(I − PT )−1X̄ ′(t)

= 2
(
X̄(t)− x†(w)

)T
(I − PT )−1

[
λ− (I − PT )µR(X̄(t))

]
= 2

(
X̄(t)− x†(w)

)T [
γ − µR(X̄(t))

]
. (14)

To simplify the presentation, we focus on the case where
the dimension is equal to two, i.e. J = 2. Define

Hτ (w) = {x : τ1x1 + τ2x2 = w} .

Note that any solution X̄ can only live on Hτ (w). Let y† =
(x†1 ∧K1, x

†
1 ∧K1). It is clear that Ri(y†) = γi

µi
, i = 1, 2. If



6

X̄1(t) < x†1(w), then X̄2(t) > x†2(w), which follows from the
fact that τ1, τ2 > 0. This implies that

X̄1(t) ∧K1 ≤ y†1, X̄2(t) ∧K2 ≥ y†2.

Notice that the above two inequalities can not be tight si-
multaneously. Otherwise, X̄(t) would be equal to x†. Thus,
R1(X̄) ≤ R1(x†(w)) and R2(X̄) ≥ R2(x†(w)) by the
definition of Ri(·) in (1). Again, equality can not hold for
both. This implies that d

dtL(X̄(t)) < 0 according to (14). The
same argument applies if X̄2(t) < x†2(w).

In the following section we show that, as ρ is close to 1, the
fluid model is a good approximation of the queue length on a
time scale of O(1/(1− ρ)). Since the diffusion time scale is
of the order O(1/(1− ρ)2) it is tempting to conclude that the
only configurations of the customer populations that matter are
configurations on the invariant manifold. These configurations
depend on the workload w at the CPU, which then is expected
to be the driving force of randomness. The goal of the next
section is to make this statement rigorous.

IV. STATE-SPACE COLLAPSE IN HEAVY TRAFFIC

We are now ready to develop a diffusion approximation
for the process describing the number of customers in the
system, which we sometimes also refer to as the head-count
process. Consider a sequence of such processes indexed by n.
As n→∞, λn → λ. Let γn = (I − PT )−1λn, and

ρn = (γn)Tβ.

We assume that

ρn = 1− θ/n > 0, and Kn
i = Kin. (15)

(One way to achieve this is to set λni = λi(1− θ/n).) We are
interested in the limit of the diffusion scaled process

X̂n(t) =
1

n
Xn(n2t)

as n→∞, in which case the system approaches heavy traffic.
It turns out that the choice Kn

i = Kin gives rise to a limit
model in which the fraction of time the system is congested
is non-trivial (i.e. strictly between 0 and 1). For example, in
the single-node case, the results in [15] imply that the time-
dependent delay probability P (Xn

1 (n2t) > Kn
1 ), as well as

the stationary delay probability P (Xn
1 (∞) > Kn

1 ), converge
to a quantity between 0 and 1. This enables one to obtain non-
trivial and explicit approximations of the delay probability.

A starting point of our analysis is to recall the well-known
(see e.g. [18]) heavy-traffic limit theorem for the workload
process at the CPU layer. Let Ŵn(t) = Wn(n2t)/n, t ≥ 0
be the scaled workload process. Then Ŵn(·) converges to a
reflected Brownian motion (RBM) W ∗(·) with drift −θ and
variance σ2 = E(S)(1 + c2s) = E[S2]/E[S], where c2s =
V ar(S)/E2(S). According to the calculation in Section II,
σ2 = aT τ (2)/(aT τ).

Our main result is that X̂n(t) converges to a process that
can be described completely in terms of W ∗(t), using the

insights developed for the critical fluid model in the previous
section. To this end, define the map ∆ : R+ → RJ+ by

∆1(w) =
w ∧ w∗
w∗

K1 +
(w − w∗)+

τ1
, (16)

∆i(w) =
w ∧ w∗
w∗

µ1K1

γ1

γi
µi
, i = 2, . . . , J. (17)

This map is called lifting map, as it will be used to construct
the multi-dimensional limiting queue length process from the
one-dimensional limiting workload process. In fact, our next
result is a consequence of the fact that, in heavy traffic,
X̂n(t) ≈ ∆(Ŵn(t)), and making this statement rigorous is
in fact a key ingredient of the proof, which is based on
state-space-collapse techniques as developed by Bramson [21].
Again, the proof is omitted because of space limitations.

Theorem 2 (Diffusion limit). Suppose that Xn(0) = 0
for all n. Then, the diffusion-scaled process X̂n converges
weakly to the limit X∗ in heavy traffic. The limit X∗ can be
characterized as X∗(t) = ∆(W ∗(t)), i.e.

X∗1 (t) =
W ∗(t) ∧ w∗

w∗
K1 +

(W ∗(t)− w∗)+
τ1

,

X∗i (t) =
W ∗(t) ∧ w∗

w∗
µ1K1

γ1

γi
µi
, i = 2, . . . , J.

Note the similarity of the lifting map and the quantities
x†i (w) that are used to define the invariant points of the critical
fluid model. In fact, this is the key physical insight that justifies
the title of this paper. Namely, fix t, take θ = 1, n = 1/(1−ρ)
and recall that the workload fluctuates at the time scale of n2

as we set Ŵn(t) = Wn(n2t)/n. Hence, between time tn2

and tn2 + n the scaled workload hardly changes for n large.
Namely, it will be approximately W ∗(t) throughout this time.
During this time, by the convergence result of the fluid limit
presented in the previous section, 1

nX
n(n2t + n) will have

converged to ∆(W ∗(t)). Thus, in heavy traffic, fluctuations
of the system at the layer of the individual servers occur at
a much faster time scale than fluctuations at the CPU layer.
If we wish to study fluctuations of the servers, we can keep
the total workload at the CPU layer fixed, and if we wish
to study performance of the system on the time-scale of the
CPU layer, we can assume that jobs at the servers live on
the invariant manifold; any deviations away from the invariant
manifold will have averaged out.

We believe that these physical insights are interesting, and
may also occur in other layered systems. In the next sections,
we show how these insights lead to explicit and accurate
approximations of the layered system under consideration.

V. STEADY-STATE PERFORMANCE APPROXIMATIONS

In the previous section we have considered a sequence of
systems approaching heavy traffic. The goal of the present
section is to utilize Theorem 2 and obtain performance ap-
proximations for the steady-state distribution for the original
system. The first step is to establish a heavy-traffic limit for
the sequence of steady-state distributions indexed by n. It is



7

well-known that the normalized steady-state workload of an
M/G/1 queue in heavy traffic converges to an exponentially
distributed random variable; i.e. if we consider the sequence
of systems introduced in the previous section, let Wn(∞) be
the steady-state workload in the nth system and Ŵn(∞) =
1
nW (∞), then

Ŵn(∞)⇒W ∗(∞),

where⇒ means convergence in distribution and W ∗(∞) is an
exponentially distributed random variable with mean m = σ2

2θ ,
by the classical steady-state analysis of RBM [18].

Since W ∗(∞) can also be seen as the limit (in distribution)
of W ∗(t) as t → ∞, it is natural to expect that the heavy-
traffic (n → ∞) and steady-state limits (t → ∞) can be
interchanged when considering X̂n(t). It is possible to do
this in the same way as has been carried out in the single-
node case [15]; detailed are omitted due to space limits. We
can exploit this to derive a heavy-traffic limit theorem for
Xn(∞), which is a J-dimensional random vector denoting
the customer population in steady state in the nth system.
Since ∆ is continuous, we have the following result by the
continuous mapping theorem:

X̂n(∞)⇒ X∗(∞) := ∆(W ∗(∞)).

Note that P(X∗i (∞) > x) = P (∆i(W
∗(∞)) > x) .

Since the distribution of W ∗(∞) is explicit, as is the
mapping ∆, the above formula is explicit. Thus, we can
develop explicit approximations for the original system that
will be accurate in heavy traffic.

Recall we called our sequence of systems indexed by n
‘a sequence of virtual systems’. The total load in the nth
virtual system is ρn = 1 − θ/n and number of servers at
node i are Kn

i . In practice, one would like to get back to
the original system, so we need to determine which virtual
system is appropriate. If we take θ = 1, then we should take
n∗ = 1/(1 − ρ), which also implies that in the fluid model
the number of active servers at node i should be equal to
(1− ρ)Ki.

For our running example, the tandem network with 10 active
servers at the first node, 20 active servers at the second node,
and a total system load of 0.8, then n = 5, and the relevant
fluid model is the one where the number of active servers at
the first node equals 2 and at the second node 4.

In what follows, the quantities Ki represent the number of
servers at node i in the actual system. The critical workload
level w∗ can be rewritten as

w∗ = (1− ρ)
∑
j

ρjτjK1/ρ1.

The right-hand side can be simplified further using [18,
Corollary III.5.3]:

w∗ = (1− ρ)
∑
j

ρjτjK1/ρ1 = (1− ρ)K1ρm/ρ1.

As W ∗ is exponential with mean m, the heavy-traffic approx-
imation of the delay probability at the bottleneck becomes

P (W ∗ > w∗) = e−(1−ρ)K1
ρ
ρ1 ≈ ρK1

ρ
ρ1 =: pd. (18)

In the second equation we used that e−(1−ρ) ≈ ρ to obtain
an approximation more in line with the single-node approxi-
mation proposed by [10]. Due to lack of space, we focus on
one additional performance measure only, namely the expected
total response time (i.e. the sojourn time) E[V ] of an arbitrary
job which can be computed using Little’s law:

E[V ] = E[
∑
j

Xj ]/λ
o ≈ 1/λo

1− ρE[
∑
j

∆j(W
∗)].

Straightforward computations, combined with the above ap-
proximations, yield

E[
∑
j

∆j(W
∗)] ≈ (1− pd) + pd

m

τ1
.

It makes sense to multiply the right-hand side with ρ to
obtain a result that is exact for the single-node case, and
from a heavy-traffic point of view, (ρ ≈ 1) this still yields
asymptotically accurate estimates. Putting everything together,
our heavy-traffic approximation for E[V ] becomes

E[V ] ≈ E[S]

1− ρ

[
(1− pd) + pd

m

τ1

]
. (19)

In the single node case for exponential job sizes, we have
that m = E[S] = τ1 so our approximation indeed reduces
to E[S]/(1 − ρ) which is the expected sojourn time in an
M/M/1 queue. We now develop an extension valid for more
general service times combining the insights of the heavy-
traffic analysis of our network model with available results
for the single node case.

VI. EXTENSION TO GENERAL JOB SIZES

For the single-node case, Poisson arrivals, and general
service times, [10] proposed the approximation pd = ρK1 and

E[V ] = (1− pd)
E[S]

1− ρ + pd
m

1− ρ , (20)

where, as before m = E[S2]/(2E[S]). This approximation
is exact for both FIFO (K1 = 1) and PS (K1 = ∞), and
[15] shows the approximation is asymptotically exact in heavy
traffic, using the same scaling procedure as in the present
paper. Note further that for J = 1 we have that τ1 = E[S]
and ρ1 = ρ so (19) and (20) coincide.

These considerations suggest that the approximation of
E[V ] given in (19) is still accurate for general service times
assuming station 1 is the single bottleneck and keeping ρK1

ρ
ρ1 .

Proving this necessitates an extension of the measure-valued
framework in [17], which is beyond the scope of this paper.
Instead, we validate our approximation with some simulation
results for the two-node tandem case.

Let βei = β
(2)
i /2βi be the mean residual service time of

a job at station i. For the two-node tandem case we have
γ1 = γ2 = λ1.

Since we fixed the topology of the network we will no
longer assume that node 1 is always the bottleneck. Observing
that pd ≈ ρρKi∗/ρi∗ if node i∗ is the bottleneck, we obtain

E[V ] ≈ E[S]

1− ρ

[
(1− pd) + pdm

1

τi∗

]
.



8

TABLE I
SIMULATION RESULTS

(β1, β2, c21, c
2
2,K1,K2) approximation simulation

(1, 2, 4, 4, 3, 7) 10.24 10.41
(1, 2, 4, 10, 4, 6) 11.37 10.71
(1, 2, 10, 4, 4, 6) 10.77 10.57
(1, 2, 10, 10, 4, 6) 11.58 10.87

(2, 1, 4, 4, 6, 4) 10.24 10.49
(2, 1, 4, 10, 6, 4) 10.38 10.70
(2, 1, 10, 4, 6, 4) 10.78 10.98
(2, 1, 10, 10, 6, 4) 10.91 11.18
(1, 10, 4, 4, 2, 8) 38.86 37.43
(1, 10, 4, 10, 2, 8) 43.20 37.83
(1, 10, 10, 4, 2, 8) 38.91 37.53

(1, 10, 10, 10, 2, 8) 43.24 37.97
(10, 1, 4, 4, 8, 2) 38.52 38.88
(10, 1, 4, 10, 8, 2) 38.56 39.11
(10, 1, 10, 4, 8, 2) 42.46 40.77

(10, 1, 10, 10, 8, 2) 42.50 41.00

The constant m can be computed by noting that

m = E[S2]/(2E[S]) =
ρ1
ρ

(βe1 + β2) +
ρ2
ρ
βe2 .

We now present some numerical results for the case that both
service times follow a hyper-exponential distribution. In all
examples, we focus on a moderately loaded system with ρ =
0.7. We let the coefficient of variation of the service times
range from 4 to 10 at both nodes (in fact we take the same
parameters as done in the experiment of [7]). Note that the
squared coefficient of variation c2i of the service time at node
i satisfies c2i = β

(2)
i /β2

i − 1.
Generally, the heavy-traffic approximations are quite accu-

rate, always within 15% of the outcome predicted by simu-
lation, and in several cases the error is as small as 2%. We
find that the results become less accurate if the coefficient of
variation of the service time at the bottleneck is high. Similar
conclusions can be drawn for higher values of the load and
for larger networks.

VII. CONCLUDING REMARKS

By establishing fluid and diffusion approximations of a two-
layered queuing network, we have shown that, under critical
loading, different layers in the network operate at different
time scales. From the macroscopic CPU viewpoint, the system
behaves as a simple one-server queue, which when critically
loaded fluctuates at a time scale of O(1/(1−ρ)2). The network
dynamics at the other layer evolve at a faster time scale
O(1/(1 − ρ)), thus always reaching an invariant point as if
the total workload at the CPU were constant.

We have established this result by introducing fluid and
diffusion approximation techniques to study layered networks.
It is interesting to examine the potential of such techniques to
analyze other layered networks, such as those in [8], [9].

For our model, state-space collapse was established as a
consequence of the single bottleneck assumption. Driven by
curiosity, we are currently extending the analysis to multiple
bottlenecks, although we note that the single bottleneck as-
sumption will typically be an artefact of the fact that the buffer
sizes Ki need to be chosen as integers in implementations.

Another interesting topic is to allow for general job sizes,
as well as time-varying arrival rates. Finally, we expect the
results to be directly useful to dimension thread-pools in web
servers in a static fashion. The techniques in this paper are
likely to be useful for dynamic thread-pool dimensioning as
well, as the application of the techniques in this paper seems
promising to formulate tractable (Brownian) control problems.

REFERENCES

[1] W. van der Weij, S. Bhulai, and R. van der Mei, “Dynamic thread assign-
ment in web server performance optimization,” Performance Evaluation,
vol. 66, no. 6, pp. 301–310, 2009.

[2] R. van der Mei, R. Hariharan, and P. Reeser, “Web server performance
modeling,” Telecommunication Systems, vol. 16, pp. 361–378, 2001.

[3] V. Cardellini, E. Casalicchio, M. Colajanni, and P. Yu, “The state of the
art in locally distributed web server systems,” ACM Computing Surveys,
vol. 34, 2002.

[4] M. Crovella, R. Frangioso, and M. Harchol-Balter, “Connection schedul-
ing in web servers,” in Proceedings USENIX symposium on Internet
Technologies and Systems, 1999.

[5] M. Harchol-Balter, B. Schroeder, N. Bansal, and N. Agrawal, “Srpt
scheduling for web servers,” Lecture Notes in Computer Science, vol.
2221, pp. 11–21, 2001.

[6] M. Jonckheere, R. van der Mei, and W. van der Weij, “Rate stability and
output rates in queueing networks with shared resources,” Performance
Evaluation, vol. 67, no. 1, pp. 28–42, 2010.

[7] W. van der Weij, R. van der Mei, and B. G. F. Phillipson, “Optimal
server assignment in a two-layered tandem of multi-server queues,”
in Proceedings 3rd International Working Conference on Performance
Modelling and Evaluation of Heterogeneous Networks (HETNETS),
volume P01, Ilkley, England, July 2004.

[8] J. Rolia and K. Sevcik, “The method of layers,” IEEE Transactions on
Software Engineering, vol. 21, pp. 689–699, 1995.

[9] C. Woodside, J. Neilson, D. Petriu, and S. Majumdar, “The stochastic
rendezvous network model for the performance of synchronous client-
server like distributed software,” IEEE Transactions on Computers,
vol. 44, pp. 20–34, 1995.

[10] B. Avi-Itzhak and S. Halfin, “Expected response times in a non-
symmetric time sharing queue with a limited number of service po-
sitions,” in Proceedings of the 12th International Teletraffic Congress,
Torino, 1988.

[11] F. Zhang and L. Lipsky, “Modelling restricted processor sharing,” in
Proc. of the 2006 Int’l Conf. on Parallel and Distributed Processing
Techniques and Applications (PDPTA06), 2006.

[12] ——, “An analytical model for computer systems with non-exponential
service times and memory thrashing overhead,” in Proc. of the 2007
Int’l Conf. on Parallel and Distributed Processing Techniques and
Applications (PDPTA07), 2007.

[13] M. Nuyens and W. van der Weij, “The limited processor sharing queue,”
CWI, Amsterdam, Tech. Rep., 2007.

[14] J. Nair, A. Wierman, and B. Zwart, “Tail-robust scheduling via limited
processor sharing,” Performance Evaluation, 2010.

[15] J. Zhang and B. Zwart, “Steady state approximations of limited processor
sharing queues in heavy traffic,” Queueing Syst., vol. 60, no. 3-4, pp.
227–246, 2008.

[16] J. Zhang, J. G. Dai, and B. Zwart, “Law of Large Number Limits of
Limited Processor-Sharing Queues,” Math. Oper. Res., vol. 34, no. 4,
pp. 937–970, 2009.

[17] ——, “Diffusion Limits of Limited Processor-Sharing Queues,” Ann.
Appl. Probab., vol. 21, no. 2, pp. 745–799, 2011.

[18] S. Asmussen, Applied probability and queues, 2nd ed., ser. Applications
of Mathematics (New York). New York: Springer-Verlag, 2003, vol. 51.

[19] A. Mandelbaum, W. A. Massey, and M. I. Reiman, “Strong approxima-
tions for markovian service networks,” Queueing Syst., vol. 30, no. 1/2,
pp. 149–201, 1998.

[20] W. Walter, Ordinary differential equations, ser. Graduate Texts in
Mathematics. New York: Springer-Verlag, 1998, vol. 182.

[21] M. Bramson, “State space collapse with application to heavy traffic
limits for multiclass queueing networks,” Queueing Syst., vol. 30, no.
1-2, pp. 89–148, 1998.


