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Abstract—Virtual machine (VM) provisioning is one of the
fundamental components in virtualization-based cloud offerings.
Modeling and analytically understanding the provisioning pro-
cess is critical for the deployment and management of large-
scale cloud. Based on extensive experiments on an example
cloud system, we propose a queueing model to capture the
important features related to scalability for the provisioning
process. Specifically, we characterize how the number of VMs
that can be hosted in the system and the number of physical
host servers should scale according to the arriving VM requests.
Note that VM provisioning incurs large I/O activities on targeted
hosts with each having limited I/O resource. The logical stages
during provisioning, which execute possibly on one or more
physical nodes, are modeled by a semi-open Jackson Network.
The model provides insights on how the performance bottlenecks
can hinder the cloud scalability. Using this model we address the
system sizing issue by performing heavy-traffic analysis in the
classic Halfin-Whitt regime, also known as Quality and Efficiency
Driven (QED), which accommodates moderate to large size cloud
environments.

I. INTRODUCTION

Cloud provisioning is the mechanism for preparing and
delivering IT resources to users in cloud systems. Depending
on the service types, i.e., IaaS (infrastructure as a service),
PaaS (platform as a service) or SaaS (software as a service),
cloud provisioning can be performed at virtual machine (VM)
or application level. As IaaS has been a popular service with
prominent players, e.g., Amazon EC2 and Rackspace, VM
provisioning becomes an important issue that can greatly affect
system performance [7], [13].

Although the implementation of VM provisioning may
vary across cloud operators, the process generally consists of
similar logical stages. Cloud users initiate requests for VMs
with specified attributes such as the number of CPU cores,
memory size and OS type. Then, the cloud management server
designates a host server with sufficient capacity, and searches
for a suitable VM image in the image repository. The VM
image contains a byte-to-byte representation of the content of
a disk and is usually stored in an external storage system.
The VM image needs to be copied to the designated host on
which the hypervisor creates a VM and instantiates it with the
VM image. A key performance indicator for VM provisioning
is the latency experienced by the user before the requested
VM is ready for service. Clearly, large latencies significantly
reduce user satisfaction, which in practice are often caused by
non-scalable provisioning designs. Consequently, the response
times of new VM requests degrade rapidly when the request
volume grows beyond some critical value.

In this paper, we develop an analytical model for the VM
provisioning process and use the model to provide insights on
scalability. Through extensive measurements and data analysis
on an IBM cloud testbed, we identify disk I/O and host
capacity as two critical scalability factors. I) Because VM
images are large, often above tens of GigaBytes, when multiple
VM instances are provisioned on a single host, the disk
I/O on the host can easily become a bottleneck; a common
approach to control I/O is to reduce the number (say 1)
of concurrent VM requests per physical host. II) The host
capacity, measured by the total number of VMs that can
be accommodated by the cloud system, also defines a hard
constraint on whether a new VM request can be accepted
or not. Therefore, new requests will be delayed or even
dropped if disk I/O is congested or available host capacity
is insufficient. Based on these observations, we propose a
queueing model to study the scalability due to the limited I/O
resources (embodied in the number K of active physical host
servers) and host capacity (represented by the total number
N of VM instances that can be hosted in the system). In our
model, the logical stages during provisioning, which execute
possibly on one or more physical hosts, are modeled by a
semi-open Jackson Network. The model well explains how the
two factors (K,N) limit the scalability. Notably, though the
Markovian assumption in the Jackson model does not hold
in real systems, using model parameters obtained from the
measurements, we show by numerical methods that it can
still serve as a good approximation even for non-Markovian
measurements in computing key performance indicators.

Typical public cloud systems are designed to accommodate
thousands of customers or more. Reducing operational costs,
e.g., energy, is critical in maintaining a large-scale cloud sys-
tem [12]. For example, when a host server does not have any
VM running, it can be switched to a sleep mode or powered
off to save energy. Clearly, keeping all the physical servers
always active incurs huge unnecessary wastes of resources.
Thus, determining the good number of physical hosts K that
should remain active is crucial in balancing the efficiency and
service quality. Correspondingly, it also impacts the desired
host capacity N , which needs to match the workload demand.

Exact analysis of the proposed queueing model does not
characterize how the system scales for moderate and large
cloud environments. We therefore perform heavy-traffic anal-
ysis in the classic Halfin-Whitt regime [10], also known as
Quality and Efficiency Driven (QED)regime. The Halfin-Whitt
regime captures the sizing issue for typical cloud systems



using the classic square-root staffing principle that is widely
used in designing call centers [6], [10], [15], [11]. It introduces
safety margins for (K,N) in addition to the mean values
to accommodate stochastic variability. The attractive feature
of this regime is that it balances between service and econ-
omy [10], where the former emphasizes that VM requests
can be accepted as early as possible (e.g., shorter waiting
times) and the latter focuses on reducing the operation cost
(e.g., less active host servers) of the cloud system. Intuitively,
because of the random arrivals and service times, necessary
safe margins of computing resources are needed for service
quality protection, i.e., providing enough capacity and I/O
resources. It turns out that only in the square-root scale with
respect to the arrival rate can common performance metrics,
e.g., VM request dropping/waiting probabilities and average
waiting times, have non-trivial limits.

Usually during a one day operation cycle, typical cloud
systems experience periods of high and low loads due to that
customer activities often have daily patterns that change from
peak hours to off-peak hours. Therefore, we can divide the
whole day into a number of periods (in hours) with each
period having stationary behaviors. Accordingly the heavy-
traffic analysis should be interpreted as the performance in a
period when the system remains stationary.

The paper is structured as follows. Section II describes the
cloud provisioning process and proposes a queueing model
to capture the performance bottlenecks. Then, heavy-traffic
analysis is conducted in Section III to quantify the scaling
law and sensitivity property. These results are illustrated in
Section IV using simulation experiments.

II. PROVISIONING VIRTUAL MACHINES

In this section, we describe our experiments on a cloud
testbed used internally for generating insights for commercial
product design. At a very detailed level, the provisioning
process in our example system involves 245 function calls
with 10 nesting levels for a single request. We then examine
the more complicated situation when multiple VM requests are
submitted and overlap in time. Based on the measurements, we
identify the limited concurrency level, and propose a Jackson
Network model to capture the important features during the
provisioning process.

A. Testbed

The cloud testbed contains two X86 servers which use
Kernel-based Virtual Machine (KVM) [1] as the hypervisor
to create VM instances. Here the number of physical server
hosts (K = 2) is related to the concurrency level that will be
shown in Section II-B. All VM images are stored in an IBM
SONAS (Scale Out Network Attached Storage) [2] system and
using GPFS as the file system. The diagram of the testbed is
shown in Fig. 1.

In the studied cloud testbed, VM provisioning is coordinated
by a management server. The management server divides the
provisioning process into hundreds of logical stages. Each
stage is to accomplish a particular task, e.g., copying a

Fig. 1. VM provisioning in an example cloud system

VM image, creating a VM instance, assigning an IP address
to the instance. A logical stage usually corresponds to a
command, a shell script or a function call. Depending on
the goal of the stage, a stage is handled by one or multiple
processing elements in the system. These elements can be
physical computers or virtual machines running on shared
physical hardware. Some of the logical stages are processed
with a certain concurrency level. An example is to update the
resource management database which stores various resource
information including IP/MAC addresses, software licenses
and CPU/memory/disk usages etc. In the meanwhile, other
logical stages can be processed in a distributed manner.
Examples include refreshing disk partitions, resizing images
and configuring virtual machines, etc.

B. Measurements

We collect timestamps at the beginning and end of each
function call for every provisioning request. To visualize these
nested function calls, we use a scheme that is illustrated in
Fig. 2. The left bracket herein represents the starting point of

Fig. 2. Visualize nested function calls

a function call and the right bracket the corresponding ending
point. Consecutive left or right brackets indicates the increase
or decrease of the nesting level.

To better understand the performance limitations we identify
the concurrency level for different stages. The concurrency
level at a stage is defined to be the maximum number of
requests that can be in service at that stage simultaneously.
This quantity is intimately related to scalability, which in many
applications is difficult to obtain [3], [5], [9]. In order to avoid
the performance difference caused by the variable sizes of
the VM images, in our experiments, all provisioning requests
target on the same image (RedHat 4.1.2-48). We plot the whole
process for 9 VM requests in Fig. 3.

After a provisioning request is submitted, a few initiation
steps are processed before the black vertical line, forming the
first stage. The steps between the black and green vertical
lines can be viewed as the next logical stage. It mainly
includes updating the resource management database with
information of CPU, memory, network setup, etc. for hosts



and guests and starting to copy the VM image to the host.
The next logical stage between the green and blue vertical lines
includes resizing of the VM image on the host. The last logical
stage between the blue and red vertical lines corresponds to
various configuration work. As shown in the figure, there
are at most two VM requests in the second logical stage at
any time. For all the other stages, many VM requests can
executive concurrently at any time. The reason for the limited
concurrency level of 2 for the second logical stage is because
we have two KVM servers in our test bed. The provisioning
software limits the concurrency level of this logical stage to
be the same as the number of KVM servers.
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Fig. 3. The provisioning process for 9 VM requests

C. Model

From the measurements, we propose a model that captures
two key features: the total number of virtual machines N that
can be hosted in the system and the number of active host
servers K. For N , new VM requests will be dropped when the
system reaches its full capacity. For K, typical provisioning
processes involves updating a resource management database
and copying the targeted virtual machine image from the
image pool to a virtual machine host, where the second oper-
ation usually incurs large I/O activities due to the VM image
size. I/O resources are more difficult to manage than CPU
and memory especially in a shared cloud environment [14].
Thus, a common approach to control I/O is to reduce the
number of concurrent VM requests per physical host (say to
1). Therefore, there is a limited concurrency level due to the
number of active host servers.

We propose a queueing network model, as shown in Fig. 4.
The provisioning system of the cloud is modeled by two multi-

Fig. 4. VM provisioning model

server queues connected in tandem. The first M/M/K queue
models the limited concurrent level due to I/O constraints

(embodied in the number of active host servers). For example,
Fig. 3 shows that the stage between the black and green
vertical lines has a concurrency level 2, which corresponds to
the case K = 2 for the M/M/K queue in our model. Recall
that our testbed only has two physical host servers. In general,
the number K in our model is not necessarily equal to the
number of active physical hosts, but can be a function of this
number. The second M/M/∞ queue models the combination
of other stages that can be processed in parallel in a distributed
manner, e.g., configuring each individual VM instance. In this
model, the VM requests arrive according to a Poisson process
with constant rate λ. The first M/M/K queue has a service
completion rate µ and the second M/M/∞ queue rate ν. The
times that users spend on the virtual machines are modeled
by i.i.d. exponential random variables of rate θ that are also
independent of other random variables.

III. HEAVY-TRAFFIC ANALYSIS OF THE
PROVISIONING MODEL

Let Q(t) = (Qx(t), Qy(t), Qz(t)) represent the number of
VM requests being served at the three stations from the left
to the right as shown in Fig. 4. Since the cloud system can
only support at most N requests, we have Qx(t) + Qy(t) +
Qz(t) ≤ N for all t ≥ 0. Clearly, Q(t) behaves according to
a continuous-time Markov chain with finite state. This model
is a standard semi-open Jackson Network [8], which has a
product form solution for its stationary distribution of Q(t),
with the state space {(x, y, z) : x + y + y ≤ N, x, y, z ≥ 0}.
Formally we have the joint stationary distribution

π(x, y, z) = lim
t→∞

P[Qx(t) = x,Qy(t) = y,Qz(t) = z].

We can derive the normalized product form for π(x, y, z),

π(x, y,z) =
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Next, we introduce three performance metrics.
1) Dropping probability: it represents the fraction of VM

requests that can not be provisioned and thus have to be
dropped due to lack of capacity,

P[drop] =
∑

x+y+z=N

π(x, y, z). (3)

2) Waiting probability: it characterizes the probability that
a VM request has to wait in front of the M/M/K queue
due to lack of available servers,

P[wait] =
∑
x≥K

π(x, y, z). (4)



A more precise way to define the waiting probability
is through the conditional probability on the event that
a request is not dropped due to full capacity by the
following expression

P[wait] =

∑
x≥K,x+y+z<N π(x, y, z)∑
x+y+z<N π(x, y, z)

. (5)

It can be proved that (4) and (5) are asymptotically equal
for large λ.

3) Average waiting time: given that a VM request can
successfully start provisioning, the average waiting time
W of a request before it obtains service on the M/M/K
queue, by Little’s law, is equal to

E[W |success] =

∑
x≥K π(x, y, z)(x−K)

λ
(∑

x+y+z<N π(x, y, z)
) . (6)

A. Non-Markovian reality and the Jackson Network model

The service times at all queues are assumed to be expo-
nentially distributed in our model. The measurements on the
example cloud system presented in Fig. 3 show that the service
times on the first and the second queue in Fig. 4 are almost
equal to two constants, whereas that of the third queue (the
time users spend one the virtual machines) usually exhibit
heavy-tailed statistical characteristics [4]. Nevertheless, we
claim that the Markovian model in Fig. 4 still serves as a
very good approximation.

We support this claim by simulation experiments. Specifi-
cally, we assume constant service times of 1/µ = 40.0 s and
1/ν = 600.0 s for the first and second queues, respectively.
In addition, the third queue has a service time distribution
that follows a truncated Pareto distribution with a shape index
of 1.5, with a minimum service time of 10.3 minutes, and
a maximum of 10336.0 minutes, i.e., its probability density
function is proportional to 1/x2.5 on the supporting interval
with mean service time 1/θ = 30.0 minutes. All of the
simulation experiments assume Poisson arrivals with rate
λ. We plot the simulation results for P[drop], P[wait] and
E[W |success] as functions of the arrival rate λ in Fig. 5. In this
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Fig. 5. Simulation and numerical results

figure, solid lines are given by the simulations and the dashed
lines are analytic results computed from Equations (3), (4),
(5) and (6), respectively. It is clear that the simulation results

matches the analytic values very well, although we assume
non-Markovian service times in the simulation. Note that the
differences between the waiting times given by Eq. (4) and
Eq. (5) are very small for both simulation and analytic results.

B. Asymptotic analysis in the Halfin-Whitt regime
Typical public cloud systems are designed to accommodate

thousands of customers or even more. For such a large-scale
system, the dimensioning problem is of vital importance for
system management. However, the exact expression of the
waiting and dropping probabilities in (3) and (4) can not
provide the insights for the scaling law.

To this end, we follow the approach by Halfin and
Whitt [10], and capture the essence of typical cloud systems in
the quality and efficiency driven regime when the VM request
arrival rate λ→∞. Specifically, we consider

K =

⌊
λ

µ
+ α

√
λ

µ

⌋
, N =

⌊
λ

µ
+
λ

ν
+
λ

θ
+ β

√
λ

θ

⌋
, (7)

where −∞ < α, β < ∞. Recall that there are at most N
virtual machines running simultaneously in the system. To
simplify the analysis, we only present the cases α > 0, β > 0
that are practically more interesting.

Conditions in (7) are a consequence of the classic square-
root staffing principle in designing call centers [6], [10], [15],
[11], which introduces the safety margins α

√
λ/µ and β

√
λ/θ

in addition to the mean values λ/µ and λ/µ+ λ/ν + λ/θ for
(K,N) to accommodate stochastic variability. The attractive
feature of this regime is that it captures the balance between
service and economy [10], where the former emphasizes that
VM requests can be accepted as early as possible (e.g.,
small delays) and the latter is concerned about reducing the
operation cost (e.g., less active host servers) of the cloud
system. Roughly speaking, the average numbers of VM re-
quests in the M/M/K component and in the whole system are
approximately equal to λ/µ and λ/µ+λ/ν+λ/θ according to
Little’s law. Because of the random arrivals and service times,
the cloud system should provide a safe margin for K and N ,
which turn out to be in the square-root scale of λ.

Definition 1. The Gaussian function ϕ(x) is defined by
ϕ(x) = 1√

2π
e−x

2/2, and the accumulated Gaussian function

Φ(x) is defined by Φ(x) =
∫ x
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Theorem 1. Under (7), for fixed µ, ν, θ, we obtain
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with δ , 1/(µ/ν + µ/θ + 1).

We prove the theorem in the appendix.

Remark 1. This result shows that in the Halfin-Whitt region
both P[drop] and E[W |success] are on the scale of 1/

√
λ,

while P[wait] almost does not depend on λ in a large cloud
system. More importantly, these performance metrics, e.g.,
P[wait], are quite sensitive to α and β. This can also be
easily seen from Fig. 5, where P[wait] increases very fast
in the Halfin-Whitt regime. Therefore, carefully sizing the
cloud system in this regime, e.g., even slightly increasing the
number of host servers by α

√
λ/µ, can greatly improve the

system performance. See further simulation experiments in
Section IV-B.

IV. SIMULATION EXPERIMENTS

In this section we use simulation experiments to demon-
strate the scaling law and the sensitivity property described in
Remark 1. We use the same values for µ, ν, θ as in the exper-
iment in Section III-A. These results can be exploited to tune
α and β in (7) to satisfy certain performance requirements,
which can be used to guide the management of large cloud
systems.

A. Scaling law

We conduct a set of experiments to illustrate that the
dropping probability and the average waiting time are on
the scale of 1/

√
λ and the waiting probability is almost

independent of λ in the Halfin-Whitt regime (Eq. (7)) when the
system is large, as shown in Theorem 1. To see these points,
we plot P[drop]

√
λ, E[W |success]

√
λ and P[wait] in Fig. 6.

As proved in Theorem 1, these three quantities are functions
of α, β for fixed µ, ν, θ and independent of λ for a large cloud.
Thus, for fixed α, β, we should observe a constant value for

each metric. Our simulations test the 9 possible combinations
for α = 0, 1, 5 and β = 0, 1, 5, and the results indeed verify
the scaling law in every case.

B. Sensitivity

Numerical calculations of the results proved in Theorem 1
show that P[drop], E[W |success] and P[wait] are sensitive
to α or β. Therefore, sometimes even slightly increasing the
number of host servers can greatly improve the system perfor-
mance. This implies that careful planning and controlling the
system capacity around a critical regime is very important. We
demonstrate this effect in Fig. 7, where we vary α and β and
fix all other parameters. For example, the waiting probability
shown in Fig. 7(c) decreases from 0.21 to 0.01 even when α
only increases from −1.0 to 1.0.

V. CONCLUSION

Based on a real example cloud system, we carefully examine
the VM provisioning process. Using the collected measure-
ments we identify the period with limited concurrency level.
From these measurements we propose a queueing model based
on Jackson Network to capture two important features, i.e.,
the limited I/O resources and user capacity, which determine
the scalability of the cloud system. Simulation experiments
show that even in real settings when Markovian assumptions
do not hold, our proposed Jackson Network model still serves
as a good approximation. Since the exact solution can not
provide insights for the scaling law when the system grows,
we conduct the heavy-traffic analysis in the classic Halfin-
Whitt regime, which accommodates moderate to large cloud
environments. We demonstrate that the VM request dropping
probability and the average waiting time is on the scale of
square root of the number of physical hosts, while the waiting
probability is quite sensitive to the number of host servers.
These analytical results show that carefully sizing the cloud
system in this regime, e.g., even slightly increasing the number
of host servers around critical points, can greatly improve the
system performance.

APPENDIX

Proof of Theorem 1: In order to ease the presentation of the
proof, we first introduce some definitions. Define ρ = λ/(Kµ)
and the following expressions:
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Fig. 7. Sensitivity on α and β

Qλ3 ,

(
N−K−1∑
j=0

1

j!

(
Kµ

ν
+
Kµ

θ

)j
1

K!
ρN−K−1

(
λ

µ

)K
1

1− ρ

)

× exp

(
−
(
λ

µ
+
λ

ν
+
λ

θ

))
, (10)

Pλ1 ,

(
K−1∑
x=0

1

x!

1

(N − x)!

(
λ

µ

)x(
λ

ν
+
λ

θ

)N−x)

× exp

(
−
(
λ

µ
+
λ

ν
+
λ

θ

))
, (11)

Pλ2 ,

(
N∑

x=K

1

K!Kx−K
1

(N − x)!

(
λ

µ

)x(
λ

ν
+
λ

θ

)N−x)

× exp

(
−
(
λ

µ
+
λ

ν
+
λ

θ

))
, (12)

Pλ3 ,
N∑

x=K

∑
0≤y+z≤N−x

1

K!

1

Kx−K

(
λ

µ

)x
1

y!

(
λ

ν

)y
1

z!

(
λ

θ

)z
× exp

(
−
(
λ

µ
+
λ

ν
+
λ

θ

))
. (13)

Pλ4 ,

(
N∑

x=K

x−K
K!Kx−K

(
λ

µ

)x
1

(N − x)!

(
λ

ν
+
λ

θ

)N−x)

× exp

(
−
(
λ

µ
+
λ

ν
+
λ

θ

))
, (14)

Recalling (1), (2) and applying (3), (4), we obtain,

P[drop] =
Pλ1 + Pλ2

Qλ1 +Qλ2 −Qλ3
, (15)

P[wait] =
Pλ3

Qλ1 +Qλ2 −Qλ3
, (16)

E[W |success] ∼ Pλ4
Qλ1 +Qλ2 −Qλ3

. (17)

Now we will compute the limits Qλi , 1 ≤ i ≤ 3 and Pλi , 1 ≤
i ≤ 4 as λ → ∞. We begin with Qλ1 . Let X and Y be two
independent Poisson random variables with E[X] = λ/µ and
E[Y ] = λ/ν + λ/θ.

Therefore, for δλ , ε
√
λ/µ, ε > 0 and m = b1/ε2c, we

obtain

Qλ1 = P[X ≤ K,X + Y ≤ N ]

≤ P[K −mδλ ≤ X ≤ K,X + Y ≤ N ]

+ P[X < K −mδλ]

≤
m∑
i=0

(
P [X ∈ [K − iδλ,K − (i− 1)δλ]]

× P [Y ≤ N − (K − iδλ)]
)

+ P[X < K −mδλ]. (18)

The condition (7) implies

lim
λ→∞

K − iε
√
λ/µ− λ/µ√
λ/µ

= α− iε,

and

lim
λ→∞

N −K + iε
√
λ/µ− (λ/ν + λ/θ)√

λ/ν + λ/θ

=
β/
√
θ − α/√µ+ iε/

√
µ√

1/ν + 1/θ
,



which, by the Central Limit Theorem, yields, as λ→∞,

P[X < K − iδλ] = P

[
X − λ/µ√

λ/µ
<
K − iε

√
λ/µ− λ/µ√
λ/µ

]
→ Φ (α− iε) ,

as well as

P [Y ≤ N − (K − iδλ)] =

P

[
Y − (λ/ν + λ/θ)√

λ/ν + λ/θ
<
N −K + iε

√
λ/µ− (λ/ν + λ/θ)√

λ/ν + λ/θ

]

→ Φ

(
β/
√
θ − α/√µ+ iε/

√
µ√

1/ν + 1/θ

)
. (19)

Applying the preceding result to (18) and recalling m =
b1/ε2c, we obtain

lim
λ→∞

Qλ1 ≤
b1/ε2c∑
i=0

(Φ (α− (i− 1)ε)− Φ (α− iε))

× Φ

(
β/
√
θ − α/√µ+ iε/

√
µ√

1/ν + 1/θ

)
+ Φ (α− 1/ε) ,

which, passing ε→ 0, yields

lim
λ→∞

Qλ1 ≤
∫ ∞
0

Φ

(
β/
√
θ − α/√µ+ x/

√
µ√

1/ν + 1/θ

)
dΦ (α− x)

=

∫ α

−∞
Φ

(
β/
√
θ − x/√µ√

1/ν + 1/θ

)
dΦ (x) . (20)

On the other hand, we have

Qλ1 = P[X ≤ K,X + Y ≤ N ]

≥
m∑
i=0

P [X ∈ [K − iδλ,K − (i− 1)δλ]]

× P [Y ≤ N − (K − (i− 1)δλ)] ,

which, following the same approaching in computing (20),
results in

lim
λ→∞

Qλ1 ≥
∫ α

−∞
Φ

(
β/
√
θ − x/√µ√

1/ν + 1/θ

)
dΦ (x) . (21)

Combining (20) and (21) proves that limλ→∞Qλ1 = Q1.
Next, we compute Qλ2 . Recalling Y defined before (18) and

ρ = λ/(Kµ), and using Stirling’s formula

K! ∼
√

2πKKKe−K ,

we obtain, as λ→∞,

Qλ2 =

N−K−1∑
j=0

1

j!

(
λ
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+
λ

θ

)j exp

(
−
(
λ

ν
+
λ

θ

))

× 1

K!

1

K

(
λ
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e−Kρ

1− ρ

∼ P[Y ≤ N −K − 1]× eK√
2πKKK+1

(Kρ)
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×

√
K

ρ

1

α
e−Kρ

∼ eK(1−ρ+log ρ)

√
2πα

Φ

(
−α
√

1/ν + β
√

1/θ√
1/ν + 1/θ

)
,

which, using 1 − ρ ∼ α
√
ρ/K and log ρ = (1 − ρ) − (1 −

ρ)2 + o((1− ρ)2), yields

lim
λ→∞

Qλ2 =
e−α

2/2

√
2πα

Φ

(
−α
√

1/ν + β
√

1/θ√
1/ν + 1/θ

)
.

Following the same approach in computing Qλ2 , we can prove
that limλ→∞Qλ3 = Q3. Due to the limited space, we omit the
details.

Then, we focus on Pλ1 . For a Poisson point process of unit
rate on [0, λ/µ + λ/ν + λ/θ], denote by X the number of
points on [0, λ/µ) and Y on [λ/µ, λ/µ + λ/ν + λ/θ]. It is
clear that X and Y follow Poisson distributions of rate λ/µ
and λ/ν + λ/θ, respectively. Similar to Qλ1 , we obtain

Pλ1 = P[X < K,X + Y = N ]

= P[X < K|X + Y = N ]P[X + Y = N ]. (22)

It is well know that conditional on X+Y = N , each point on
[0, λ/µ+λ/ν+λ/θ] is uniformly distributed by the property of
Poisson processes. Therefore, for an i.i.d. Bernoulli sequence
Zi, i ≥ 1 with E[Zi] = E[X]/(E[X + Y ]) = (1/µ)/(1/µ +
1/ν+1/θ) , δ and V [Zi] = (1/µ)(1/ν+1/θ)/(1/µ+1/ν+
1/θ)2 = δ(1− δ), we have

P[X < K|X + Y = N ] = P

[
N∑
i=1

Zi < K

]

= P

[∑N
i=1 Zi −Nδ√
Nδ(1− δ)

<
K −Nδ√
Nδ(1− δ)

]
,

which, by the Central Limit Theorem, yields

lim
λ→∞

P[X < K|X + Y = N ]

= Φ

(
α/
√
µ− βδ/

√
θ√

(1/µ+ 1/ν + 1/θ) δ(1− δ)

)
. (23)

Regarding P[X + Y = N ], we can show that

lim
λ→∞

√
λP[X + Y = N ] =

√
µδϕ

( √
2β√

θ/µ+ θ/ν + 1

)
,

which, in conjunction with (23), proves limλ→∞ Pλ1 = P1.



Next we compute Pλ2 . Defining a random variable W with
P[W = n] = (1 − ρ)ρn/ρK , n = K,K + 1, · · · . We obtain,
recalling the definition of Y ,

Pλ2 =
KK

K!

ρK

1− ρ
e−Kρ

(
N∑

x=K

P[W = x]P[Y = N − x]

)
.

Using the fact that P[W = x] is a monotonically decreasing
function with respect to x and

KK

K!

ρK+1

1− ρ
e−Kρ → ϕ(α)

α
, as λ→∞,

we have, for δλ = ε
√
λ/µ and m = b1/ε2c,

Pλ2 &
ϕ(α)

α

( m∑
i=1

P[W = K + iδλ]

P [N − (K + (i+ 1)δλ) ≤ Y < N − (K + iδλ)]

)
.

It can be shown that

lim
λ→∞

√
λP[W = K + iδλ] = α

√
µe−αiε, (24)

and (19) implies

lim
λ→∞

P [N − (K + (i+ 1)δλ) ≤ Y < N − (K + iδλ)]

= Φ

(
β/
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θ − α/√µ− iε/√µ√

1/ν + 1/θ

)

− Φ

(
β/
√
θ − α/√µ− (i+ 1)ε/

√
µ√

1/ν + 1/θ

)
. (25)

Combining (24), (25) and passing ε→ 0, we obtain

lim
λ→∞

√
λPλ2 ≥∫ ∞

0

ϕ(α)
√
µe−αxdΦ

(
β/
√
θ − (α+ x)/

√
µ√

1/ν + 1/θ

)

= ϕ(α)
√
µ exp

(
α2/δ − αβ

√
µ

θ

)
× Φ

(
β/
√
θ − α/√µ√

1/ν + 1/θ
− α

√
µ

ν
+
µ

θ

)
. (26)

Using the monotonicity of P[W = x] we can also compute
limλ→∞

√
λPλ2 , which coincides with limλ→∞

√
λPλ2 .

Following the same approach in computing Pλ2 , we obtain

Pλ3 &
ϕ(α)

α

( m∑
i=1

P [K + iδλ ≤W < K + (i+ 1)δλ]

P [Y < N − (K + iδλ)]

)

∼ ϕ(α)

α

m∑
i=1

(
e−αiε − e−α(i+1)ε

)
Φ

(
β/
√
θ − α/√µ− iε√µ√

1/ν + 1/θ

)

→ ϕ(α)

∫ ∞
0

Φ

(
β/
√
θ − α/√µ− x√µ√

1/ν + 1/θ

)
e−αxdx

=
ϕ(α)

α
Φ

(
β/
√
θ − α/√µ√

1/ν + 1/θ

)
− ϕ(α)

α
exp

(
α2/δ − αβ

√
µ

θ

)

× Φ

(
β/
√
θ − α/√µ√

1/ν + 1/θ
− α

√
µ

ν
+
µ

θ

)
. (27)

Similarly we can show that limλ→∞ Pλ3 ≤ P3. Using
the same approach as in calculating Pλ3 , we can prove that
limλ→∞

√
λPλ4 is equal to

ϕ(α)
√
µ

∫ ∞
0

xe−αxΦ

(
β/
√
θ − α/√µ− x√µ√

1/ν + 1/θ

)
dx.

Applying all these computed limits in (15), (16) and (17)
finishes the proof of the theorem.
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