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Abstract—The paper investigates the use of multipath routing
and load balancing in content oriented architectures proposed
for the next generation Internet. It discusses how various load
balancing methods can influence the efficiency of in-network
caching and overall network performance measured as file
retrieval time. Proposed approach, called Popularity-Aware Load
Balancing, differentiates popular and unpopular content, and
applies dedicated balancing principle to each content set. Perfor-
mance of the proposed approach is validated through developed
simulator of the content-centric network. Obtained results prove
that popularity-based load balancing applied for multi-path
routing patterns can outperform single-path routing patterns in
the content networks experiencing flash crowds.

I. INTRODUCTION

The use of multiple paths and associated load balancing are
traffic engineering techniques used to achieve efficient utiliza-
tion of network resources. In this paper, the combination of
these two capabilities is referred to as multipath routing. The
advantages of using multipath routing are limited to relatively
narrow network conditions. In fact, it is the case of failures
or local congestions when flow diversification associated with
the usage of multipath routing can bring benefits by alleviating
the load on some network elements. In this paper, we follow
this general assumption.

In the above context, a plethora of strategies have been
proposed in the literature to partition flows over sets of admis-
sible paths [1], [2], [3], [4], [5]. However, high-grade network-
level multipath routing should handle traffic in a flow-aware
manner: one should either to partition/repartition application
flows that are sent (split) over distinct paths or assure that
each flow is sent over a single path. Both of these options call
for smart load balancing mechanisms/algorithms to become
operationally viable and none of them have received strong
support in standardization (we notice that the best known
Equal-Cost Multi-Path framework has only limited ability of
load-balancing the traffic). Therefore, multipath routing has
been introduced to a limited extent in operational networks.

The emergence of new concepts for the next generation
Internet is believed to offer significant opportunities for the
application of multipath routing. This refers in particular to
content-centric networks (CCN) [6] due to the implied one-to-
any communication model. In this paper we study the viability
of joint use of load-balancing, multipath routing and caching in
this architecture with the emphasis on decentralized solutions.

There are a few sidelights that multipath routing can im-
prove the performance of CCN when compared to single-path
routing. In particular, one can expect that even if multipath
routing results in long paths, data can potentially be cached
somewhere along the path towards the origin server. As a
result, using multipath routing in CCN networks does not have
to mean that on average data is transmitted on long paths, at
least as far as it concerns popular data, i.e. one having a high
probability to be cached by content routers. Moreover, the
number of available paths/routes between a given access node
and the origin server influences the probability of requested
data to be sent from network cache, which offers some level
of control of network performance. For instance, one could
forward all requests for same data item to a single next hop.
In that case, the popularity of particular data item would
typically increase along the path towards the origin server and
potentially improve caching efficiency. Conversely, requests
for unpopular content can be spread over multiple paths in
order to additionally decrease its popularity and limit the
pollution of the caches along those paths.

We note however that the overall network effect of using
such balancing strategies in CCN architecture has not been
subject to systematic studies. In particular, in [7] no algo-
rithmic approaches are provided. A first comparative study
of several caching policies under multipath routing has been
presented in [8], but the authors do not consider adaptive load
balancing so their conclusions are not fully applicable to our
problem. Other previous works that combine caching and load
balancing refer either to managed CDNs [9] and result in
centralized solutions, or to some regular network structures
[10] that are derived from computer architectures and are not
general enough for networks like the Internet.

The contribution of this paper is two-fold. First, we show
that multipath routing and link-level load balancing can be
effectively combined with caching into a joint mechanism
that helps decrease network delays. This framework is par-
ticularly suited to flash crowd conditions. Second, we propose
quite general popularity-based load balancing mechanism that
makes use of available multiple paths, is local in nature and
is as scalable as other popularity-based strategies, e.g., LFU.

The paper is organized as follows. In section II, the model
of content network is presented. The concept of combined
multipath routing and load balancing in the content networks



is described in Section III, and the results of simulation ex-
periments are presented in Section IV. The paper is concluded
in Section V.

II. NETWORK MODEL

In this paper we consider the original CCN framework [6]
as a reference model of a content-centric network. We define
three types of nodes V: access nodes Va ⊂ V that host the
users, content routers Vc ⊂ V , and origin servers Vo ⊂ V being
the sources of data. The nodes are connected by directed links
E . Subsets E+(v) ⊂ E and E−(v) ⊂ E contain links incoming
to and outgoing from node v ∈ V , respectively.

Following [6] we assume that content delivery is based on
chunk transmissions, i.e., each chunk has its own name and
from the network perspective it constitutes a separate object.
In the following, the set of all chunks is denoted by C.

Upon the reception of an interest (i.e., a request for a
chunk), content router checks if the corresponding chunk is
available in the local cache and if so it immediately sends
back the requested chunk. Otherwise, content router registers
the interest in PIT (Pending Interest Table) and passes it to next
hop nodes according to the entries available in the forwarding
table and the ultimate decision of the strategy layer (the
latter being responsible for making actual decisions as to the
forwarding of interests). Upon the reception of requested data
from any incoming interface, the content router passes it to all
outgoing interfaces pointed by the corresponding entry of PIT
(deleted afterwards) and updates its cache if necessary. Since
CCN concept is routing agnostic, using multipath routing is
an option that depends on the strategy layer.

Soft state PIT provides a simple mechanism that prevents
content routers from replicating already seen interests, and also
helps in eliminating loops in routing paths. As looping paths
may degrade network performance, we consider only loop free
routing patterns. More specifically, we use single shortest paths
as reference routing patterns, and equal cost multipath (ECMP)
[11] for determining multipath routing. For a given data item
c ∈ C, related forwarding table in content router v ∈ Vc is
defined by a subset R(v; c) ⊂ E(v) of node v interfaces that
can be used to pass interests for this data item c to next hops.
We assume that all paths determined by R(v; c) are equivalent
to each other from the perspective of the routing protocol, and
as has already been mentioned, it will be the role of CCN
strategy layer to define the right use of those paths.

CCN framework does not make specific assumptions as to
which caching policy is to be used by content routers, and
consequently any caching policy should be applicable. As our
main goal is to investigate how using proposed variants of
multipath routing can influence performance of the content
network, we focus on two replacement policies: LRU (often
considered in CCN context for its simplicity) and PBLRU
(Popularity Based LRU).

LRU is relatively easy to implement as it does not require
explicit popularity detection. However, if the number of un-
popular data items (in extreme case one-timers) is large, the
efficiency of such replacement policy can be questionable.

PBLRU is a modification of LRU that is able to exploit
known estimates of content popularity. More specifically,
under PBLRU the so-called one timers and unpopular data are
prevented from being passed to proper policy—LRU based
on initial filtering. Certainly, explicit popularity estimation
introduces computational overhead compared to simple LRU,
but our numerical experiments suggest that the number of
data items that need such estimation can be quite small in
case of PBLRU. So, we believe that PBLRU would not be
an implementation challenge in real systems and skip a more
detailed discussion on this topic.

III. LOAD BALANCING

One of the general principles of using multipath routing
locally in a content router is balancing the load due to data
items on the incoming interfaces. CCN architecture brings one
feature that is particularly important for this purpose. Namely,
forwarding an interest at specific outgoing interface implies
that the corresponding data will arrive at the corresponding
incoming interface. So, managing proportions of interests sent
at different outgoing interfaces is a mechanism to control the
load on corresponding incoming interfaces. This observation
is an essence of the mechanisms proposed in the following.

Having given the load of incoming interfaces l = {le : e ∈
E+(v), v ∈ Vc}, a content router can balance their load by
appropriately spreading the interests that it forwards through
corresponding outgoing interfaces. Then an intuitive choice is
to forward an interest to the least loaded interface, defined as:

e = arg{ min
e∈E+(v), v∈Vc}

le}. (1)

We refer to the above scheme as minimum load first (MLF).
Although MLF tends to balance the load of incoming inter-
faces, the requests for same data item may traverse different
paths in longer term. So, using MLF can decrease the proba-
bility that requested data is cached in the next hop node.

In order to avoid the negative effect as indicated above and
keep caching probability high, we consider another scheme re-
ferred to as modulo hash first (MHF). Similarly to ECMP [2],
MHF calculates a hash H(c) of data identifier and determines
the outgoing interface by applying modulo operation upon
obtained hash value. Thus, all interests requesting specific data
item are always sent through the same outgoing interface.
Consequently, the paths used to send those interests merge
and create a tree structure. Although it may be considered as
constraint, using tree routing allows to aggregate interests for
a given data object and maximize its cacheability. In this case
(and assuming R(v, c) to be an ordered list), the selection of
an outgoing interface can be expressed as:

e = R(v, c)[idx] where idx = H(c) mod |R(v, c)| (2)

MHF uses a unique tree to transmit all interests related to a
specific data identifier thus trying to maximize the probability
that this item is cached in the network. The accuracy of
resulting load balancing depends on the granularity of traffic
flows associated with particular modulo groups. We suggest



that the precision of resulting load balancing can be improved
by applying MLF to least popular content - we use this idea
in the following to define PALB strategy.

As has already been mentioned, our approach is based on
data popularity estimation. Proposed scheme is referred to
as popularity aware load balancing (PALB), an is assumed
to partition data items into three groups depending on data
popularity. PALB tries to merge the benefits of both MLF and
MHF in order to maximize the effectiveness of caching while
balancing link load.

Fig. 1: PALB content partitioning
Upon the reception of a message (interest or data) related

to particular content, content router using PALB associates it
with one of three popularity groups: high-, medium- and low-
popularity group (PG-I, PG-II, PG-III) (such partitioning is
illustrated for a sample Zipf distribution in Fig. 1). Interests
are served according to algorithm III.1, and if a request cannot
be served from the local cache it is forwarded depending on
its popularity group association as follows: according to MHF
rule if the group is PG-I or PG-II, or according to MLF rule if
the group is PG-III. For data messages, only those belonging
to PG-I are directed to LRU cache if PBLRU caching is used
(in this way only the most popular content is input to internal
LRU cache - see algorithm III.2).

Algorithm III.1: PROCESSCONTENTREQUESTPALB(c)

UPDATEPOPULARITYSTATS(c)

if CONTENTINCACHE(c) = true

then

{
SENDDATABACKTOINCOMMINGFACEFROMCACHE(c)

comment: c on top of LRU cache

else



if REQUESTINPIT(c) = false

then


REGISTERINPIT(c)
if PG(c) = I or PG(c) = II

then FWDREQUESTTOLINK(MHF(H(c)))

else FWDREQUESTTOLINK(MLF())
else REGISTERINCOMMINGFACEINPIT(c)

Algorithm III.2: PROCESSCONTENTDATA(c)

if CachingType = PBLRU and PG(c) = I

then STOREDATAINCACHE(c)

if CachingType = LRU

then STOREDATAINCACHE(c)

FWDDATABACKTOALLINCOMMINGFACESINPIT(c)

As a general rule, the use of high popularity (PG-I) items
works in favour of maximizing the efficiency of caching. In
this work, we consider PBLRU to be an efficient add-on to
LRU (assuming that popularity estimates are already available
from PALB), but using other policies is also possible. More-
over, PG-II content is moderately popular, and PG-II interests
should preferably be transmitted through deterministic paths
to increase their caching probability along the paths. Finally,
PG-III interests (associated with unpopular and one-timer data
items) will typically not benefit from caching and should be
prevented from caching if possible; spreading such interests
among many paths is a means to achieve this goal. PG-III
content is thus perfectly suited to realize local principles of
load balancing. Based on data popularity estimation, we can
achieve good caching efficiency by preserving high probability
of caching for high/medium popularity traffic, and accurate
load balancing with the use of uncachable PG-III traffic.

Proposed load balancing mechanism is controlled by data
popularity. Although in our experiments we assume that data
popularity obeys Zipf’s law, our framework does not preclude
other distributions. More information on popularity detection
with regard to our framework is contained in section IV-C.

IV. SIMULATION EXPERIMENTS

In order to reflect the operation of CCN network we have
created a dedicated simulator. In the conducted numerical
experiments we have paid particular attention to reconstruct
traffic scenarios featuring the presence of hot spots in the
network.

A. Network models used in simulation experiments

The simulation experiments exploit two network topologies:
Diamond and Mesh, both depicted in Fig. 2. The Diamond
topology consists of seven content routers in a specific layout
so that the load balancing decisions are taken only in one
content router CR0. We consider one access nodes and one
origin server connected by five possible paths and a single
origin-destination traffic demand. This simple case is used to
gain basis intuition regarding the performance of multipath
routing schemes defined in this paper. More realistic traffic
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Fig. 2: A) Diamond and B) Mesh network topologies
scenarios, containing sink- and source- hot spots in particular,
are investigated for more complex Mesh topology of the



network. In the Mesh topology, each content router works
in the caching mode, and to each of them, one access node
(sink of traffic) and one origin server (source of traffic) are
connected.

Capacity of links connecting a pair of content routers is
equal to 100Mbps, and capacity of links connecting content
routers and access/origin nodes is equal to 1000Mbps. Such
a selection of capacities is deliberate in order to eliminate
bottlenecks between and content routers and allow to study
only the performance on network level.

We assume that the size of link buffers is limited so that
the maximum queuing delay on a single link is ld = 40ms.
This assumption is in line with known practices in network-
ing, where line card buffers are relatively small in order to
have short delays and low jitter (bufferless multiplexing) The
maximum queuing delay directly influences the time after
which interests are cleared from PITs in content routers when
corresponding data messages do not arrive (because of loss).
For the Mesh topology, one can easily see that the longest
ECMP-compliant path between any two content routers con-
sists of 4 hops. So, given the worst case (interest message
and data message are maximally delayed by each link on the
longest path), the source router should wait at most 320ms
(8∗40ms) for the data packet. Taking into account processing
time in each cache router as well as transmission time, and
propagation delays, we (somewhat arbitrarily) doubled 320ms
and set the Time To Clear (TTCc) for interest messages in
PITs to 640ms.

In our simulator, each data request (to get a chunk) is
issued by an application process. We assume a conservative
congestion control strategy at this level when transmitting
whole data objects: the application process issues an interest
for a chunk only after the reception of the previous chunk. An
interest for a particular chunk is renewed if the corresponding
data does not arrive within 800ms. This value stems from
adding to TTCc the maximal delay on the access links to
content routers (800ms = 640ms + 4 ∗ 40ms).

B. Traffic model

We consider a set of |C| = 1000 data items available
across the network, each of size sc = 1MB. We adopt
Zipf’s distribution presented in [12] and [13] for modelling
global data popularity distribution γ with various values of
Zipf skew parameter {0.2, 0.4, 0.6, 0.8, 1.0}. The set C is
ordered according to decreasing popularity, and γc represents
the probability the data item of rank c = {1, ..., 1000} is
requested. Clearly, 1000 data items is not representative for
the current Internet, but after having initially experimented
with a much larger set of objects we found that 1000 objects
and the resulting granularity of traffic flows is sufficient to
quantitatively compare investigated mechanisms while not
overburdening the simulator.The equal size of data items was
assumed in order to sharply expose the influence on network
performance of pure multipath/load balancing mechanisms.

The discussion on the selection of suitable chunk size in
content oriented networks with built-in caching is ongoing.

Different architectures have their own assumptions on that.
Following several works related to CCN [14], [15], we have
assumed 10kB as the chunk size.

Poisson distribution is used to model request arrival process
λ in access nodes, with parameter λG for the whole network.
We assume that each content router can cache up to 3% of
the total number of data items which translates into 30MB of
caching memory.

For Diamond topology, we assume that all data items are
requested by one access node and retrieved from one origin
server. For Mesh topology we model source-hot spots scenar-
ios by associating origin servers with particular data items.
In our experiments, we assume that each origin server v ∈ Vo
hosts equal number of data items (k = |C|

|Vo| = 1000/13 = 76).
We also assume that the set of origin servers (Vo) is ordered,
and the first origin server on the list contains the first k data
items from the set C, the second origin server contains the next
k data items, and so on. Thus, as the set C is ordered according
to decreasing data popularity, the source-hot spot(s) are located
in the first origin server(s) in the set Vo. We must notice that for
different Zipf skew parameters of popularity distribution, we
obtain different distributions of requests directed to particular
origin servers γo =

∑
c∈Co γc, where Co denotes a subset of

data items associated with origin server o (see Table IA). For
many simulation runs, we randomize the order in the set Vo,
thus modelling different locations of data items in the network
topology (and thus the locations of source-hot spots).
TABLE I: Source-hotspot (A) and sink-hotspot scenarios (B).

A) Source hot-spot scenarios - γo distribution.

Zipf Skew \ OS Idx 1 2 3 4 5 6 7 8 9 10 11 12 13

0.2 0.127 0.095 0.086 0.080 0.076 0.073 0.071 0.069 0.067 0.066 0.064 0.063 0.061

0.4 0.207 0.112 0.090 0.079 0.071 0.066 0.062 0.058 0.055 0.053 0.051 0.049 0.047

0.6 0.326 0.120 0.087 0.071 0.061 0.054 0.049 0.045 0.042 0.039 0.037 0.035 0.033

0.8 0.485 0.114 0.075 0.057 0.046 0.039 0.034 0.031 0.028 0.025 0.023 0.022 0.020

1 0.658 0.092 0.054 0.038 0.030 0.024 0.021 0.018 0.016 0.014 0.013 0.012 0.011

B) Sink hot-spot scenarios - σa distribution.

AN Idx 1 2 3 4 5 6 7 8 9 10 11 12 13

Scanario A 0.143 0.132 0.121 0.110 0.099 0.088 0.077 0.066 0.055 0.044 0.033 0.022 0.011

Scenario B 0.830 0.146 0.022 0.003 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Sink-hot spot scenarios are modelled by adjusting request
intensity proportions between different access nodes (σ distri-
bution). In order to generate various simulation conditions, we
randomize the order of the set Va and use the function f(iv) =
xiyv + z, where iv is the index of node v in set Va, and x, y, z
are tunable parameters. Thus, σv = f(iv)∑

v∈Va
f(iv)

. Scenario A

(Table IA), defined by parameters x = 1, y = 1, z = 1, models
moderately differentiated (within an order of magnitude) pro-
portions of request rate in particular access nodes. Scenario B
(Table IB), defined by parameters x = 1, y = 20, z = 1,
in practice limits the number of active access nodes in the
network to two sink-hot spots, where the first node generates
83% and the second nearly 15% of the total traffic in the
network. So, we may say that Scenario B is an extreme case
of sink-hot spot.

Each simulation run lasts 2000s with 200s warm up pe-
riod. In case of Diamond topology it corresponds to 20-30
thousands of content requests, and 2-3 millions of satisfied
interests for respective chunks (1 data item consists of 100



chunks). In case of Mesh topology it corresponds to 50 and
240 thousands of content requests (sink hot-spot scenario B
and A, respectively), and 5-24 millions of satisfied interests
for respective chunks. For Mesh topology, we simulated 10
random configurations in terms of source and sink-hot spots,
so the presented values are respective averages.

Referring to the elementary mechanisms defined in the
previous section, by a network configuration scheme we
understand a network that uses particular type of caching
policy (LRU, PBLRU), routing (SP - single shortest path,
MP - equal cost multipath) and load balancing solutions
(MLF, MHF, PALB(p))1 in case of multipath routing. The
convention we adopt for naming the schemes is of the
form Caching_Routing_LoadBalancing. For instance,
LRU_MP_MHF denotes the network scheme that uses LRU
for caching, ECMP multipath routing and modulo MHF load
balancer.

Average file retrieval time (retrieval time (RT) for short)
is the main criterion we use to compare the efficiency of
various network configuration schemes. It is expected to be a
good synthetic performance indicator, because it is influenced
by both caching and transport efficiencies. Another criterion,
called cache hit rate (CHR), is used as a secondary per-
formance descriptor. It represents the percentage of interests
served by network caches (so excluding the origin servers).
The last criterion, called network balance indicator, is defined
as follows. For a given simulation run (and a given traffic
matrix) we calculate link load peakedness factor as the ratio
of the variance to the mean of link loads in the network. Then
network balance indicator is obtained by averaging link load
peakedness factor over 10 simulation runs, each time assuming
a distinct traffic matrix being a random permutation of sink-hot
spot Scenario B (c.f. Table IB).

C. Popularity estimation and PG-I size selection
We recognize that the accuracy of popularity estimation is of

crucial importance for the performance of PALB. As tracking
the popularity of all data is impossible in wide deployments,
pragmatic methods may use finite data structures, like fixed-
length lists, to count the frequencies of requests related to a
subset of data items. In order to provide a working method
for our experiments, below we propose a simple estimation of
PG-I and PG-II based on observing a relatively small number
of data items.

In our experiments, each content router maintains popularity
list of data items and registers the number of requests for each
data item c from the list in each consecutive measurement
window k; this number is denoted as (denoted by rkc ). Pop-
ularity estimate pekc during measurement window k for data
item c is then calculated using exponential moving average
according to pekc = pek−1c (1−α)+αrkc . We tuned the values
of the measurement window duration experimentally and the
smoothing factor α to 1s and α = 0.05, respectively.

In order to define popularity groups PG-I and PG-II we
assume that at any moment they are given together as fraction

1the notation PALB(p) is explained in the following subsection IV-C

p of the most popular data items that are actually monitored
in popularity list. Accordingly, by PALB(p) we denote a
scheme where fraction p of the most popular data (currently
in popularity list) belong to PG-I and PG-II (we remind that
the requests for their chunks are load-balanced according to
MHF). Remaining data items constitute the low popularity set
PG-III and are balanced according to MLF. The size of PG-I
refers only to PBLRU and is commented separately.
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Fig. 3: Cache hit rate (CHR) as a function of PG-I size.
(Diamond topology, PBLRU MP MHF, Zipf skew = 0.3 and
0.8, λG = 10).

Popularity-driven policy PBLRU is an enhancement to LRU
scheme assuming that only chunks of data belonging to
popularity group PG-I are fed to proper LRU cache. The
efficiency of PBLRU scheme thus depends on PG-I size. After
many preliminary experiments under different assumptions
concerning popularity measurement, the size of PG-I that led
to the maximal hit ratio CHR was within the range 3–10
data items for both considered topologies. Exemplary results
of such experiments for Diamond topology are presented in
Fig. 3. We can see that the optimal size of PG-I is 3 or
6 depending on assumed Zipf skew parameter of popularity
distribution (0.3 and 0.8 respectively). We explain those results
as follows: for small sizes of PG-I list, the caches tend to be
underutilized (not full) which results in a drop of cache hit
ratio; under a very large size of PG-I list, PBLFU works like
a classical LRU, because majority of chunks are fed directly to
the cache and increase cache pollution with unpopular items
(which also leads to a drop of the hit ratio). It has to be
explained that PG-I consists of data items with the highest
value of estimated popularity in consecutive measurement
windows. Due to the random process of request arrival and
temporal variability of popularity estimations, PG-I list is also
variable and captures a wide set of relatively popular data
items in longer run. This set is fed to the LRU cache. Thus,
even if the size of PG-I is relatively small, the LRU cache
is filled completely if PG-I size is tuned appropriately. For
all simulation runs presented in the next sections we assumed
constant size of PG-I list equal to 5.

We realize that popularity detection is in general a complex
and difficult to scale task. Therefore, the above suggestion
that the size of PG-I can be relatively small is promising and
allows to formulate a working hypothesis that the number of
data items for which popularity estimation is performed could
also be small in reality. We leave a detailed investigation of
this topic for future work.



D. Results for Diamond topology

In Fig. 4 and Fig. 5, plots for RT and CHR related to the
Diamond topology for various network schemes using LRU
caching policy and λG = 10 are drawn. Poor performance
of LRU_SP results from the fact that the whole traffic is
transmitted using single path (AN-CR0-CR1-CR6-OS), and
cache stores in content routers CR2-5 are not used at all. This
is evident from Fig. 6 which shows that for scenario LRU_SP
only CR0, CR1, CR6 participate in data forwarding.
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Although LRU_MP_MLF scheme uses multipath routing its
efficiency is similar to LRU_SP. This is so because MLF, due
to load balancing, forwards successive requests for a given
chunk onto different paths. This lowers the probability that the
next request for this chunk is directed to content router that
has stored it previously. In effect, performance of caching in
content routers CR(1-5) deteriorates. In Fig. 6 we can see that
all CRs detected requests for each data item. Thus, multipath
schemes with MLF load balancing play against caching and
offer poor performance in terms of RT and CHR.
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We observe that the most efficient network scheme is
LRU_MP_MHF. We must remember that use of MHF physi-
cally separates interests among modulo groups seen by content

routers CR(1-5). Thus, the number of data items seen locally
in each content router CR(1-5) is limited to 200 (c.f. Fig. 6).
In that case, we can get high hit rates in network caches due
to low rates of pre-emption and low RT.

Schemes LRU_MP_PALB(p) (p ∈ {0.2, 0.5, 0.9}) pre-
serve modulo paths (MHF) for the most ranked content,
but spread (MLF) interests for unpopular content. Clearly,
LRU_MP_PALB(p=0) corresponds to LRU_MP_MLF, and
LRU_MP_PALB(p=1) corresponds to LRU_MP_MHF. In fact,
the higher the value of parameter p (the size of PG-I and PG-
II) is, the lower the number of data items as seen locally at
each content router CR(1-5) (c.f. Fig. 6, 930 for p = 0.2, 815
for p = 0.5, 345 for p = 0.9) and the better caching efficiency
due to the low eviction rates.
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Fig. 7: Extended Diamond topology appropriate for the use of
MHF load balancing.

Taking into account the computational overhead (for popu-
larity detection) required by LRU_MP_PALB(p) schemes, the
use of such schemes for topologies having similar properties
that of Diamond topology (see Fig. 7) is unprofitable com-
paring to simple LRU_MP_MHF. However, in more complex
topologies with multi-homed access nodes and origin servers
(like in case of Mesh topology), the aggregation by limiting
the number of seen data items to improve caching efficiency is
relatively harder. In such a case, we can still expect a positive
impact of the use of popularity aware scheme PALB described
in Section IV-E).
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Fig. 8: Cache hit rate (CHR) as a function of Zipf skew
(Diamond topology, λG = 10).

In Fig. 8 and Fig. 9, we can observe how replacing LRU by
PBLRU influences CHR and RT. Using PBLRU significantly
improves CHR (Fig. 8), and thus RT can be much lower
(Fig. 9). This is particularly visible for network schemes
LRU_MP_MLF and LRU_SP, for which RT was reduced
from 0.25s to 0.18s (Zipf skew= 0.8). Comparing the best
scenarios, i.e., PBLRU_MP_MHF and LRU_MP_MHF, we infer



that quite high increase of CHR (from 45.1 to 58.4, Zipf
skew= 0.8, Fig. 8) results in moderate decrease of RT (from
0.13 to 0.11, Zipf skew= 0.8, Fig. 9). The reason is that
CHR is an aggregated indicator that reflects the percentage of
interests served by any network cache, but without information
on how close to the access node (in terms of hop counts)
the ache was located. It is obvious that RT is shorter if hits
happen in nearby caches. Therefore, RT is superior to CHR
as a synthetic indicator of efficiency in a network of load-
balanced caches.
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Fig. 9: Average file retrieval time (RT) as a function of Zipf
skew (Diamond topology, λG = 10).

E. Results for Mesh topology
In Fig. 10 we compare retrieval time RT in the Mesh

topology for various network schemes and sink-hot spot
Scenario A (c.f. Table IA). Obviously, schemes: LRU_SP
and LRU_MP_MLF are much less efficient than LRU_MP_MHF
and LRU_MP_PALB(0.2).
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Fig. 11: Average file retrieval time (RT) as a function of Zipf
skew (LRU caching, Sink-hot spot Scenario A, λG = 120).

However, we can see that LRU_MP_PALB(0.2) slightly
outperforms LRU_MP_MHF (now, RT equals 1.9s as compared

to 2.1s, Zipf skew=0.8). As expected, such popularity-aware
load balancing shapes the popularity seen in next hop content
routers so that their high caching efficiency is maintained.

The above effect is investigated in details for LRU schemes
in Fig. 11. As can be seen, there exists an optimal value of
parameter p (see Section III) characterizing PALB, for which
we observe the lowest value of RT (LRU_MP_PALB(0.2)).
Setting the value of p too small, as for LRU_MP_PALB(0.1),
degrades the efficiency for lower values of Zipf skew.

The application of PBLRU (instead of pure LRU) gives
additional gain in the form of reduced RT (c.f. Fig. 10). Both
schemes PBLRU_MP_PALB(0.2) and PBLRU_MP_MHF
significantly decrease RT as compared to their counterparts
based on LRU (RT=0.2s vs. 1.9s and 2.1s, Zipf skew=0.8),
however, there are no significant differences between them.
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A true benefit of using PALB as compared to MLF is evident
in Fig. 12 (LRU caching) and Fig. 13 (PBLRU caching) which
depict the RT values for imbalanced sink-hot spot Scenario B
(c.f. Table IB). Comparing LRU_MP_PALB(p) (especially for
p = 0.2) and LRU_MP_MHF we observe (for lower values of
the Zipf skew parameter) that RT can be decreased from 1.5s
to 0.5s and from 0.4s to 0.3s when Zipf skew parameter is
equal to 0.4 and 0.8, respectively. Thus, a significant reduction
of RT (c.f. Fig. 12) is achievable.

Comparing schemes PBLRU_MP_PALB(p) and
PBLRU_MP_MHF for PBLRU caching we can still observe
a positive impact of using PALB, but this holds mainly for
lower values of Zipf skew parameter (c.f. Fig. 13). RT can
be decreased from 0.5s to 0.3s due to PALB when Zipf
skew parameter is equal to 0.4, but for higher values of Zipf
skew parameter the gain is not significant. We thus conclude



that aggregation helps mainly in scenarios with moderately
skewed popularity distributions. However, replacing LRU by
PBLRU improves caching efficiency and thus reduces RT for
any load balancing scheme.

Finally, we check network balance indicator in order to
confirm the desired effect of joint operation of routing, load
balancing and caching. To this end, in Fig. 14, network
balance indicator is drawn in function of Zipf skew for various
load balancing schemes assuming PBLRU caching. It can
be observed that PALB outperforms the remaining schemes,
especially the one based on single shortest path routing.
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Fig. 14: Network balance indicator as a function of Zipf skew
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V. CONCLUSIONS AND FUTURE WORK

Applying load balancing in content networks affects effi-
ciency of content caching. Popularity aware load balancing
can be thus a way to optimize caching efficiency. Caching
efficiency depends on skewness of content popularity char-
acteristics. In general, higher skewness of characteristics im-
plies higher caching efficiency. Observable by network nodes
popularity of content items can be aggregated by using tree-
like routing structures to transmit requests and data. Thus,
on one hand, load balancing when applied to popular content
should preserve aggregated popularity characteristics, e.g.,
through using tree-like routing structures and balance load on
content level, i.e., in ECMP fashion use unique paths to all
requests related to particular content item. On the other hand,
popularity of unpopular content (noise from caching efficiency
perspective) can be further decreased by using random paths
to transmit content items independently. Results of simulations
presented in the paper show that using proposed approach can
have positive impact on network performance measured in
terms of file retrieval time, in particular for hot-spotted traffic
scenarios.

The efficiency of caching methods typically depends on
the number of observable content items. When popularity
estimates are already available, the efficiency of caching can be
increased significantly by filtering out unpopular content. The
latter possibility is successfully exploited by a straightforward
popularity-aware extension of LRU proposed in the paper.

Estimation of content popularity is a challenging task.
For the sake of performed simulations, simple popularity
estimation method was proposed. In the proposed approach
popularity was estimated as a moving average of time-framed
request counters. We may conclude that this approach requires

adjusting measurement interval to properly smooth popularity
characteristic in required time scale. From the perspective of
the load balancing approach proposed in the paper, one remark
seems to be important. Namely, the objective is not to measure
popularity of particular content, but to determine popularity
level (popularity group) requested content belongs to, and to
apply appropriate load balancing rule. Although popularity
estimation is not easy, taking into account potential benefits,
we should not treat this issue as impossible and find it as
important topic for the future work.
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