
Processor Sharing and Pricing Implications

Sharad Birmiwal

Department of Electrical and

Computer Engineering

University of Waterloo

Waterloo, ON N2L 3G1, Canada

Email: sbirmiwa@uwaterloo.ca

Ravi R. Mazumdar

Department of Electrical and

Computer Engineering

University of Waterloo

Waterloo, ON N2L 3G1, Canada

Email: mazum@ece.uwaterloo.ca

Shreyas Sundaram

Department of Electrical and

Computer Engineering

University of Waterloo

Waterloo, ON N2L 3G1, Canada

Email: ssundara@uwaterloo.ca

Abstract—We study pricing models for bandwidth sharing that
do not depend on detailed statistical knowledge of network traffic.
For a multiclass, processor sharing server, we show that three
common pricing models, namely fixed rate pricing, Vickrey-
Clarke-Groves pricing, and congestion-based pricing, are linked
to the zeroth, first, and second moments, respectively, of the
number of users in the system. We derive expressions for these
quantities and provide insights into the operator’s revenue and
user payments.

I. INTRODUCTION

The processor sharing discipline, where a server allocates

an equal share of the resource to each user in the system,

finds applications in a myriad of domains such as bandwidth

allocation in networks and in multi-programming computer

systems (and data-centers). A key benefit of the processor

sharing discipline is that it results in insensitivity, i.e., the

stationary distribution of the number of users is characterized

by the first order statistics of the arrival process and the service

distribution. Insensitive allocations also exhibit product-form

distribution. In the case of a single server, processor sharing

is the socially optimum policy when the users’ utilities are the

logarithm of their allocated bandwidth.

The paper explores fixed rate pricing, Vickrey-Clarke-

Groves (VCG) based pricing, and congestion-based pricing (or

Lagrange shadow prices) for charging users that are allocated

resources via processor sharing. The prices are a function of

the load (the number of users present) on the system. We

show that the mean user payments and operator revenue can

be obtained from the zeroth, first, and second order statistics of

the number of users in the system. The paper also explores two

implementation mechanisms for the three pricing models: the

post-payment mechanism where the users pay the exact charge

accrued during their service and the pre-payment mechanism

where the operator charges the user based on the expected

sojourn time and the perceived load on the system.

The processor sharing discipline, although simple, is of key

interest since the insensitivity property offers predictability

in the expected revenue to the operator and in the expected

payments by the user. This allows us to gain insights into the

structure of the pricing models. Motivated by this, we explic-

itly derive the expression for the second moment of the number

of users and the correlation between the numbers of users of

two different classes in a processor sharing environment, a

contribution that is of independent interest in the study of

insensitive allocations. For a further discussion on processor

sharing and insensitivity, the reader is directed to [1], [2], [3],

[4] and the references therein.

II. SYSTEM MODEL

Consider a single server with M/G inputs, capacity C, and

using the processor sharing discipline. The system consists of

users that represent file transfers or flows. Each user arriving

to the server belongs to one of K classes, indexed by the

set {1, . . . ,K}. A class is distinguished by its arrival and

service requirement characteristics. Class k user arrivals are

modeled as a Poisson process with rate λk. Each class k user

brings a random amount of work, independent and identically

distributed, with a common general distribution with mean

νk. At an instant t, let ~x(t) := (x1(t), . . . , xK(t)) denote

the number of users of each type present in the system with

xk(t) ≥ 0 denoting the number of class k users. Let |~x|
denote the ℓ1-norm of ~x. The allocation to a user in the

system is C/|~x| and the total allocation to class k is given

by Λk(~x) = xkC/|~x|. Let ~Λ(~x) = (Λ1(~x), . . . ,ΛK(~x)). As

mentioned in the previous section, processor sharing results

from maximizing social welfare when each user has a log
utility function. The log utility function is also of interest

since its solution coincides with the Nash bargaining solution

and since it is the only scale invariant utility function. We

will assume this utility function when we derive the payments

under VCG based pricing and congestion-based pricing.

Define αk := λkνk and ~α := (α1, . . . , αK). The traffic

intensity of class k is denoted by ρk = αk/C. Let the total

traffic intensity, ρ, be given by ρ =
∑K

k=1 ρk. We use the

notation ~α~x =
∏K

k=1 α
xk

k for convenience.

Let π be the stationary distribution of the underlying

Markov process, PN be the Palm probability associated with

any stationary point process N , and EN be the expectation

with respect to the Palm probability, which in this case, is the

same as the stationary measure due to the Poisson Arrivals

See Time Averages property (PASTA). With a slight abuse of

notation, let E~x be the expectation conditioned on the arrival

state ~x. Define χ(~x) := Φ(~x)~α~x to be an invariant distribution

under π where Φ(~x) is the balance function satisfying

Φ(~x) =
1

C

K
∑

m=1

Φ(~x− ~em),

and ~em is a K-dimensional unit vector with a 1 at the

mth element (see [2], [4] for a discussion). The stationary

distribution π(~x) is then given by

π(~x) =
χ(~x)

∑

~y χ(~y)
. (1)

III. PERFORMANCE METRICS

As we will show in the next section, the zeroth, first, and

the second moments of the number of users in the system

will play an important role in the revenue collected by the

operator. We thus start by providing a characterization of these

moments, which is of independent interest in the study of

processor sharing models. We use the following quantities in

our derivations.

t(n) =
∑

~x:|~x|=n

χ(~x) (2)

sk(n) =
∑

~x:|~x|=n

xkχ(~x) (3)

s̄k(n) =
∑

m>n

sk(m) (4)

si,j(n) =
∑

~x:|~x|=n

xixjχ(~x) (5)

The above terms will be useful in evaluating different moments

of the number of users in the system. For example,

∑

~x

xkχ(~x) =

∞
∑

n=0

sk(n) and E[|~x|2xi] =
1− ρ

Φ(~0)

∞
∑

n=0

n2si(n).

The following lemmas evaluate t(n), sk(n), s̄k(n), and

si,j(n). The proofs of these and subsequent results are pro-

vided in the appendix.

Lemma 1. Let t(n) be defined as in (2). Then, t(n) = Φ(~0)ρn

and
∑∞

n=0 t(n) =
∑

~y χ(~y) =
Φ(~0)
1−ρ

.

Lemma 2. Let sk(n) and s̄k(n) be defined as in (3) and (4).

Then

sk(n) = nρn−1ρkΦ(~0),

and

s̄k(n) =
Φ(~0)

1− ρ
ρnρk

(

n+
1

1− ρ

)

.

Lemma 3. Let si,j(n) be defined as in (5). Then,

si,j(n) =

{

n(n− 1)ρiρjρ
n−2Φ(~0) if i 6= j

n
(

(n− 1)ρ2i + ρiρ
)

ρn−2Φ(~0) if i = j.
(6)

The above three lemmas compute the zeroth, the first, and

the second moment of the number of users in the system under

the invariant distribution χ(~x). Note that Lemma 1 gives the

expression for the normalizing term in (1) for obtaining the

stationary distribution from the invariant distribution. We also

define the following terms which are needed for evaluating

prices.

u(n) :=
∑

~x:|~x|>n

(|~x| − 1/2)π(~x) (7)

v(n) :=
∑

~x:|~x|=n

|~x|2χ(~x) = n2t(n) (8)

gk(n) :=
∑

~x:|~x|=n

xk

|~x|
χ(~x) = sk(n)/n (9)

Proposition 1. Let u(n) be defined as in (7). Then,

u(n) = ρn+1

(

n+
1

1− ρ
−

1

2

)

.

The proposition is useful for evaluating revenue under VCG

pricing.

IV. APPLICATIONS TO PRICING

Having derived expressions for the moments of the number

of users in processor sharing, we now discuss their application

in the context of three pricing models: fixed rate pricing, VCG-

based pricing, and congestion-based pricing. We first establish

some notation and preliminary details. Let RF (~x), RV (~x), and

RL(~x) respectively denote the revenue per unit-time collected

by the operator under fixed rate pricing, under VCG pricing,

and under congestion-based pricing, when the number of users

is given by ~x. We will also discuss revenue collected when a

certain Quality of Service (QoS) requirement is imposed (we

discuss the particulars of this requirement in Section IV-A).

We will let R̄F , R̄V , and R̄L denote the mean revenue per

unit-time collected by the operator under the various pricing

models with this QoS constraint. Similarly, let cFk (~x), c
V
k (~x),

and cLk (~x) denote the payment per unit-time by each class k
user under the three pricing models in state ~x, and c̄Fk , c̄Vk ,

and c̄Lk denote the mean payment by each class k user.

A. A QoS Requirement

We will see that under VCG pricing and congestion-based

pricing, an operator can collect arbitrarily large revenue by

installing small capacity, leading to longer sojourn times and

greater accrued payments. To overcome this, we study the use

of a QoS requirement defined as follows. A class k user pays

the operator only if the rate allocated at time t, C/|~x(t)|, is

equal to or greater than rk. For ease of exposition, all rk are

assumed to be identical, i.e., rmin = rk. The C/|~x| ≥ rmin

condition is equivalent to a |~x| ≤ n∗ condition where n∗ =
⌊C/rmin⌋. This provides motivation for the operator to offer

sufficient bandwidth allocations.

B. Post-payments vs. Pre-payments

All three pricing models in this paper charge a user based

on the number of users in the system. A change in the number

of users is reflected in the instantaneous per unit-time price.

For a tagged user, the exact charge accrued is evaluated by

tracking arrivals and departures during the user’s sojourn. In

this paper, the mean of this exact payment incurred by a user

is derived using sample path arguments from Palm probability.

The mean of the operator’s revenue is independently derived.

Since the total charge accrued is only known at the end of

sojourn, we refer to such an implementation as the post-

payment mechanism or the post-payment scheme.

After deriving the mean revenue and post-payment ex-

pressions, we also investigate a pre-payment mechanism (or

scheme) where a user is charged a fee up-front based on the

system load and the expected sojourn time observed on arrival.

Prices are adjusted to ensure the same mean payment for each

class as in the post-payment scheme. A pre-payment scheme

has several benefits. First, the user is aware of the payment

up-front unlike the post-payment scheme where a user may

be billed a large fee caused by sudden high loads during its

sojourn. Second, the second moment (and thus the standard

deviation) of user payments in the pre-payment scheme can

be exactly characterized. Based on the second moment of the

fixed rate pricing mechanism and VCG pricing and on our

simulations results, we observe that the pre-payment scheme

has a smaller second moment, and thus the operator’s revenue

is predictable with greater confidence.

C. Pricing Models

We implicitly assume that the QoS requirement is always

present unless stated otherwise. The first pricing model is fixed

rate pricing where the user pays a fixed price of β per unit-

time per unit-resource, i.e., if a user is allocated Λ resource

for time T , the user pays ΛβT . Thus,

cFk (~x) =

{

βC
|~x| if 1 ≤ |~x| ≤ n∗

0 otherwise.
(10)

The operator’s revenue is the aggregate of user payments, i.e.,

RF (~x) =

{

βC if 1 ≤ |~x| ≤ n∗

0 otherwise.

The log utility assumption is important for the next two

pricing models. Under VCG pricing, a user pays the decrease

in maximum social welfare caused by it entering the system

(see [5]). Let r index over the set of users and with a slight

abuse of notation, let Λr indicate the allocation to user r. If

|~x| ≥ 2, this price is calculated as

cVk (~x) = max
~Λ

∑

s 6=r|Λr=0

log(Λs)−
∑

s 6=r

log(ΛPS
s)

= (|~x| − 1) log
C

|~x| − 1
− (|~x| − 1) log

C

|~x|

= (|~x| − 1) log
|~x|

|~x| − 1
,

where, ΛPS
s is the allocation to user s under processor sharing,

i.e., ΛPS
s = C/|~x|. The aggregate per unit-time revenue

collected by the operator is given by

RV (~x) =

{

|~x|(|~x| − 1) log |~x|
|~x|−1 if 2 ≤ |~x| ≤ n∗

0 otherwise.

To gain further insights in the revenue and payment problem,

the following approximation is shown to hold.

Proposition 2. RV (~x) ≈ |~x|− 1
2 and the approximation error

is O(1/|~x|). Furthermore, |~x|− 1
2 is an upper bound on RV (~x)

for |~x| > 0.

The above approximation for VCG revenue is used through-

out this paper. Thus, the price paid by the user is approximated

as

cVk (~x) =

{

(

1− 1
2|~x|

)

if 2 ≤ |~x| ≤ n∗

0 otherwise,
(11)

and the revenue earned by the operator is given by

RV (~x) =

{

|~x| − 1/2 if 2 ≤ |~x| ≤ n∗

0 otherwise.

In congestion-based pricing, the shadow price (or the

dual variable of the social welfare maximization problem) is

charged, e.g., see [6]. This shadow price has the advantage

of leading the system to social welfare in a distributed im-

plementation. The shadow price under processor sharing is

|~x|/C. Thus, the payment per unit-time made by a class k
user is given by

cLk (~x) =

{

|~x|
C

if 1 ≤ |~x| ≤ n∗

0 otherwise,
(12)

and the aggregate revenue collected by the operator is

RL(~x) =

{

|~x|2

C
if 1 ≤ |~x| ≤ n∗

0 otherwise.

Fundamentally, the price per unit-time charged to users

under fixed rate pricing, VCG pricing, and the congestion-

based pricing are proportional to 1/|~x|, to ≈ 1, and to |~x|.
The consequence is that a user is charged less (offered a

discounted price) at high loads under fixed rate pricing, offered

an approximately constant price under VCG pricing, and is

charged more (penalized) under congestion-based pricing. We

emphasize that demand response, i.e., user behavior reacting

to changing price, is not considered in our work.

D. Mean Operator Revenue

The mean operator revenue is derived under the three

pricing models. The expressions hold under both pre-payment

and post-payment schemes since the mean payment under both

schemes is the same from each class. The revenues are per

unit-time.

Proposition 3. The operator’s revenue per unit-time under the

three pricing models is given by

R̄F = βCρ(1− ρn
∗

) (13)

R̄V =
ρ2

2

(

1 +
2

1− ρ

)

− ρn
∗+1

(

n∗ −
1

2
+

1

1− ρ

)

(14)

R̄L =
1− ρ

C

n∗

∑

n=1

n2ρn. (15)

The proof is provided in the appendix. The proof highlights

that the mean revenue earned by the operator for fixed rate

pricing, VCG pricing, and congestion-based pricing is respec-

tively related to the zeroth, first, and the second moment of

the total number of users in the system, i.e.,

R̄F ∝ E[|~x|01(1≤|~x|≤n∗)]

R̄V ∝ E[(|~x| − 1/2)1(2≤|~x|≤n∗)]

R̄L ∝ E[|~x|21(1≤|~x|≤n∗)].

This key insight is attributed to the inherent structure of the

pricing models identified in Section IV-C.

E. Post-payments: Exact charge accrued by users

The result on the mean payment by a class k user is

presented next.

Proposition 4. The mean payment by a class k user under

the three pricing models is given by

c̄Fk = νkβ(1− ρn
∗

)

c̄Vk =
νk
C

(

ρ

(

1− ρn
∗

1− ρ

)

+
ρ

2
−

(

n∗ −
1

2

)

ρn
∗

)

c̄Lk =
νk(1− ρ)

C2

n∗

∑

n=1

n2ρn−1.

Note that the metering required by the operator is at the

time-scale at which users enter and leave the system.

F. Pre-payments: Freezing Prices on Arrival

In this section, a pre-payment scheme is devised where

the user is charged a price up-front on arrival. The price

is dependent on the underlying pricing model, i.e., behaves

similar to fixed rate pricing, VCG pricing, or congestion-

based pricing. However, the price charged to a given user

now depends only on the number of users in the system when

that user arrives and is based on the expected sojourn time at

arrival. The payment is adjusted so that the mean payments

by class k users remain the same as in Section IV-E.

Let Wk be the random variable denoting the sojourn time

of the class k arrival. Under the pricing model X , where X is

a placeholder for F , V , or L, let γX(~x) be the per unit-time

price fixed on class k user’s arrival when the arrival observes

the system state as ~x. Under the pre-payment scheme, the price

charged to any class k user is given by

pXk (~x) = γX
k (~x+ ~ek)E~x[Wk]. (16)

Proposition 5. For a processor sharing server with multiclass

M/G inputs,

E~x[Wk] = Ak,0 +

K
∑

m=1

Ak,mxm,

for some positive coefficients Ak,i, 0 ≤ i ≤ K.

The proposition is an immediate consequence of [7, The-

orem 6] which shows that the sojourn time of a new arrival

can be decomposed into the sum of random variables for each

pre-existing user and the new arrival. The proposition follows

by taking the expectation of this sum.

Based on the structure of fixed rate pricing, VCG pricing,

and congestion-based pricing, we define γX
k (~x) as

γF
k (~x) = σF

k |~x|
−1, γV

k (~x) = σV
k , and γL

k (~x) = σL
k |~x|.

Note that γX
k (~x) is not zero for |~x| > n∗. The constants σF

k ,

σV
k , and σL

k are determined by equating the mean payments

by class k users to the payments in Section IV-E, i.e.,

E[pXk (~x)] = c̄Xk .

Proposition 6. The constants σF
k , σ

V
k , and σL

k are

σF
k =

νkβ(1− ρn
∗

)

(1− ρ)

(

Ak,0

ρ
log

1

1− ρ

+
1

ρ2

(

ρ

1− ρ
− log

1

1− ρ

) K
∑

m=1

Ak,mρm

)−1

σV
k = ρ(1− ρn

∗

) +
ρ(1− ρ)

2
− (1− ρ)

(

n∗ −
1

2

)

ρn
∗

σL
k =

νk(1− ρ)2

C2

∑n∗

n=1 n
2ρn−1

Ak,0 +
2

1−ρ

∑K
m=1 Ak,mρm

.

The outline of the proof is provided in the appendix.

Since the mean payment by class k remains the same

as under Section IV-E, the mean revenue collected by the

operator also remains the same as in Section IV-D. The

evaluation of the performance metrics in Section III allows

the explicit characterization of the second moment (and hence

the variation) of class k payments. Define Li2(ρ) =
∑∞

n=1
ρn

n2 .

Proposition 7. The second moment of pre-payments by class k
users is given by

E[(pFk (~x))
2] = (σF

k)
2(1− ρ)A2

k,0

Li2(ρ)

ρ

+ (σF
k)

2(1− ρ)

(

ρ+ 3 log(1− ρ)− 3ρ log(1− ρ)

ρ3(1− ρ)

+
2Li2(ρ)

ρ3

) K
∑

m=1

A2
k,mρ2m

+ (σF
k)

2(1− ρ)(−Li 2(ρ)− log(1− ρ))

K
∑

m=1

A2
k,mρm

ρ2

+
2Ak,0(σ

F
k)

2(1− ρ)

ρ2
(−Li 2(ρ)− log(1− ρ))

K
∑

m=1

Ak,mρm

+
(σF

k)
2

ρ3
[ρ+ 3(1− ρ) log(1− ρ)

+2(1− ρ) Li 2(ρ)]
K
∑

i=1

K
∑

j=1:j 6=i

Ak,iAk,jρiρj

E[(pVk (~x))
2] = (σV

k)2A2
k,0 +

2(σV
k)2

(1− ρ)2

K
∑

m=1

A2
k,mρ2m

+
(σV

k)2

(1− ρ)

K
∑

m=1

A2
k,mρm +

2(σV
k)2

(1− ρ)
Ak,0

K
∑

m=1

Ak,mρm

+
2(σV

k)2

(1− ρ)2

K
∑

i=1

K
∑

j=1:j 6=i

Ak,iAk,jρiρj

E[(pLk (~x))
2] =

(σL
k)

2A2
k,0(1 + ρ)

(1− ρ)2

+ (σL
k)

2
K
∑

m=1

A2
k,m

2ρm(2 + 9ρm + 3ρmρ− ρ− ρ2)

(1− ρ)4

+ 2Ak,0(σ
L
k)

2 2ρ+ 4

(1− ρ)3

K
∑

m=1

Ak,mρm

+
(σL

k)
26(3 + ρ)

(1− ρ)4

K
∑

i=1

K
∑

j=1:j 6=i

Ak,iAk,jρiρj

The outline of the proof is provided in the appendix. We

note that the proofs rely on further metrics such as E[xi|~x|],
E[xixk|~x|

2] (higher moments), and E[xixj/|~x|
2].

V. SIMULATION RESULTS

To gain some qualitative insights, a server with QoS con-

straint rmin = 0.1 bits/second and a single class of users

(λ1 = 0.3 packets/second, ν1 = 1 bit) is considered.

The constants A1,k are determined as A1,0 = 2λ1

2µ1−λ1

, and

A1,1 = λ1

2µ1−λ1

(see [8]). Figure 1 compares the second mo-

ment of user payments under pre-payment and post-payment

mechanisms for the fixed rate pricing and VCG auctions. The

discontinuity in the plots is attributed to the discontinuity in

n∗ = ⌊C/rmin⌋. For fixed rate pricing and VCG auctions,

we observe that the pre-payment scheme has a smaller second

moment than the post-payment scheme. The smaller second

moment implies greater predictability in the revenue earned

by the operator.

VI. CONCLUSION

In this paper, several performance measures for multiclass

processor sharing have been computed that are of independent

interest. Based on our preliminary work, pricing schemes

that charge a user up-front are easier to implement, less

volatile, generate the same average or long term revenue for

the operator, and are thus preferable. Although we have only

presented certain simulation results, in future work, we will

discuss details of all pricing models.

REFERENCES

[1] P. Whittle, “Partial balance and insensitivity,” Journal of Applied Proba-

bility, vol. 22, no. 1, pp. 168–176, 1985.
[2] T. Bonald and A. Proutiere, “Insensitivity in processor-sharing networks,”

Performance Evaluation, vol. 49, no. 1/4, pp. 193–209, 2002.
[3] N. S. Walton, “Insensitive, maximum stable allocations converge to

proportional fairness,” Queueing Systems, vol. 68, pp. 51–60, 2011.
[4] S. Birmiwal, R. R. Mazumdar, and S. Sundaram, “Predictable revenue

under processor sharing,” in Proceedings of CISS 2012, 2012.

[5] S. Yang and B. Hajek, “VCG-Kelly mechanisms for allocation of divisible
goods: Adapting VCG mechanisms to one-dimensional signals,” IEEE

Journal on Selected Areas in Communications, vol. 25, no. 6, pp. 1237–
1243, 2007.

[6] F. Kelly, “Charging and rate control for elastic traffic,” European Trans-

actions on Telecommunications, vol. 8, pp. 33–37, 1997.

[7] K. M. Rege and B. Sengupta, “A decomposition theorem and related re-
sults for the discriminatory processor sharing queue,” Queueing Systems,
vol. 18, pp. 333–351, 1994.

[8] B. Sengupta and D. L. Jagerman, “A conditional response time of the
M/M/1 processor-sharing queue,” AT&T Techn. J., vol. 64, pp. 409–421,
1985.

[9] P. Brémaud, “A Swiss Army Formula of Palm Calculus,” Journal of

Applied Probability, vol. 30, pp. 40–51, 1993.

APPENDIX

Proof of Lemma 1: We have that t(0) = χ(~0) = Φ(~0).

t(n) :=
∑

~x:|~x|=n

χ(~x)

=
∑

~x:|~x|=n

1

C

K
∑

m=1

Φ(~x− ~em)~α~x

=
K
∑

m=1

ρm
∑

~x:|~x|=n−1

Φ(~x)~α~x

= ρ · t(n− 1).

Also,
∑

~x

χ(~x) =
∞
∑

n=0

t(n) =
Φ(~0)

1− ρ
.

Proof of Lemma 2: We start with

sk(n) =
∑

~x:|~x|=n

xk

C

K
∑

m=1

Φ(~x− ~em)~α~x

=

K
∑

m=1

ρm





∑

~x:|~x|=n−1

xkχ(~x) +
∑

~x:|~x|=n−1

(~em)kχ(~x)





=

K
∑

m=1

ρmsk(n− 1) +

K
∑

m=1

ρm
∑

~x:|~x|=n−1

(~em)kχ(~x).

Or,

sk(n) = ρsk(n− 1) + ρkt(n− 1)

= ρsk(n− 1) + ρkρ
n−1Φ(~0). (17)

It is easily shown that the result is a solution to the recursion

in (17). The first part of the result follows. Next,

s̄k(n) = ρkΦ(~0)
∑

m>n

mρm

= ρkΦ(~0)
ρn

1− ρ

(

n+
1

1− ρ

)

.

Proof of Lemma 3: The proof relies on establishing a

recursive expression for si,j(n). The expression in (6) is the

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

S
e
c
o
n
d
 m

o
m

e
n
t
o
f
p
a
y
m

e
n
ts

Capacity

Fixed rate pricing (simulated, pre-payment)
Fixed rate pricing (theoretical, pre-payment)

Fixed rate pricing (simulated, post-postpayment)

(a) Fixed-rate pricing

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 22

 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

S
e
c
o
n
d
 m

o
m

e
n
t
o
f
p
a
y
m

e
n
ts

Capacity

VCG auctions (simulated, pre-payment)
VCG auctions (theoretical, pre-payment)
VCG auctions (simulated, post-payment)

(b) VCG auctions

Fig. 1: Second moments from simulation and analysis.

solution of this recursion.

si,j(n) =
K
∑

m=1

αm

C

∑

~x:|~x|=n

xixjΦ(~x− ~em)~α~x−~em

=
K
∑

m=1

ρm
∑

~y:|~y|=n−1

(~y + ~em)i(~y + ~em)jΦ(~y)~α
~y

= ρsi,j(n− 1) + ρjsi(n− 1)

+ ρisj(n− 1) + 1(i=j)ρit(n− 1).

Note that si,j(0) = 0 for any i, j and that si,j(1) = 0 if i 6= j.

Proof of Proposition 1:

u(n) =
∑

~x:|~x|>n

(

|~x| −
1

2

)

π(~x)

=
∑

~x:|~x|>n

|~x|π(~x)−
1

2

∑

~x:|~x|>n

π(~x)

=
∑

~x:|~x|>n

(x1 + · · ·+ xK)χ(~x)
∑

~y χ(~y)
−

1

2

∑

~x:|~x|>n

χ(~x)
∑

~y χ(~y)
.

Using
∑

~x χ(~x) =
∑

n≥0 t(n),

u(n) =

∑K
k=1 s̄k(n)

∑

m≥0 t(m)
−

∑

m>n t(m)

2
∑

m≥0 t(m)
.

Using Lemma 1 and Lemma 2, we get

u(n) = ρn+1

(

n+
1

1− ρ

)

−
ρn+1

2
.

Proof of Proposition 2:

RV (~x) = |~x|(|~x| − 1) log

(

|~x|

|~x| − 1

)

= |~x|(|~x| − 1)
∞
∑

n=1

(−1)n+1 1

n

(

1

|~x| − 1

)n

Subtracting (|~x| − 1/2) from both sides,

RV (~x)−

(

|~x| −
1

2

)

=
1

2
−

|~x|

2(|~x| − 1)
+

|~x|

3(|~x| − 1)2
− . . .

= −
1

2(|~x| − 1)
+

∞
∑

m=3

(−1)m−1|~x|

m(|~x| − 1)m−1
.

This proves the first part. For the second part, rewrite the m-th

term above as

|~x|

m(|~x| − 1)m−1
=

1

m(|~x| − 1)m−2
+

1

m(|~x| − 1)m−1
.

Simplifying gives

RV −

(

|~x| −
1

2

)

=
∞
∑

m=1

(−1)m

(m+ 1)(m+ 2)(|~x| − 1)m

=
∑

m=1,3,...

(−1)m

(m+ 2)(|~x| − 1)m

[

1

m+ 1

−
1

(m+ 3)(|~x| − 1)

]

< 0

since 1
m+1 − 1

(m+3)(|~x|−1) > 0 for |~x| > 1.

Proof of Proposition 3: Let the system be in state ~x. The

mean revenue under fixed rate pricing is given by

R̄F =
∑

~x:1≤|~x|≤n∗

βCπ(~x)

= βC
1

∑

~x χ(~x)

∑

~x:1≤|~x|≤n∗

χ(~x)

= βC

∑n∗

n=1 t(n)
∑∞

n=0 t(n)
.

Using Lemma 1,

R̄F = βC
1− ρ

Φ(~0)

Φ(~0)(ρ− ρn
∗+1)

1− ρ
= βCρ(1− ρn

∗

).

The mean revenue under VCG pricing is

R̄V =
∑

~x:2≤|~x|≤n∗

(

|~x| −
1

2

)

π(~x)

= u(1)− u(n∗).

The result for R̄V follows by simplification. The mean revenue

under congestion-based pricing is given by

R̄L =
∑

~x:1≤|~x|≤n∗

|~x|2

C
π(~x)

=
1

C

∑

~x:1≤|~x|≤n∗

|~x|2
χ(~x)

∑

~y χ(~y)

=
1

C

∑

1≤n≤n∗ v(n)
∑

n≥0 t(n)
.

Using v(n) = n2t(n) and Lemma 1,

R̄L =
1− ρ

C

n∗

∑

n=1

n2ρn.

The following identity (for ρ < 1) simplifies the summation.

m
∑

n=1

n2ρn =
ρ

(1− ρ)3
[1 + ρ− ρm(m2ρ2

− (2m2 + 2m− 1)ρ+ (m+ 1)2)]

Proof of Proposition 4: To evaluate the mean payment by

a class k user under fixed rate pricing, consider the following

integral where Ak is the arrival process for class k users and

W k
0 is the random variable denoting the sojourn time of the

class k arrival at time 0.

c̄Fk = EAk

[

∫ Wk

0

0

βC

|~x(t)|
1(1≤|~x(t)|≤n∗)dt

]

Applying the Swiss Army formula (see [9]),

c̄Fk =
βC

λk

E

[

xk

|~x|
1(1≤|~x|≤n∗)

]

=
βC

λk

n∗

∑

n=1

∑

~x:|~x|=n

xk

n
π(~x)

=
βC

λk

1
∑∞

n=0 t(n)

n∗

∑

n=1

gk(n)

= νkβρ(1− ρn
∗

).

Similarly, for VCG pricing, the mean payment for a class k
user is given by

c̄Vk = EAk

[

∫ Wk

0

0

(

1−
1

2|~x(t)|

)

1(2≤|~x(t)|≤n∗)dt

]

.

Again, using the Swiss Army formula,

c̄Vk =
1

λk

E

[(

1−
1

2|~x|

)

1(2≤|~x|≤n∗)

]

=
1

λk

E[xk1(2≤|~x|≤n∗)]

−
1

λk

E

[

xk

2|~x|
1(2≤|~x|≤n∗)

]

. (18)

Let J1 and J2 be the first and the second term respectively in

(18). Then,

J1 =
1

λk

n∗

∑

n=2

∑

~x:|~x|=n

xkπ(~x)

=
1− ρ

λkΦ(~0)

n∗

∑

n=2

sk(n)

=
νk(1− ρ)

C

n∗

∑

n=2

nρn
∗−1,

and,

J2 =
1

2λk

n∗

∑

n=2

∑

~x:|~x|=n

xk

|~x|
π(~x)

=
1− ρ

2Φ(~0)λk

n∗

∑

n=2

gk(n)

=
νkρ

2C
(1− ρn

∗−1).

Using the identity

m
∑

n=1

nρn−1 =
1− ρm+1 − (m+ 1)(1− ρ)ρm

(1− ρ)2
,

and simplifying provides the required result. For congestion-

based pricing, the mean payment by a class k user is given

by

c̄Lk = EAk

[

∫ Wk

0

0

|~x(t)|

C
1(1≤|~x(t)|≤n∗)dt

]

.

Applying the Swiss Army formula gives,

c̄Lk =
1

λkC
E[xk|~x|1(1≤|~x|≤n∗)]

=
1

λkC

n∗

∑

n=1

∑

~x:|~x|=n

xknπ(~x)

=
1− ρ

λkCΦ(~0)

n∗

∑

n=1

nsk(n)

=
νk(1− ρ)

C2

n∗

∑

n=1

n2ρn−1,

which shows the required result.

Proof of Proposition 6: Suppose a class k arrival sees

the system state as ~x on arrival. The fixed rate, pre-payment

price charged is

pFk (~x) =
σF
k

|~x+ ~ek|

(

Ak,0 +

K
∑

m=1

Ak,mxm

)

.

It is required that the mean payment by a class k user equal

c̄Fk , i.e.,

E[pFk (~x)] = c̄Fk . (19)

Starting with the left hand side (LHS) of (19),

LHS =
∑

~x

σF
k

|~x+ ~ek|
π(~x)

(

Ak,0 +
K
∑

m=1

Ak,mxm

)

= σF
k (1− ρ)

[

Ak,0

ρ
log

1

1− ρ

+

(

ρ
1−ρ

− log 1
1−ρ

ρ2

)

K
∑

m=1

Ak,mρm

]

Equating this to c̄Fk gives σF
k . Similarly, under VCG pricing,

pVk (~x) = σV
k

(

Ak,0 +
K
∑

m=1

Ak,mxm

)

,

and

E[pVk (~x)] = σV
k

∑

~x

(

Ak,0 +

K
∑

m=1

Ak,mxm

)

π(~x)

= σV
k E[Wk]

= σV
k

νk
C(1− ρ)

.

Equating this to c̄Vk gives σV
k . Last, under congestion-based

pricing,

pLk (~x) = σL
k |~x+ ~ek|

(

Ak,0 +

K
∑

m=1

Ak,mxm

)

.

Taking the expectation gives

E[pLk (~x)] = σL
k

∑

~x

|~x+ ~ek|

(

Ak,0 +

K
∑

m=1

Ak,mxm

)

π(~x)

=
σL
k

1− ρ

[

Ak,0 +
2

1− ρ

K
∑

m=1

Ak,mρm

]

,

and equating this to c̄Lk gives σL
k .

Proof of Proposition 7: The steps for deriving the second

moment under congestion-based pricing are outlined here. The

proof for the other two pricing models is similar.

E[(pLk (~x))
2] =

∑

~x

(pLk (~x))
2π(~x)

= (σL
k)

2
∑

~x

|~x+ ~ek|
2

(

Ak,0 +

K
∑

m=1

Ak,mxm

)2

π(~x)

= (σL
k)

2
∑

~x

|~x+ ~ek|
2A2

k,0π(~x)

+ (σL
k)

2
∑

~x

|~x+ ~ek|
2

K
∑

m=1

A2
k,mx2

mπ(~x)

+ (σL
k)

22
∑

~x

|~x+ ~ek|
2Ak,0

K
∑

m=1

Ak,mxmπ(~x)

+ (σL
k)

2
∑

~x

|~x+ ~ek|
2

K
∑

i=1

K
∑

j=1:j 6=i

Ak,iAk,jxixjπ(~x)

:= S1 + S2 + S3 + S4

S1 = (σL
k)

2
∑

~x

|~x+ ~ek|
2A2

k,0π(~x)

=
(σL

k)
2A2

k,0(1− ρ)

Φ(~0)

∑

~x

(|~x|+ 1)2χ(~x)

=
(σL

k)
2A2

k,0(1 + ρ)

(1− ρ)2

S2 = (σL
k)

2
∑

~x

|~x+ ~ek|
2

K
∑

m=1

A2
k,mx2

mπ(~x)

=
(σL

k)
2(1− ρ)

Φ(~0)

K
∑

m=1

A2
k,m

∞
∑

n=0

(n+ 1)2sm,m(n)

= 2(σL
k)

2
K
∑

m=1

A2
k,m

ρm(2 + 9ρm + 3ρmρ− ρ− ρ2)

(1− ρ)4
.

S3 = (σL
k)

2
∑

~x

|~x+ ~ek|
22Ak,0

K
∑

m=1

Ak,mxmπ(~x)

=
2Ak,0(σ

L
k)

2(1− ρ)

Φ(~0)

K
∑

m=1

Ak,m

∞
∑

n=0

(n2 + 2n+ 1)sm(n)

= 2Ak,0(σ
L
k)

2 (2ρ+ 4)

(1− ρ)3

K
∑

m=1

Ak,mρm.

S4 = (σL
k)

2
∑

~x

|~x+ ~ek|
2

K
∑

i=1

K
∑

j=1:j 6=i

Ak,iAk,jxixjπ(~x)

=
(σL

k)
2(1− ρ)

Φ(~0)

K
∑

i=1

K
∑

j=1:j 6=i

Ak,iAk,j

∞
∑

n=0

(n+ 1)2si,j(n)

=
6(σL

k)
2(3 + ρ)

(1− ρ)4

K
∑

i=1

K
∑

j=1:j 6=i

Ak,iAk,jρiρj .

Combining S1, S2, S3 and S4 gives the result.

