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Abstract—Multi-hash-based count sketches are fast and mem-
ory efficient probabilistic data structures that are widely used
in scalable online traffic monitoring applications. Their accuracy
significantly improves with an optimization, called conservative
update, which is especially effective when the aim is to discrimi-
nate a relatively small number of heavy hitters in a traffic stream
consisting of an extremely large number of flows. Despite its
widespread application, a thorough understanding of the con-
servative update operation has lagged behind, perhaps because
of the significant modeling complexity involved. In this work
we attempt to fill this gap. Our proposed modeling approach
builds on a practically important empirical finding: simulation
results (as well as experimental ones over real traffic traces)
obtained for skewed load scenarios exhibit a sharp waterfall-type
behaviour. That is, the approximate count provided by the sketch
response remains accurate until an “error floor” is reached.
Flows below this error flow level are on average approximated
by the same error floor count value, irrespective of their exact
count. The error floor itself appears to be maximal in the case
of uniform load. Leveraging the simplifications made possible
when the load is uniform, we derive an analytic model capable
of accurately predicting the transient growth behavior of the
(tightly correlated) counters deployed in the data structure and
obtain an upper bound on the error floor level.

I. INTRODUCTION

Multi-hash-based approximate accounting algorithms, here-
after generically referred to as count sketches, are widely
applied in monitoring applications. Their scalable and fast
operation, O(1), and limited memory requirements make their
deployment appealing in high speed hardware implementations
[1]. One of their most common fields of application is that
of network measurement over high speed links. Such links
are used by possibly millions of concurrent flows, making
it hard to individually track flows with dedicated counters.
In a seminal paper, Estan and Varghese [2] suggested a con-
struction, called a multi-stage filter, for detecting heavy hitters
without the need to keep per-flow state. Around the same
time, data structures similar to that employed in [2] have been
proposed by Cohen and Matias for storing multisets (Spectral
Bloom filters [3]), and by Cormode and Muthukrishnan for
processing streaming data (Count-Min sketches [4]). Apart
from the different terminology and specific implementation
choices, all of these structures resemble counting extensions
[5] of the original Bloom filter’s multi-hash idea [6].

Roughly speaking, the common idea behind these ap-
proaches is to leverage a relatively small (compared to the
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total number of flows) number m of shared counters. When
the goal is to measure the number of packets emitted by a
given flow, at each packet occurrence, k << m counters
are incremented. These k counters are selected by means of
k independent hash functions applied to the same specific
flow identifier extracted from the packet. This guarantees that
multiple packets belonging to the same flow will hash over the
same counters. Obviously, the price to pay is an approximate
counting operation, as different flows may hash over the same
subset of counters.

An important optimization of this basic approach, known as
Conservative Update [2] or Minimum Increase [3], consists of
updating only those counters which attain the minimum value
among the k selected for a given flow identifier, thus avoiding
unnecessary counter increases. This optimization has been
experimentally shown to yield improved counting accuracy
[2], [3], and it has been employed in several subsequent
constructions [7]–[11].

Despite the huge interest in this conservative update op-
timization, we are not aware of prior work which has suc-
ceeded in providing an accurate analytical modeling of its
operation. Indeed, analytic hurdles emerge from the fact that,
with the conservative update rule, a counter selected by an
hash function is updated on the basis of the status of the
remaining selected counters; in other words, the counters do
not independently increase, but do so in a tightly correlated
manner. To the best of our knowledge, [12] is the only related
work which explicitly attempted to analytically model such
an optimization. However, in order to apply known results in
the area of probability models for shortest queue joins [13],
[14] (also known as the Supermarket model [15], [16]), work
[12] models a different system, where i) exactly one counter
is updated at each insertion, whereas all the minimum valued
counters should be updated, and ii) counters are decremented
with time. Obviously, such a twofold change in the system
operation is crucial, as the aspect that mostly characterizes the
system operation (as it will become clear later) is the growth
rate of the counters, which in such a simplified system model is
assumed known a priori and set to the lowest possible increase
rate of one increased counter per insertion.

II. SYSTEM MODEL AND NOTATION

We model a count sketch as an array B[1 :m] of m counters
(bins). Each bin contains s bits and hence can assume a value
in the range 0 · · · 2s−1. Bins are accessed via k hash functions



Fig. 1. Average count accuracy - uniform load scenario

H1(x) · · ·Hk(x), each of which maps an item x to one of the
m bins within the bin array. We assume that each hash function
extracts a digest value in the full-domain1 range [1 : m]. Being
interested in the case m → ∞, we may neglect collisions
among the k hash functions computed for a same item x, i.e.
we assume H1(x) 6= H2(x) 6= · · · 6= Hk(x). Moreover, unless
otherwise specified, for simplicity of notation we assume
unbounded counter size, i.e. s =∞.

Using the Conservative Update [2] optimization, Increasing
the count for an item x consists of first determining the
minimum value

Cmin(x) = min
i∈{1···k}

B[Hi(x)] (1)

among the bins corresponding to the item x, and then incre-
menting by unity only the bins currently equal to Cmin(x),
i.e., ∀i ∈ {1 · · · k},

B[Hi(x)]← max{B[Hi(x)], Cmin(x)+1}.

Querying an accumulated quantity stored in the filter for an
item x consists of just computing, as per Equation (1), the
minimum value Cmin(x) among the relevant bins.

III. MODELING ASSUMPTIONS AND THEIR PRACTICALITY

The major contribution of this work is an analytical ap-
proach which tightly captures the time evolution of the coun-
ters composing the data structure. Our model takes advantage
of a fluid approximation, which permits the system dynamics
to be expressed in terms of ordinary differential equations.

To be tractable, the proposed model leverages two key
assumptions. One is quite natural and consists of assuming
a large number of counters; results show that very high
accuracy is reached with just a few thousand counters, which
is quite a small value for most real-world applications. The
second appears less straightforward, and consists of assuming
a uniform load across all counters. On the face of it, such an
assumption is unrealistic for any scenario of practical interest:
count sketches are mostly useful in contexts where flows have
different statistics (e.g. for detecting heavy hitters). However,
quite surprisingly, and perhaps unexpectedly, we find that the

1We refer to, e.g., [5] for a discussion on the alternative, partitioned,
organization, where the k hash functions access partitioned subsets of m/k
bins; it is routine exercise to adapt our analysis to such case.

Fig. 2. Average count accuracy - skewed load scenario

results produced under the uniform load assumption yield
crucial practical insights, duly applicable to the more general
traffic scenario.

In support of this statement we present two different sets of
simulations. Figure 1 presents data for scenario with uniform
load and 50.000 arrivals (the trends do not change with
a different total number of arrivals). Accounted items are
randomly drawn from a set whose size, given on the x-axis,
ranges from 100 to about 400.000 (note that in this last case
only about 1/8 of the items will actually arrive and be counted).
Averaging results over all the items, the plot reports i) the
exact count per item, ii) the approximate count per item with
a count sketch using k = 4 hash functions and m = 1024 bins,
and iii) the resulting error, measured as the difference between
the approximate and the exact count. It can be seen that once
the the number of concurrently tracked items approaches and
exceeds the filter size, the counting error increases. In more
detail, when the number of items becomes much larger than
the filter size, the approximate count converges to a constant
value, irrespective of the actual exact count. For instance,
given 50.000 total arrivals, with a set size of 10.000, one
would expect an average exact count of about 5 arrivals per
item, whereas the approximate count is as much as 88 arrivals
per item. With 400.000 items, the approximate count remains
about 88 arrivals per item even though the exact average count
is as low as 0.125, i.e. on average seven out of eight items
have not even arrived.

Figure 2 present results for the same sketch configuration
(k = 4,m = 1024), but with a skewed distribution of items,
rather than a uniform distribution. For a given sample set size
(20.000 items in total), the figure reports the average approxi-
mate and exact count per item versus the item index. Items are
sorted according to their relative frequency of arrival, item 1
being the most popular. The figure reports results obtained for
two different Zipf distributions2, with shape parameter z = 0.5
and z = 1.0. In both cases, two clearly distinguishable regions
can be seen. Namely, less popular items, irrespective of their
exact count, are approximated with the same value; conversely,
the most popular items are accurately counted. In other words,
the conservative update rule not only significantly reduces the

2In the Zipf distribution, being z a shape parameter, the frequency of item
with index k is proportional to 1/kz . The greater z, the more skewed the
distribution. For z = 0, the Zipf distribution converges to the uniform one.



counting error, but actually shapes it so as to “waterfall” all
of the less popular items to the same level, which we refer to
as the error floor. Whereas it is well known that, under the
conservative update rule, the counting error experienced by the
most popular items is lower than that of less popular ones, to
the best of our knowledge ours is the first paper which clearly
points out the emergence of this clear-cut waterfall-type shape
in the error performance highlighted in figure 2.

Quantifying the error floor is a of considerable practical
importance since it determines the average response level
around which the sketch output becomes inaccurate. Impor-
tantly, Figure 2 indicates that the error floor in the case of a
uniform load distribution appears to provide an upper bound
on the error floor for skewed distributions. It is this property
which makes analysis of the uniform load case of practical
relevance.

IV. ANALYTICAL MODEL

A. state space

We assume a discrete time scale where time is clocked by
the arrival of items, i.e., time t ∈ {1, 2, · · · } is defined as
the time of arrival of the t-th element. An obvious modeling
approach would consist in tracking the status bi(t) of each bin
B[i] versus time (an example is shown in Figure 3). However,
with this choice the dimension of the state space grows rapidly
with the number of bins m. Instead, leveraging the assumption
of uniform traffic load (i.e., bins being statistically undistin-
guishable), we adopt an alternative state space description,
which consists of tracking the number of bins (in essence,
interpreted as queues, see Figure 4) whose level exceeds a
threshold parameter, irrespective of their specific position i
in the filter. On the face of it, this choice seems to increase
modeling complexity as the number of dimensions in the state
vector becomes infinite (since the bin size s is unbounded). In
practice, however, the opposite holds true: as shown later on,
this state representation is the key to achieving a convenient
and tractable model.

More precisely, we represent the status of the filter at an
arbitrary discrete time t by means of the following unbounded
state vector:

~d(t) = {d0(t), d1(t), d2(t), · · · , dn(t), · · · } (2)

where dn(t) is defined as the number of bins whose level (oc-
cupancy) is greater or equal than n. For example, at time t =
0, an empty filter will have state ~d(0) = {m, 0, 0, 0, 0, · · · },
as no bin has value greater or equal than 1, 2, 3, etc, whereas
obviously d0(0) = m, since all the m bins have value greater
or equal than 0 (which holds for any time t - indeed the
component d0(t) is included in the state representation just
for notational convenience). Figure 4 presents an example
of a non empty filter comprising m = 8 bins, which we
represent by means of the (infinite) state vector ~d(t) =
{8, 7, 5, 4, 3, 3, 2, 0, 0, 0, · · · }.

For this state space model, the following structural proper-
ties trivially hold:

Fig. 3. Obvious state representation: 〈· · · , value of bin i, · · · 〉, i ∈ [1,m]

Fig. 4. Alternative state representation: 〈· · · ,#bins ≥ n, · · · 〉, n ∈ [0,∞]

• dn(t) is defined for all n ∈ (0,∞), i.e., n is unbounded
(under our assumption of unbounded counter size s);

• dn(t) is bounded and lies in the range [0 : m];
• dn+r(t) ≤ dn(t) for any r ≥ 0;
• dn(t+ ∆) ≥ dn(t) for any positive time interval ∆;
• the difference dn(t) − dn+1(t) is the number of bins

whose size at time t is strictly equal to n.

B. Markov Chain

Under the assumption of independent random arrivals, the
stochastic process ~d(t) introduced in (2) is a discrete-time
Markov chain. Thanks to the selected space state represen-
tation, this process exhibits the property that every state
transition affects only one state vector component (i.e. one
“level” of bins’ occupancy) at a time. For example, if k=3,
and an arrival hits bins whose level is 7, 7, 9, then, owing to
the Conservative Update rule, only the two bins with level 7
will increment to 8. In turn, this implies that the number of
bins whose level is greater or equal than 7, by definition d7,
does not change; the number of bins whose level is greater or
equal than 8, namely d8, will increase of two units, and the
number of bins whose level is greater or equal than 9 again
remains unaffected.

We now proceed in deriving the relevant time-dependent
transition probabilities. When affected by a state transition, a
level n+1, with n ≥ 0 increases by a random variable x, lying
in the range [1 : k]. In fact, at least one bin must increase upon



an arrival, and at most k bins may increment. The resulting
transition probability is given by:

P
{
~d(t+ 1) = {d0, d1, · · · , dn, dn+1 + x, dn+2, · · · } |

~d(t) = {d0, d1, · · · , dn, dn+1, dn+2, · · · }
}

=

=

(
dn
k

)(
m
k

) · (dn−dn+1

x

)(
dn+1

k−x
)(

dn
k

) (3)

where the first factor is the probability that all selected k bins
have at least level n, and the second factor3 is the probability
that x ≥ 1 of them have exactly level n (and where we
on purpose do not make the obvious algebraic simplification,
for reasons that will be clear below). We remark that this
transition probability depends only on two state values: dn and
dn+1; indeed this is a key fact exploited below for deriving a
recursive system of differential equations.

C. Fluid approximation

First, note that, for large m, the first factor in equation
(3), namely the probability that k selected bins are from the
group dn, is closely approximated by the case of indepen-
dent extractions with reinsertions (or, alternatively, the same
approximation may be derived via Stirling’s formula):(

dn
k

)(
m
k

) ≈ (dn
m

)k
Let us now derive the conditional expectation

E
[
dn+1(t+ 1)− dn+1(t)|~d(t)

]
=

=

k∑
x=1
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k
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m
k
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x
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) =

=
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dn(t)
≈

≈
(
dn(t)

m

)k
· k ·

(
1− dn+1(t)

dn(t)

)
(4)

We now introduce a new stochastic process which is a
rescaled version of (2) in terms of both state (normalized
with respect to m, i.e., a density process [17]) as well as time
(normalized with respect to m/k):

~ψ(τ) =
~d
(
τ mk
)

m

The conditional expectation (4) can be rewritten for such
rescaled process as:

E
[
m · ψn+1(τ + k/m)−m · ψn+1(τ)|~ψ(τ)

]
=

= ψn(τ)k · k ·
(

1− ψn+1(τ)

ψn(τ)

)
(5)

3To avoid cumbersome details concerning the actual possible range of x,
we adopt in equation (3) the notational assumption that

(a
b

)
= 0 when b > a.

which can be rearranged as

E
[
ψn+1(τ + k/m)− ψn+1(τ)|~ψ(τ)

]
k/m

=

= ψn(τ)k
(

1− ψn+1(τ)

ψn(τ)

)
(6)

Besides the infinite dimensionality of the state vector, the
density process ~ψ(τ) would otherwise follow the assumptions
required in [18] so that, for large m, the density process
~ψ(τ) converges in probability to a deterministic trajectory. In
practice, this implies that convergence holds for any arbitrarily
large finite choice of the counter size s4. This deterministric
trajectory can be computed, for large m, by replacing the left
side of equation (6) with the derivative:

ψ′n+1(τ) = ψn(τ)k
(

1− ψn+1(τ)

ψn(τ)

)
(7)

D. Differential system

The above derived expression (7) is the main result of this
paper. It holds for every n ≥ 0 and for large values of m
(relative to a constant, typically small, k). It defines a system
of first-order differential equations, which can be recursively
solved for increasing values of n. Indeed, the equation that
governs the dynamics for the level n+ 1 does depend only on
the previous level n. The boundary conditions are:
• ψ0(τ) = 1 for all τ ; we recall that all bins are greater or

equal than 0 for the whole time evolution of the system;
• ψn(0) = 0 for n > 0; we assume that the count sketch

starts from the empty state.
Unfortunately, even if the differential equations are linear,

their time-dependent coefficients do not permit us to obtain a
handy closed form solution, and thus we resort to numerical
solution. The only exception is the very first equation

ψ′1(τ) = ψ0(τ)k
(

1− ψ1(τ)

ψ0(τ)

)
= 1− ψ1(τ)

which has the straightforward solution ψ1(τ) = 1− e−τ .
Figure 5 plots, from left to right, the solutions ψn(τ) of

the system versus (normalized) time, for the case k = 3.
We recall that ψn(τ) represents the percentage of counters
whose size is greater or equal than n. As expected, it can
be seen that for a given n the percentage ψn(τ) increases
with time and converges to 1, meaning that almost all of the
counters have a size larger than n. Perhaps less expected, it
can also be seen that as n grows the shape of the curves
ψn(τ) appear to converge towards an invariant. Also aided
by numerical results (minimum square difference between the
translated curves significantly reducing), we conjecture that

4In practice, the size s, in bits, of the counters deployed in the filter
limits the state space representation to 2s maximum dimensions. Recalling
the definitions and discussion carried out in Section IV-A, we remark that
a finite-size sketch would be modeled by a density process ~ψs(τ) which is
simply the truncation of ~ψ(τ) after its component with index 2s − 1, i.e.
~ψs(τ) does not differ from ~ψ(τ) in any of its first 2s components.



Fig. 5. Numerical solution of the differential system ψn(τ).

Fig. 6. ψ9(τ): comparison with simulation results, m = 16, 256, 4096.

this may hold5 for k ≥ 2, although at the time of writing we
lack a formal proof.

To validate the accuracy of the analytical solution, Figure
6 compares the analytical results with simulations. To avoid
overcrowding the plot, we focus on the case of ψ9(τ). Simula-
tion results are obtained by plotting, versus (normalized) time,
the fraction of counters whose level is greater or equal than 9,
for the cases m = 16, 256 and 4096 (results obtained for larger
values of m further get closer to the analytical predictions). As
m increases, it can be seen that the agreement between analysis
and simulation is impressive, thus helping to confirm the
extremely good accuracy of the fluid approximation proposed
here. Not only does the analysis closely follow the shape of
the simulation curve (for m = 4096), but it also perfectly
matches its time lag (we on purpose selected an intermediate
value n = 9 instead of a very small one).

V. GROWTH RATE AND ERROR FLOOR

The model introduced in Section IV allows us to address at
least two important practical questions: i) what is the growth
rate of the count sketch with Conservative update when subject
to uniform load, and ii) what is the expected error floor (as
defined in section III).

5for the case k = 1 it is easy to show that convergence does not hold, by
direct solution of the differential system - immediate to solve with k = 1.
Indeed, this was expected as the counters act as independent queues.

A. Growth dynamics

Let us define the filter’s growth rate g(t) as the average
number of units added to the (whole) filter by the t-th insertion.
In ordinary count sketches not employing the conservative
update optimization, g(t) = k, as every insertion increases
of one unit each of the k selected bins, irrespective of the
considered t-th insertion. We further conveniently define with

G(t) =
1

m

∫ t

0

g(θ)dθ

the total accumulated quantity in the filter at the t-th insertion,
normalized with respect to the number m of deployed bins.
For an ordinary count sketch, G(t) = kt/m obviously holds.
G(t) can be somewhat considered a rough indicator (see

Section V-C for a more precise performance metric) of the
level of inaccuracy that the filter exhibits for an increasing
number t of inserted random items. For instance, in the case
of a filter with k = 4 hash functions and m = 1024 bins,
after t = 4096 insertions the sum of all the counter values
is kt = 16, 384, which implies that a new item first arriving
to the filter at time t finds each of the selected k bins filled
around the average level G(4096) = 4096 · 4/1024 = 16.

With the conservative update optimization, instead of being
strictly equal to k, the number of counters increased at each
insertion is at most k, and can be as little as one6 in the best
case of the minimum value attained by just one among the k
selected counters. Quantifying the growth rate and understand
whether it is closer to the worst case of k units/insertion, or to
the best case of just 1 unit/insertion is thus meaningful, and
would be indeed crucial to dimension the filter size which
guarantees stability for periodically decremented count sketch
constructions [10].

Referring to the normalized time scale τ = tk/m introduced
in the previous section IV-C, it is straightforward to show that

G(τ) =

∞∑
i=1

ψn(τ). (8)

Indeed, this expression also has a very intuitive graphical
explanation by looking at figure 4: the total units accumulated
in the whole filter (namely, the number of black bricks in the
figure) is given by the sum of the vector state components
d1 + d2 + · · · . By normalizing with respect to m, and making
explicit the dependence on time, we recognize equation (8).

Figure 7 plots G(τ) versus (normalized) time, for a filter
using the conservative update optimization with k = 300
hash functions. For sake of comparison, the growth behavior
for the case of the filter without conservative update is also
reported (owing to the normalized time scale, G(τ) = τ ).
The unusually large value k chosen in the plot permits to
clearly appreciate growth fluctuations which would have likely
remained unnoticed with a more practical (small) k. For the
conservative update case, a simulation trace is also plotted
in the same figure, using a filter of size m = 216. Since

6By construction, this would be the a-priori growth rate if we were to model
the conservative update operation using the approach presented in [12].



Fig. 7. Top: growth fluctuations with Conservative Update (k = 300);
bottom: detailed difference between analysis and simulation

the simulation trace is hardly distinguishible from analytical
results, the bottom plot reports the detailed difference between
analysis and simulation versus time: besides the remarkable
accuracy (error only occasionally exceeding ± 0.02 - we
stress that the simulation is a single run, not an average of
multiple runs), the comparison does not exhibits any drift as
time elapses (error still close to zero at the end of the plot).

B. Average growth rate

Figure 7 shows that the growth rate for a count sketch with
conservative update may significantly depend upon time. This
was expected, at least at the start of the process: when most/all
bins are empty, it is likely that all k bins selected by an
insertion are empty, and thus they are all updated. Perhaps, it
was less expected, at least to us7, that the filter apparently fails
to converge to a stable (relative) distribution: results extended
to longer time (not shown for reasons of space) in fact suggest
that such fluctuations are structural in the growth dynamic, i.e.
they do not reduce with time; rather, they do appear to stabilize
to a periodic pattern. This is consistent with the conjecture we
anticipated while discussing figure 5.

Despite this, in practice it may be convenient to summarize,
also in the conservative update case, the growth rate with a
single, easily understandable, average parameter, analogous to
the k units/insertion growth rate encountered for an ordinary
count sketch. Since the direct computation of such average
growth rate ḡ as

ḡ = lim
τ→∞

k · G(τ)

τ

encounters slow convergence issues and requires to compute
ψn(τ) for large values n, we resort to an alternative approach
which exploits the quasi-periodicity of the growth behavior.

We first remark that ψn(τ) has a very convenient alternative
interpretation. Let us define a continuous random variable Xn

7Indeed, our first (failed) modeling attempt was targeted at determining a
steady state distribution of the filter’s bins relative to the maximum value
among all bins. A posteriori, the growth dynamic documented in Figure 7
somewhat justifies why such apparently straightforward modeling approach
was not as successful as we expected.

Fig. 8. Filter’s growth rate (units per insertion) for varying k.

as the (normalized) time elapsing until a randomly chosen
bin reaches level n. It is easy to see that ψn(τ) is indeed
the cumulative distribution function for such random variable
Xn. Hence, from the knowledge of ψn(τ), we can compute
the expected value of Xn as

E[Xn] =

∫ ∞
0

(1− ψn(τ)) dτ

Now, define

Dn = (E[Xn]− E[Xn−1]) · m
k
.

Dn is the average time, measured in number of insertions
(the factor m/k restores the original time scale), for each bin
starting at level n− 1 to reach level n, i.e. increase its size of
one unit. Since there are m bins, the average growth rate ḡn
during the step (n− 1)→ n is expressed as

ḡn =
m

Dn
=

k

E[Xn]− E[Xn−1]

The computation of each term ḡn relies on just the knowledge
of the functions up to ψn(τ). Moreover, numerical results
show that convergence is very fast8. Figure 8 shows the
average growth rate for varying values of the number of hash
functions k. With two hash functions, the rate is about 1.61,
meaning that, on average, 61% of the insertions update both
selected bins whereas only the remaining 39% update just one
bin. As the number of hash function grows, the efficiency in
the bins’ update improves. With k = 3 each update increases
approximately half of the selected bins (more precisely, 1.53),
whereas with k = 10 only about one third (3.31) are increased.

C. Error Floor

As discussed in section III, the average error floor is a con-
venient single-value quantification of the worst-case average
additive error introduced by the filter operation. Results in
section III have shown that a same average error floor applies
to low popularity items, irrespective of their exact count.
Hence, the error floor can be easily quantified by querying
the filter with new items, i.e. not earlier accounted.

8in the worst case of k = 2, convergence expressed as a relative difference
lower than 10−7 occurs after about n = 50 terms whereas with, say, k = 8
convergence is attained after less than 20 terms.



Fig. 9. Average error floor versus number of insertions for varying k.

For a randomly chosen element, a query to the filter done at
time τ consists of selecting k random counters, and determine
their minimum value Zmin(τ). Owing to the discussion carried
out in section V-B, ψn(τ) is the probability that a randomly
chosen counter has size greater or equal than n at time τ .
Hence, the probability that all k selected counters are greater
than n, namely the complementary cumulative distribution
function of the r.v. Zmin(τ), is ψn+1(τ)k, and the expected
value returned by such a query is thus

E[Zmin(τ)] =

∞∑
n=1

ψn(τ)k (9)

Figure 9 plots the average error floor, formula (9), using a
non-normalized time scale, with each time unit representing
an insertion in the filter (i.e., t = τ ·m/k). For concreteness,
we use m = 1024 for the filter size, but we remark that the
parameter m does not affect results but only the time scale.

The curve confirms that, as time elapses, a larger number
k of hash yields a greater average error floor. This is well
expected from our previous discussion on the average growth
rate: the larger k, the greater the number of increments per
insertion, the faster the filter fills up. As an exception, when
the number of insertions is small (say, below 1/3 of the filter
size m, e.g., the zoom plot in figure 9 - note the logarithmic
y-axis scale), the opposite holds: the error floor is lower for
a larger value k. The obvious explanation is that when most
filter counters are still empty, a larger k increases the chance
that the minimum value among such selected counters is zero
as well.

Finally, in the case k = 8, the plot further includes the
average counter size G(t). Interestingly, G(t) always remains
quite close to the error floor (difference never greater than 0.85
in the case k = 8, and slightly smaller in the remaining cases).
The reason is that the increase, for larger k, in the number of
counters from which the minimum is attained, trades off with
a decrease in the spread of the counter occupancy distribution
(the slope of the ψn(.) distributions becoming steeper).

This last remark is very convenient for practical purposes.
Indeed, knowledge of the summary values reported in figure 8
permits to tightly bound (within one unit in excess) the error

Fig. 10. Experimental results: average error floor, m = 4096, k = 4, 8.

floor in the uniform case with no need to solve any differential
equation! For instance, with reference to the experimental set-
ting discussed in the next section VI (see figure 10) involving
1,050,000 packets inserted in the filter, the error floor uniform
case bound would be 1.816 × 1.05 · 106/4096 ≈ 466 for the
case k = 4, and 2.843× 1.05 · 106/4096 ≈ 729 for k = 8.

VI. CONCLUSIONS AND NEXT STEPS

The contribution of this paper is mostly theoretical, and fo-
cuses on a new analytic approach to modelling count sketches
with conservative update. By unveiling how the error behaves
in such data structures, we believe that the analysis paves the
ground for new insights into how we can practically handle,
and dimension, such count sketches in real traffic scenarios.
However, we leave this to future work. That said, and with
no pretense of making any claim, we feel it may be useful
to finish by highlighting a number of practical aspects which,
to the best of our knowledge, are first raised here and which
build on this paper’s findings.

A. Experimental playground

To shed some light on the problems emerging in practical
situations, we have run experimental results on a traffic trace
collected from a Point-Of-Presence backbone of a relatively
small (regional) operator. We have specifically taken a 5
minute traffic trace, including about 1,050,000 packets. For
test purposes, we counted the number of packets per IP source-
destination pair (hereafter somewhat improperly referred to
as a flow). We found 21,390 distinct flows in the trace.
The exact per-flow count is reported in Figure 10, tick solid
line. The figure also reports the measured error floor when
using count sketches having a very compact size (as little as
m = 4096 for a trace with more a million packets and with the
number of flows more than 5 times the available bins). Two
sketch configurations, in terms of number of hash functions
employed, are considered: k = 4 and k = 8. Results are
obtained by first adding all of the packet trace to the filter,
and then, at the end of the trace, by querying each flow found
in the trace to determine its relevant accumulated count.



Fig. 11. Experimental results: raw per-flow sketch response.

B. Closing the gap between uniform and actual error floor

Figure 10 confirms that the average error floor computed
using our proposed approach (uniform assumption) provides
an upper bound, but it also shows that this bound is quite
loose. For instance, with k = 8, the uniform analysis yields a
bound of 728.4 versus an actual error floor of 127.2, obtained
by averaging the returned counts for all the flows but the first
top-1000. There is an obvious reason for such a significant
overestimate: whereas the uniform model assumes that every
new arrival, by randomly selecting k bins, contributes to
increase the average counters occupancy, heavy flows will
repeatedly hit the same bins.

This suggests that a tighter error floor estimation algorithm
might suitably discount packets generated by flows whose
count is “large”, and hence which only affect a subset of
bins. For instance, if we were to compute the uniform bound
using only the 303,910 packets remaining once removing the
746,090 packets generated by the 206 flows accounting for at
least 1000 packets (hence well above the uniform floor level
in figure 10), we would obtain the significantly lower value
of 211. We believe that iterative online algorithms somewhat
mimicking (and of course improving) this suggested heuristic
may be devised.

C. Error floor: beyond averages

The results earlier presented in figure 9 suggest that, in
practical settings, a small value of k is preferable. Such a
conclusion, based as it is on the average error floor, might be
misleading when accounting for the actual error distribution.
For instance, figure 11 (and, more precisely, the comple-
mentary cumulative distribution functions shown in figure 12
obtained for all the flows but the first top-1000) clearly shows
that k = 8 may be a preferred filter setting to reduce the
probability that a query for a “small” flow makes it look like a
“large” count one. This implies that, in addition to the average
error floor value, a thorough dimensioning and practical usage
should be guided by some criterion that allows us to determine
to what extent the response of the filter when queried with a
specific flow entry is reliable or meaningless. Note that the
usual Bloom filter formulae may not be directly applicable to
model this case.

D. From packet counts to byte counts

Finally, a further challenge consists in adapting our pro-
posed modeling approach to the more general byte-count
scenario [2]. This appears far from being simple. But, perhaps,

Fig. 12. Experimental results: per-flow approximate count for small flows -
complementary cumulative distribution function.

some findings may be extended to such more general scenarios
(for instance the error behaviour may indeed be qualitatively
the same – experimental results not shown for space reasons).
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