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Abstract—Future network components will power down un-

used resources to save energy. Thereto, they need to determine 

the required capacity by observing the traffic. In this paper, we 

propose a light-weight estimator for the relevant parameters of 

aggregated packet traffic. The estimator assumes an M/G/∞ traf-

fic model on flow level, which has been proposed for aggregated 

Internet traffic. We find that the variation of the aggregate traf-

fic rate is defined by the bit rate of contributing application 

streams, i.e. traffic bursts triggered by end-user applications. We 

identify the effect of these streams on the variance-time behavior 

of the aggregated traffic rate. From this, we derive an estimator 

for the application stream bit rate based on second-order statis-

tics of the aggregate rate. Simulation results for inelastic and 

TCP traffic show a good stream rate estimation accuracy, pro-

vided that the measuring period is sufficient to capture the vari-

ance of the aggregate rate. 

 

I. INTRODUCTION 

Bandwidth provisioning is the process of dimensioning 

transmission resources for (aggregated) packet traffic to assure 

a certain quality of service (QoS). Essentially, it means finding 

an appropriate overdimensioning factor α > 1 to obtain the 

required resource capacity C = α · m, where m is the mean 

traffic load. Obviously, this factor should depend on traffic 

variations. Due to a lack of knowledge of traffic properties, 

network operators often choose α according to rules of thumb.  

To date, bandwidth provisioning is part of the network 

planning process. The chosen capacity has to accommodate 

traffic for months or years to come. Changes in the traffic 

characteristics (beyond the growth of the traffic volume) are 

hardly predictable. Coarse dimensioning rules may thus suf-

fice. In the future, bandwidth provisioning will additionally be 

required on much shorter time scales. To save energy, network 

devices will activate resources on demand. Due to technologi-

cal limitations, this cannot always happen instantaneously, but 

e.g. in the order of 15 minutes to one hour for optical re-

sources. Hence, means to derive the required capacity from 

on-line traffic measurements are required. 

A vast body of literature on bandwidth provisioning exists. 

Initial work on effective bandwidth defined bandwidth re-

quirements for sources of variable-rate traffic [1][2]. These 

bandwidth values are added up upon traffic aggregation. Other 

approaches account for improved statistical multiplexing with 

increasing aggregation. For the aggregation of traffic from 

rate-limited sources, M/G/∞ queuing models on flow level 

have been proposed and studied, e.g. in [3][4][5]. Alterna-

tively, authors of e.g. [6][7] used a Gaussian approximation 

for the bit rate distribution of highly aggregated traffic. Both 

of these approaches allow modeling the fractal behavior [8], 

i.e. long range dependence (LRD) and self similarity, observed 

in measurements of local area network and Internet traffic. For 

this purpose, the Gaussian model of fractal Brownian motion 

and M/G/∞ queues with heavy-tailed service time distributions 

are used. Addie et al. [3] discuss the versatility of M/G/∞ 

models for a wide range of traffic properties. 

These models have given way to two classes of studies: 

(i) detailed analyses of the buffering performance, and 

(ii) coarser buffer-less flow-level considerations quantifying 

congestion, i.e. events of more traffic arriving than a resource 

can serve. Ben Fredj et al. [4] discuss both levels. On-line 

bandwidth provisioning requires a light-weight approach to 

traffic characterization by measurement without extensive 

parameter fitting. Since it generally requires less information, 

the buffer-less view is better suited. Van den Berg, Pras, et al. 

[7][9] propose an estimator for the parameters of a Gaussian 

flow-level model, which are mean and variance of the aggre-

gate traffic rate. 

One limitation of the statistical traffic models (both Gaus-

sian and M/G/∞) is that they assume stochastically stationary 

conditions. If these are not given, e.g. when deterministic 

trends like day profiles dominate traffic behavior, we may still 

apply the models to approximately stationary sections. Such 

conditions however complicate the estimation of higher-order 

moments like the variance, which requires an observation pe-

riod of a certain length. It remains feasible in the busy hour 

[4], but may be impractical during the transients before and 

after. A metric expressing traffic variation which is invariant 

to the traffic load is therefore highly desirable. The M/G/∞ 

model allows defining such a metric: the bit rate of the con-

tributing traffic streams.  

In this paper, we propose an estimator for flow-level pa-

rameters of the M/G/∞ model: the mean load (which is meas-
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urable in relatively short time intervals) and the stream bit 

rate, which is derived form the measured variance. From the 

M/G/∞ model parameters, one can directly derive a dimen-

sioning rule limiting the packet loss probability for inelastic 

traffic [10]. We suggest such a rule rather than an approach 

limiting the duration of congestion periods as proposed in [7], 

which may better capture user-perceived QoS impairments but 

requires a much more detailed traffic model. 

Our contribution is threefold: We firstly extend the current 

understanding of the variance-time behavior of M/G/∞ traffic 

and identify a region solely depending on the rate of contribut-

ing streams. Secondly, we propose an M/G/∞ parameter esti-

mator making use of this finding. We thirdly evaluate the per-

formance of this estimator by simulation with access-limited 

sources of inelastic and TCP traffic. 

The remainder of this paper is structured as follows: In sec-

tion II, we present our model for aggregated Internet traffic in 

general terms. Section III introduces some restrictions which 

allow mapping it to a flow-level M/G/∞ model and addresses 

congestion on flow level. In section IV, we extend the M/G/∞ 

model to the packet level, discuss the variance-time behavior 

of aggregated Internet traffic, and identify the impact of 

stream bit rates. Section V presents the parameter estimator, 

which is evaluated in section VI. We conclude in section VII. 

II. TRAFFIC MODEL 

A. Application Stream Concept 

The basic item of our traffic model is a single transfer of a 

finite amount of data. The demand for such a transfer arises 

typically outside the network with no regard to network condi-

tions. The data transfer is accomplished by an application 

stream, i.e. a series of symbols that is formed by an end-user 

application, with dedicated starting time, a certain bit rate, and 

an according duration. The bit rate of an application stream is 

determined by the minimum of link capacity, application or 

protocol limitations, end-system or server performance, or by 

network congestion. Hence, in any case, the bit rate of an ap-

plication stream is limited from above. 

An application stream is what results from one event in the 

end-system or one action by the user. In the simplest case, it is 

a single file transfer or a voice call, but it may also comprise 

several TCP connections used by a web browser to retrieve the 

parts of one web page. The download of a further web page at 

a later instant of time reusing the same TCP connection consti-

tutes a different application stream. 

In the network, the application streams of many independ-

ent users superimpose to larger aggregated traffic flows. Since 

arrival and termination of application streams is random, the 

actual number of contributing streams, and hence the cumula-

tive bit rate are random, too. Congestion occurs if at a given 

transmission link the randomly fluctuating aggregated traffic 

exceeds the link capacity. It is a primary goal of network di-

mensioning to make congestion a rare event. Since the mixture 

of contributing applications and protocols is unknown, this is 

the only way to limit traffic impairments (admission blocking, 

packet loss, delay, throughput degradation). This design objec-

tive is also called link transparency in the literature [4][7]. 

B. Packet Streams and Multiplexing 

In packet networks, application streams are subdivided into 

packets of limited size (which is today, due to the predominat-

ing Ethernet infrastructure, generally ≈1500 Bytes at the 

maximum). Correspondingly, the application stream bit rates 

translate into packet distances. If e.g. an end-user’s access link 

is the bottleneck, packets fly back-to-back there. On faster 

aggregation links, however, packet durations are reduced, 

while packet distances, and thus stream durations, remain ba-

sically unchanged. Then, the multiplexing of several applica-

tion streams into one larger aggregated traffic flow is essen-

tially the mutual interlacing of the contained packets as illus-

trated in Fig. 1. The acceleration from a comparably small 

application stream bit rate b to the larger transport link capac-

ity C creates the necessary inter-packet spaces for interlacing. 

Randomly occurring collisions between simultaneously arriv-

ing packets from different application streams are resolved by 

comparably small buffers. 
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Fig. 1: Packet multiplexing, application streams are chopped into packets and 

interlaced at higher bit rates 

 

If, however, at a given moment the cumulative bit rate of 

the concurrent application streams is too high, we have con-

gestion that cannot reasonably be resolved by buffering. It 

would require very large buffers with holding times beyond 

any reasonable size. 

III. STREAM LEVEL ANALYSIS 

To estimate the congestion probability, we use a flow-level 

model, i.e. we consider the aggregated traffic as an overlay of 

application streams and disregard the packet structure. 

We assume a high number of independent sources generat-

ing application streams, which we approximate by an infinite 

source model with negative-exponentially distributed inter-

arrival times. (Here any other distribution would collide with 

the independence assumption [11].)  

The application streams are assumed of uniform bit rate b. 

We derive this from the worst case assumption (in terms of 

traffic volatility) that each application stream loads its access 

link at the capacity limit. In addition, we assume that all end 

users are connected to the network by access links of identical 

capacities. These restrictions will partly be relaxed later on. 

We make only mild assumptions on the size of the applica-

tion streams. For analytical considerations, we allow any (i.e. 



a general) distribution, but we require the majority of the car-

ried traffic volume to be constituted of streams comprising a 

significant number of packets. (In practice we are talking here 

about at least 10 to 100 packets.) 

Since we are interested in the offered traffic without net-

work feedback (i.e. the superposition of all streams without 

interference), we can describe the number of active streams by 

an infinite server queuing model. With the above assumptions, 

it is an M/G/∞ model, and its probabilities of state follow a 

Poisson distribution [11]. With the average number λ of simul-

taneously active application streams, the probability Pk to see 

k active application streams at any given moment in time is 

( )
!

Pr
k

e
kXP

k

k

λ
λ

−

===    (1) 

The dimensionless stream counts can be translated into bit 

rates as follows: 

bm ⋅= λ      (2) 

bX ⋅=ξ      (3) 

where m is the mean bit rate of aggregated traffic, b the bit 

rate of a single application stream, X the random stream num-

ber, and ξ the random bit rate at any given moment in time. 

The probability distribution Pk is infinite, but the capability 

to carry traffic is always finite, so the distribution is truncated 

by different loss mechanisms. In case of admission blocking, 

which rejects whole streams if the capacity is exhausted, the 

loss is given by Erlang’s B-formula [11]. In case of packet 

streams without admission control, the overshooting fraction 

of packets is dropped, irrespective of the particular stream 

they belong to. Nevertheless, the drop probability is only 

slightly less than the blocking in case of admission control, as 

has been shown in [10][12] both numerically and in experi-

ment. In case of really large buffers, parts of the overshooting 

application streams could be held in buffer instead of dropping 

them. However, the volume of the application streams queued 

during a congestion period would create an undesired spike of 

packet latency. Finally, in case of TCP traffic, the congestion 

control algorithm in the end-systems would lower the sending 

rates during a congestion period, which manifests itself to end-

users as throughput degradation. 

Hence, the requirement of low congestion translates into 

keeping the truncated quantile of (1) small. This minimizes 

traffic impairments (loss, latency, throughput) irrespective of 

the actual stream size distribution, (large) buffer sizes, or cor-

rect TCP usage in the end systems. 

IV. PACKET LEVEL ANALYSIS 

The analysis at stream level (section III) assumes knowl-

edge of stream shaping factors, like the limitation by access 

links. For aggregated traffic, such knowledge may not be 

available. While flow accounting mechanisms (NetFlow [13], 

IPFIX [14]) can provide some insight into the composition of 

a traffic aggregate (in terms of TCP or UDP flows), they fall 

short of identifying the statistically relevant parameters such 

as rates of application streams according to our definition in 

section II. In addition, we are interested in a light-weight pro-

visioning mechanism which scales to very high bit rates and 

numbers of streams. We therefore investigate in the following 

how to obtain the parameters of equations (1) to (3) from 

solely observing packet arrivals and sizes in aggregated traffic.  

For simplicity, we assume a uniform packet size s (in num-

ber of bits) and uniform application stream bit rates b for all 

participating sources. Furthermore, we assume that application 

streams have a mean total size of S (in number of bits). We 

denote the forwarding capacity of the link by C (bit per sec-

ond), and we assume that this link is loaded by a cumulative 

traffic of m (bit per second) in average.  

In the following, we determine whether stream shaping fac-

tors influence the mean and variance of the aggregate traffic 

rate at different time scales. We identify four ranges of differ-

ent behavior separated by: T1, the packet forwarding duration 

on the aggregation link, T2, the packet distance in a particular 

application stream, and T3, the application stream duration. 

C

s
T =1 , 

b

s
T =2 ,        

b

S
T =3        (4) 

All calculations are rough estimates in that they disregard 

the transitions between the ranges. 

A. Time Scale T < T1 

We start with intervals below packet duration, i.e. T < T1. At 

this time scale we see a real on/off source since consecutive 

packets cannot overlap. The random load variable ξ is either C 

(packet in flight), or zero. The probability Ppkt of packet in 

flight depends on the mean load. 

{ }C,0∈ξ      (5) 
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For mean and variance of this distribution, we obtain 
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Obviously, the variance of the instantaneous traffic rate 
does not reflect the presence of application streams. 

B. Time Scale T1 < T < T2 

The next time scale is larger than the packet duration but 

smaller than the packet distance in an application stream, i.e. 

T1 < T < T2. In this case the random load variable ξ is not de-

fined by just one packet but by the cumulative load of all 

packets that fall into the interval T. With XP, the random num-

ber of such packets, we obtain 

 
T

Xs P⋅
=ξ     (8) 

Since the interval T is smaller than the packet distance in an 

application stream, all packets we see within T belong to dif-

ferent application streams. Their arrivals are mutually inde-

pendent since we assume independence of the streams. The 



number of independent random events in an interval is known 

to be Poisson distributed. XP thus follows a Poisson distribu-

tion with λP, the mean number of packets in interval T: 

 T
s

m
P =λ     (9) 

With the mean and variance of the Poisson distributed XP 

(both equal λP) and (9), we get for the random traffic ξ: 
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The variance declines reciprocally with increasing interval 

T, as expected for Poisson traffic. The presence of application 

streams is still not reflected in the variance of the traffic. 

C. Time Scale T2 < T < T3 

This does change on the third time scale, which is larger 

than the packet distance in application streams, but smaller 

than the mean application stream duration, i.e. T2 < T < T3. As 

explained in section III, the number X of simultaneously active 

application streams is a Poisson distributed random number of 

mean λ (the mean number of concurrent application streams, 

recall (2), λ = m / b). 

If we disregard the case that an application stream starts or 

ends in interval T, one particular stream contributes n packets 

to the traffic in this interval: 

 





= T

s

b
n     (11) 

Correspondingly the random load variable ξ in interval T is: 

 XsT
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For a rough estimation we can ignore the quantization by 

the integer operator and get 

 Xb ⋅≅ξ     (13) 

which conforms to the rather high level consideration of (3).  

With the knowledge of mean and variance of the Poisson 

distributed X we get: 
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Obviously, at given load the variance is proportional to the 

application stream bit rate b. Even more important, the vari-

ance does not decline anymore with increasing interval T.  

The variance-to-mean ratio (VMR) at this timescale equals 

the application stream bit rate, and we can use the VMR to 

measure this bit rate in unknown aggregated traffic: 

 b=
µ

ν
     (15) 

We propose this value as a new parameter for the quantifi-

cation of traffic fluctuations. It is easily measurable, and it can 

alternatively be derived from the installed base of access links. 

To a certain degree, it is orthogonal to the traffic load. This 

property is in line with the load-independent peakedness of 

Poisson traffic well known in teletraffic theory [11]. 

D. Time Scale T > T3 

Finally, the time scale larger than application stream dura-

tions, T > T3: Temporal effects in this range are irrelevant for 

the buffering performance in practice, since according buffer 

sizes would imply delays of minutes and more. We only give 

an estimation for the marginal case of constant stream size S. 

In this case, whole application streams fall into the interval T. 

The application streams are independent of each other, hence 

the load variable XS is again Poisson distributed, but this time 

for whole application streams instead of single packets. Ne-

glecting that flows may only partially fall into T, we get in 

analogy to (8) – (11): 
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The resulting mean and variance are: 
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For constant-size streams, the variance returns to the recip-

rocal decline with increasing duration at large intervals T. 

The calculations of this section tend to under-estimate the 

variance observed in practice. The stream size distribution is 

often open ended, in contrast to the packet size bounded above 

(e.g. at 1500 byte). At any interval setting T, there remain 

some large application streams that still spread over several 

intervals. In consequence, the transition into this section 

(T > T3) is never complete and the variance decline remains 

slower than Poisson. Simulation results in Fig. 2 illustrate the 

effect, in particular for heavy-tailed, Pareto distributed stream 

sizes. Asymptotic LRD and self-similarity manifest them-

selves in this range. Nonetheless, the marginal distribution of 

the number of concurrently active streams remains Poisson. 

E. Interpretation 

Table 1 summarizes the results for the four ranges of differ-

ent behavior of aggregated packet traffic. The variance-to-

mean ratio (VMR) in the last row deserves special attention. 

Except for the instantaneous traffic, it is independent of the 

actual traffic load m, which makes it preferable for the charac-

terization of aggregated traffic. In particular in intervals larger 

than the packet distance in streams (T2) but smaller than the 

application stream duration (T3), it reflects the application 

stream bit rate b without any further addition. 

Fig. 2 shows the asymptotic trend lines in the different sec-

tions together with exemplary VMR plots obtained by simula- 



TABLE 1: Variance of aggregated packet traffic at different time scales  

 

tions (see section VI for the setup). 

Obviously, the reciprocal variance decline with increasing 

interval durations stops at T2 and resumes only beyond T3. The 

existence of the VMR plateau at the level of the application 

stream bit rate b has direct impact on buffer performance. 

Buffer holding times beyond T2 contribute to latency and jit-

ter, but cannot significantly reduce packet loss. 

We verified the effect with different stream size distribu-

tions: constant, negative-exponential, and Pareto (heavy-

tailed), the latter being inspired by the observation of heavy-

tailed file size distributions in [15]. The effect is present re-

gardless of the stream size distribution, i.e. it is unrelated to 

asymptotic LRD. Nevertheless, at large time intervals (T > T3), 

the Pareto distributed traffic shows the typical asymptotic 

LRD behavior with a much slower variance decline than under 

the Poisson assumption. 

In practice, the transition zones between the different ranges 

may overlap so that the stepped trend is not as obvious as in 

Fig. 2. In particular, if the acceleration factor from application 

stream bit rate b to core link capacity C is small, then the 

bends at T1 and T2 may merge into one rather unspecific de-

cline. Furthermore, the bends at T2 and T3 may merge if the 

number of packets per application stream is low. The bend at 

T3 depends on the distribution of application stream durations 

and may in particular be blurred by heavy-tailed stream size 

distributions. Finally, the application stream bit rate may not 

be as uniform as assumed. Besides, the TCP transmit window 

mechanism is known to form chunks of packets at higher than 

average rate, which could cause additional bends in the 

stepped trend. All those effects together create the repeatedly 

reported multi-fractal behavior of Internet traffic [8]. 

Despite all uncertainties with respect to the real extent of  
 

 
Fig. 2: Principle trend of the variance-to-mean ratio with increasing observa-

tion interval for different application stream size distributions 

 

the particular effects, there is one reliable traffic shaping effect 

– the access link capacity. Whatever happens in the applica-

tion or the protocol stack, a terminal cannot form (or receive) 

packet streams faster than the access link capacity. In this 

way, the large acceleration factors C/b in the today’s Internet 

create a first dominating step as of Fig. 2 without further mul-

ti-fractal structuring below T2. This could explain the seeming 

recurrence of Poisson behavior in highly aggregated traffic 

[6]. 

V. MEASUREMENT OF THE APPLICATION STREAM BIT 

RATE 

In order to apply dimensioning rules to unspecified traffic, 

we need to estimate the parameters of equations (1) to (3). The 

mean traffic load m can easily be assessed by reading out traf-

fic counters. The results of Table 1 enable us to estimate the 

application stream bit rate b without further a-priori knowl-

edge of the traffic origin. According to (15), it is sufficient to 

estimate the variance-to-mean ratio in intervals T that are lar-

ger than the packet distance in a particular application stream 

and smaller than typical application stream durations. In prac-

tice we choose here, as a compromise, an interval in the range 

of 25 ms. We then estimate the first and second raw statistical 

moments by temporal averages of the traffic value and its 

square.  
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The temporal averages are good enough as soon as the av-

eraging period is much larger than the duration of the majority 

of application streams. In practice, we use averaging periods 

in the range of 5 minutes up to 1 hour and more. We obtain the 

requested application stream bit rate b as: 
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Fig. 3 shows a block diagram of a corresponding sliding es-

timator of the effective application stream rate b in an unde-

clared traffic aggregate. We obtain the random traffic value Xi 

by periodic read out of the byte counter. The traffic value and 

its square are fed into low pass filters that accordingly esti-

mate the first and second raw moment of Xi. Finally, the appli-

cation stream bit rate is calculated according to (21). Since the  
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Fig. 3: Block diagram of a sliding estimator of the effective application stream 

bit rate in undeclared aggregated traffic 

 T < T1 T1 < T < T2 T2 < T < T3 T3 < T 

variance ν m ·(C–m) m ·s /T m ·b ≥m ·S/T 

VMR ν /µ C–m s/T b  ≥S/T 



 

estimator is essentially a chain of low pass filters, the process-

ing can go along with a cascade of down-sampling operations. 

Only the byte counter has to operate at the line rate of the cor-

responding packet forwarding path. 

VI. EVALUATION 

We evaluated the performance of the application stream bit 

rate estimator by means of event-driven simulation based on 

the IKR SimLib [16]. 

A. Simulation Scenario 

Fig. 4 depicts the simulation scenario. The sources emit ap-

plication streams with negative-exponentially distributed inter-

arrival times at a rate of 40 / s. Each source is connected to the 

multiplexer by a dedicated access link. The access links have a 

bit rate of b = 5 Mbit/s and feature access buffers dimensioned 

following the bandwidth-delay product (BDP) rule [17] 

(which enables full link utilization by individual TCP connec-

tions). The capacity C of the link carrying the aggregated traf-

fic varies from 210 Mbit/s to 500 Mbit/s, with resulting link 

load from 40% to 95%. The aggregation buffer preceding this 

link is dimensioned according to the small buffer rule [17] to 

BDP/ N , where N = 40 is the number of concurrently active 

(TCP) streams. A demultiplexer distributes the traffic streams 

to the sinks. The figure omits the backward channels for TCP 

signaling. Emulating wide area network conditions, the base 

round-trip time (RTT) between sources and sinks is 100 ms.  

Application stream rate estimation is done after the aggre-

gation link and optionally before the aggregation buffer. We 

set the sampling interval to 25 ms, which covers 10 packets of 

an access-limited application stream. The averaging period 

varies from seconds to more than one hour. As baseline, we 

additionally determine the actual stream bit rates on the access 

links. 

We use two source configurations: (i) inelastic traffic 

sources, which send application streams as streams of equidis-

tant packets at the rate of the access links; and (ii) TCP 

sources, which transfer application streams in TCP connec-

tions using the Cubic congestion control scheme. For the lat-

ter, we embed the actual Linux protocol stack implementation 

in the simulation by means of the Network Simulation Cradle 

(NSC) [18]. 

Application stream sizes follow either a negative-

exponential or a Pareto distribution with parameter α = 1.2 

(exemplarily for heavy-tailed distributions). In both cases, the 

mean stream size is 595 KB, which corresponds to a stream 

duration of 1 s in case of inelastic traffic (accounting for 

Ethernet overhead).  

B. Temporal Behavior 

We illustrate the temporal performance of the application 

stream rate estimator for inelastic, negative-exponentially 

sized streams in the following scenario: During the first 

1000 s, the network is dimensioned as outlined above. Then, 

the access bit rate is increased to the ten-fold (50 Mbit/s) for 

1500 s, and finally returns to the initial value. The stream arri-

val pattern and sizes meanwhile remain unchanged. That is, 

the same user population is temporarily provided with higher 

access speeds. Fig. 5 plots the instantaneous aggregate bit rate 

on an unlimited aggregation link. It clearly shows the increase 

of the traffic variation between 1000 s and 2500 s. Fig. 6 gives 

the trace of the stream bit rate estimate, which reliably follows 

the changes with a delay in the order of the averaging period 

of 250 s. Note that the abrupt variation of access bit rates is an 

artificial assumption and the detection delay thus of no practi-

cal relevance. The slight under-estimation of the 50 Mbit/s 

stream rates is attributable to the small number of samples 

each application stream is present in. 

C. Mean Estimate for Uncongested Link 

Fig. 7 plots the mean of the stream bit rate estimate ob-

tained for an uncongested aggregation link over the averaging 

period (along with 95% confidence intervals). All curves show 

the trend to converge to the actual stream bit rates for increas-

ing averaging periods. For negative-exponentially distributed 

stream sizes, averaging periods of five minutes (300 s) and 

more provide accurate estimates. In case of a heavy-tailed 

stream size distribution, periods of more than one hour are 

necessary to achieve a comparable performance. This traces 

back the slower decrease of the autocorrelation function of the 

aggregate bit rate in the latter case, which increases the time 

required to obtain a sufficient number of independent samples 

for variance estimation. This handicap is inherent to any 
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purely statistical traffic characterization approach. 

The application stream bit rate estimates for inelastic traffic 

and for TCP traffic essentially follow the same trend, but show 

an offset which only depends on the stream size distribution. 

This offset is caused by TCP’s slow start mechanism, which 

prevents TCP streams from fully utilizing the access link at 

the start of their transmission. Consequently, TCP streams 

achieve a lower mean bit rate, as indicated by the separate 

asymptote for TCP traffic in Fig. 7. This effect is more pro-

nounced for the heavy-tailed stream size distribution, which 

produces a higher share of small streams (since it needs to 

compensate its characteristic huge streams to yield the same 

mean). The equilibrating effect of the aggregation buffer ex-

plains the small difference between the estimates for TCP traf-

fic obtained before and after this buffer. 

From these observations, we can conclude that the estimator 

accurately detects the application stream bit rate of both ine-

lastic and TCP traffic in the considered scenario – provided 

that the averaging period is sufficiently large. In further inves-

tigations, which we cannot detail here for space restrictions, 

we found a comparable estimator performance for a wide 

range of application stream bit rates and aggregation levels. If 

confronted with an aggregate of application streams of differ-

ent bit rates, the estimation yields the average stream rate 

weighted by the contribution of the streams to the traffic vol-

ume. 

D. Impact of Congestion 

Any mechanism trying to estimate traffic source properties 

based on traffic observation in a network suffers from the 

limitation that its input data may be distorted due to insuffi-

cient capacity elsewhere in the network. Fig. 8 illustrates such 

an effect on the application stream bit rate estimation for nega-

tive-exponentially distributed stream sizes and an averaging 

period of 250 s. We gradually reduce the aggregation link ca-

pacity to obtain higher occupancies (and more frequent con-

gestion) for the same input traffic. All curves show significant 

under-estimation for link occupancies exceeding 75%. Since 

the capacity limit removes peaks of the aggregate rate, it re-

duces the variance of this signal and, in turn, lowers the stream 

rate estimates. The aggregation buffer amplifies this effect by 

further smoothing the aggregate rate. 

While this explanation applies to inelastic traffic, it is insuf-

ficient for the effect on TCP traffic. In particular, the meas-

urement upstream of the aggregation link cannot be directly 

affected by this link. The TCP sources rather proactively re-

move the peaks from the traffic aggregate as they rapidly react 

to congestion signals. Since this mechanism tends to reduce 

TCP stream rates for periods exceeding the instants of conges-

tion, we observe lower stream rate estimates than for inelastic 

traffic. The difference between the estimates for TCP traffic 

before and after the aggregation link is due to buffering effects 

and occasional losses at the aggregation buffer. 

E. Bandwidth Provisioning 

For on-line bandwidth provisioning, we derive the capacity 

required to respect a given loss probability limit from the 

stream rate estimate and the measured mean load as described 

in [10]. It is crucial that the capacity estimate is reasonably 

insensitive to congestion, which may arise when the band-

width demand grows. We therefore investigate the effect of 

congestion-related stream rate underestimation on the capacity 

estimate.  

Fig. 9 plots the estimate of the bandwidth required for a 

packet loss probability of 10
-3

 (for inelastic traffic) over the 

link occupancy. We derived these curves from the stream rate 

estimates given in Fig. 8. As baseline, the graph additionally 

shows the bandwidth requirement computed from the parame-

ters of the simulation scenario. The dotted curve finally indi-

cates the actual aggregation link capacity provoking the re-

spective occupancy and congestion situation. 

The intersection of the curves of the required and the actual 

capacity at an occupancy of 67% indicates the target operation 

point. At lower loads, we can deactivate unused resources. At 

higher loads, we need to provide more capacity. For occupan-

cies up to 75%, the capacity estimate is accurate and we can 

reach the target operation point with the next adaptation. 

Above 75%, the capacity estimate is too low, but still indicates 

that we need more resources. We will thus return to the target 

operation point after several adaptations. Since occupancies of 
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more than 75% imply a packet loss probability of at least 10
-2

, 

this condition should rarely occur in practice. We observed 

these effects under a variety of traffic configurations. 

These observations give way to three important statements 

on bandwidth provisioning: Firstly, the capacity estimate re-

mains accurate under moderate congestion and can thus keep 

track of a reasonably slow evolution of the bandwidth de-

mand. Secondly, if this condition is not met, the provisioning 

mechanism proves safe in that it demands the activation of 

further resources and will thus converge to the appropriate 

capacity. Finally, if faced with a traffic aggregate that is lim-

ited elsewhere in the network, the mechanism will overesti-

mate the required bandwidth. Although it reduces energy effi-

ciency, this behavior is desirable in order to prevent further 

impairment to such traffic. 

VII. CONCLUSION 

In this paper, we lay the grounds for an on-line bandwidth 

provisioning scheme for aggregated Internet traffic. For this 

purpose, we first motivated the use of an M/G/∞ queue as a 

model for aggregated traffic made up of bandwidth-limited 

application streams. For this model, dimensioning rules exist 

which target a given level of QoS in terms of packet loss. We 

then identified a time scale – between the packet distance in 

application streams and the application stream duration – 

where the variance of the aggregate traffic rate solely depends 

on its mean and the contributing application streams’ bit rate. 

We established that this observation explains the poor buffer-

ing performance of Internet traffic frequently attributed to 

asymptotic long-range dependency or self-similarity. We fur-

ther stated that it is present regardless of the application 

stream size distribution, which defines the asymptotic proper-

ties. Making use of these findings, we proposed an estimator 

extracting the model parameters required for bandwidth provi-

sioning from easily observable properties of a traffic aggre-

gate. We finally evaluated the performance of this estimator 

by means of simulation. 

Provided a sufficient measurement period, the estimated 

model parameters proved accurate for both inelastic traffic and 

TCP traffic regardless of the application stream size distribu-

tion. The length of the measurement period needs to allow for 

correct estimation of the variance of the aggregate traffic rate. 

For negative-exponentially distributed stream sizes, we require 

periods of two orders of magnitude above the average stream 

duration. For heavy-tailed stream size distributions, three to 

four orders of magnitude are necessary. Since congestion re-

duces traffic variations, it impairs any mechanism relying on 

the variance of a traffic aggregate – including our estimator. 

For on-line bandwidth provisioning, however, this limitation is 

uncritical under relevant network operation conditions. 

Future work is required to validate our model assumptions 

and the estimator with actual Internet traffic. Most freely 

available traffic traces are unsuitable for this purpose, since  

 

 

they have been collected in local area networks. The valida-

tion requires Internet traffic that undergoes significant accel-

eration prior to multiplexing. Aggregation and backbone links 

of Internet service providers offer such conditions. Another 

open issue is determining the most suitable sampling interval 

of the aggregate rate, which needs to range between the packet 

distance in application streams and the application stream du-

ration. While these bounds are unknown in the general case, 

one can often base the choice of the sampling interval on rea-

sonable assumptions. However, a self-tuning mechanism 

would likely increase the accuracy of the estimator. 
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