Cross-Layer Flow and Congestion Control for Datacenter Networks

Andreea Simona Anghel, Robert Birke, Daniel Crisan and <u>Mitch Gusat</u>

IBM Research GmbH, Zürich Research Laboratory

Outline

- Motivation
 - CEE impact on socket applications
- Evaluation methods
 - Simulation vs. Hardware
 - Focus inside rack and node
 - 3 workload classes: Hotspot, MapReduce, HPC
- Results
 - Highlights discussion
- Conclusions
 - Lessons learned

Motivation: 3 Overlapping Loops

- 802 DCB / CEE features on L2
 - Losslessness: PFC
 - Congestion management in h/w: QCN
- Most DC/Cloud apps are socket-based
 - Bulk of DC communication: TCP
 - Some UDP (FB, YouTube) + VN tunneling

Q1) How does TCP perform over CEE - tweaks ... ?Q2) Is PFC beneficial ?Q3) Is QCN beneficial ?

Stiff and Soft Controls: Exploration Space

- L4: TCP Congestion Control (x3)
 - NewReno
 - Vegas
 - Cubic
- L2 stiff: Link-level flow-control (x2)
 - PFC i.e. lossless
 - Without PFC i.e. lossy
- L2/3 h/w Congestion Mgnt. 'softies' (x4)
 - None, aka "Base"
 - QCN (L2) with Q_{eq} = 20K and 66K
 - RED ECN (L3)
- Combinations: 3 x 2 x 4= 24 sim runs/result

Congestion Detection: L4 vs. L2

	L4 TCP (Reno)	L2 QCN		
Detection Mechanism	 @ destination (DupAck) @ congestion point (AQM/ECN) @ source (RTO) 	@ congestion point (QCN sampler)		
Feedback Type	 Duplicate ACK (loss) ECN/RED single-bit Retransmission Timeout (latency) 	Multibit: position, velocity		
Burst Tolerance	Built-in	Low: instantaneous measure (depends on Q _{eq} setpoint)		
Timescale	100s of <i>m</i> s (RTT dependent)	ms (RTT dependent) 10s to 100s of µs		

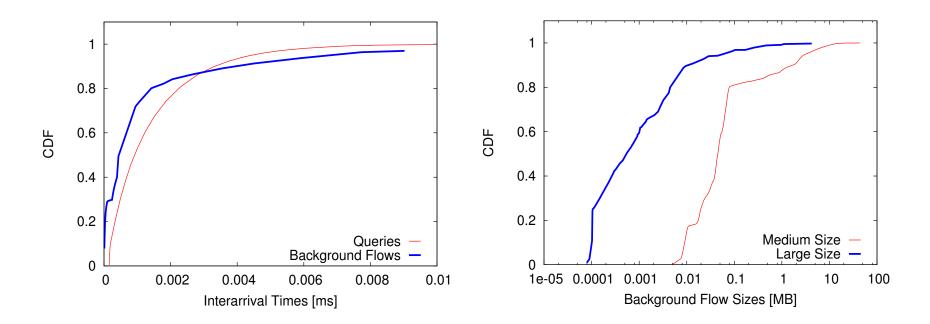
Congestion Control: L4 vs. L2

	L4 TCP (Reno)	L2 QCN Rate-based Controller @ SRC Finite State Machine : Cubic-like method Fb-proportional Decrease / Fast Recovery + Active Increase + Hyper Active Increase finite State Machine : Cubic-like method		
Principle of Operation	Window Controller @ SRC			
Increase & Decrease Control Law	Additive Increase Multiplicative Decrease (AIMD)			

IBM Research GmbH, ZRL

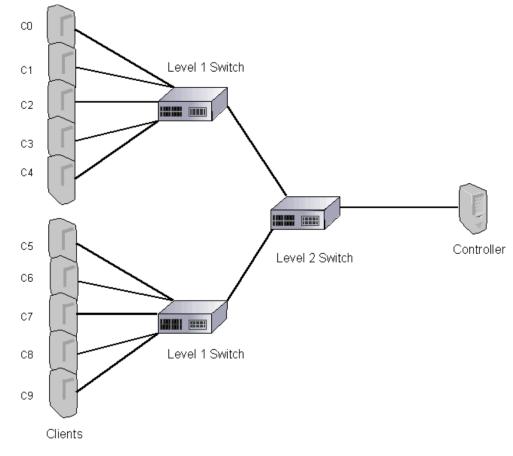
Evaluation Method 1: Simulation Environment (1)

- Workloads and Applications
 - (1) Hotspot synthetic traffic: 802 DCB
 - Many sources to one destination, aka Input Generated (IG) congestion from 802 DCB
 - Collectives-like pathological hotspot


(2) Commercial applications

- Foreground: socket-based Partition/Aggregate
- Background cross traffic: TCP or UDP flows
- (3) Scientific: 5 NAS + 4 other HPC benchmarks
 - Collected by BSC on Mare Nostrum

Evaluation Method 1: Simulation Environment (2)


(2) Commercial workload: MapReduce-like

- Partition/Aggregate queries (see next)
- Background flows: Medium/Large size

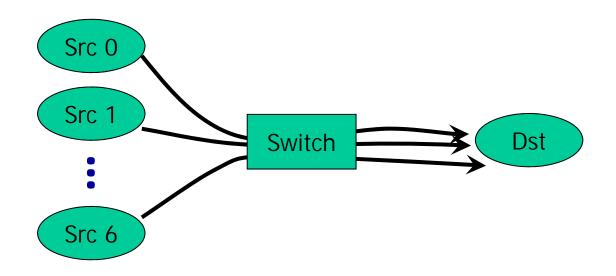
Evaluation Method 2: Hardware Testbed (1)

- Hardware Topology
 - 10 hosts, 1 controller and 3 switches (802.3x PAUSE)
 - Fast Ethernet network

Evaluation Method 2: Hardware Testbed (2)

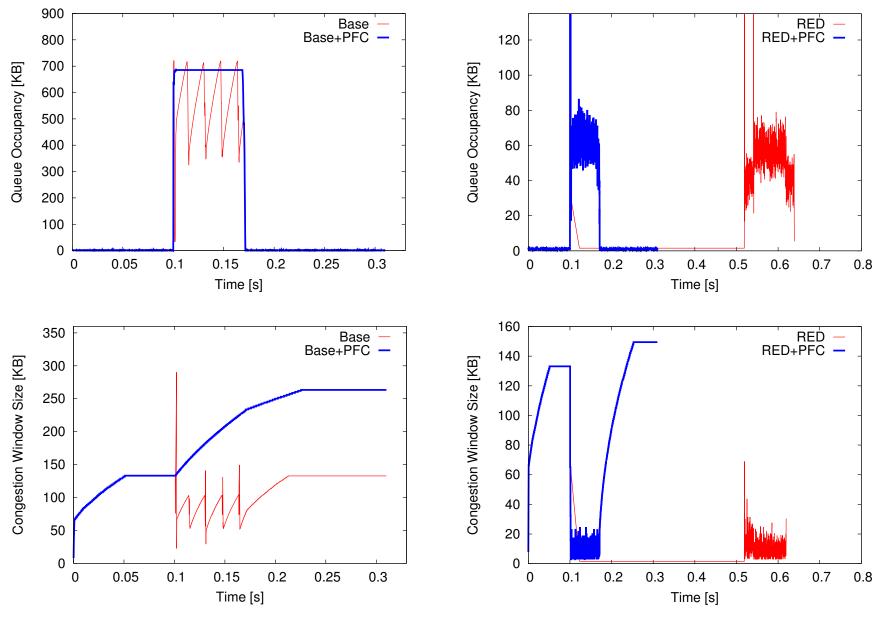
- L4: New Reno, Vegas and Cubic (x3)
- L2: 802.3x PAUSE (enabled/disabled) (x2)
- Without L2/3 CM

- Workloads and Applications
 - Commercial applications without background traffic
 - Socket-based Partition/Aggregate

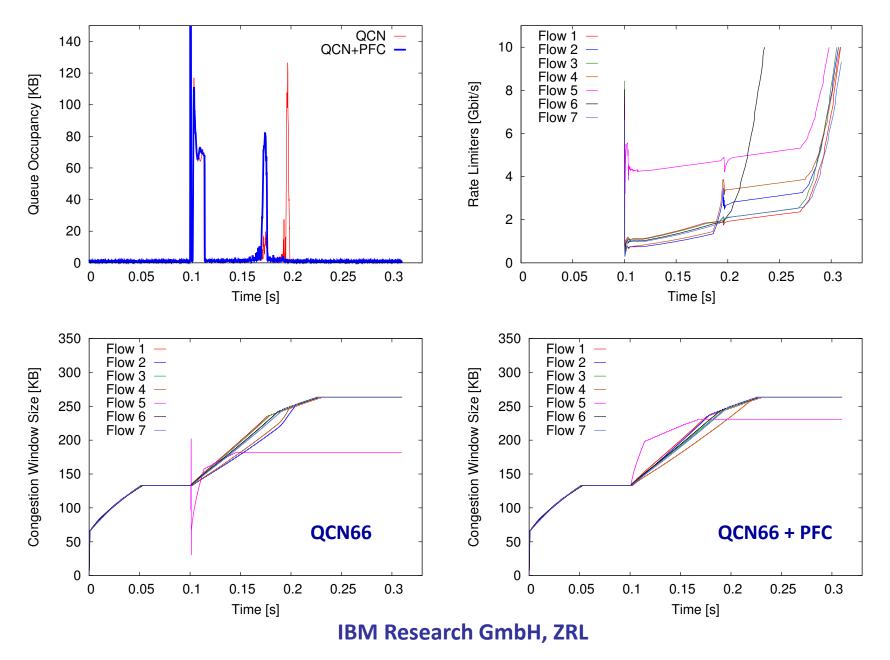

Outline

- Motivation
- Evaluation methods
- Results
- Conclusions

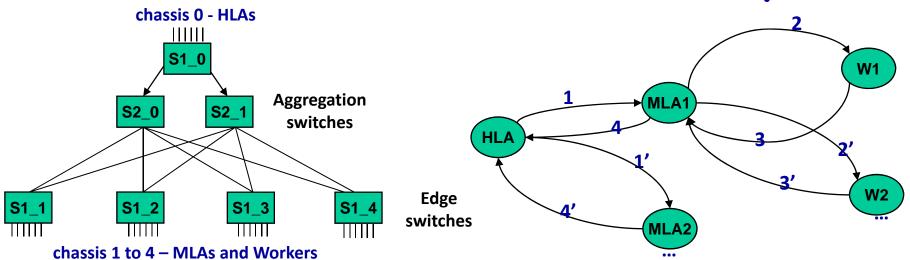
TCP Tweaks for DCN


- Finer jiffy:
 - In datacenter networks empty RTT << kernel timer quanta
 - Simulation: Timer from 1ms to 1us
 - Hardware: Timer from 250HZ to 1000 HZ
- RTO = key to DC-TCP performance
 - Default to $3s \rightarrow$ we set it: Simulation 10ms and Hardware 30ms
 - Simulation: we set RTOmin = 2ms
 - Variance of stack defaults to 200ms
 - Simulation: We set it to 20ms
- Jacobson's RTT estimator is critical(ly broken in DCN)
 - RTT variance ~(3-5) orders of magnitude
 - It's queuing, not flight, dominated
 - Processing time inside the kernel (10s of us) can be (MUCH) larger than DC network RTTs (0.5 - 10us empty)

Congestive Synthetic Traffic (1)

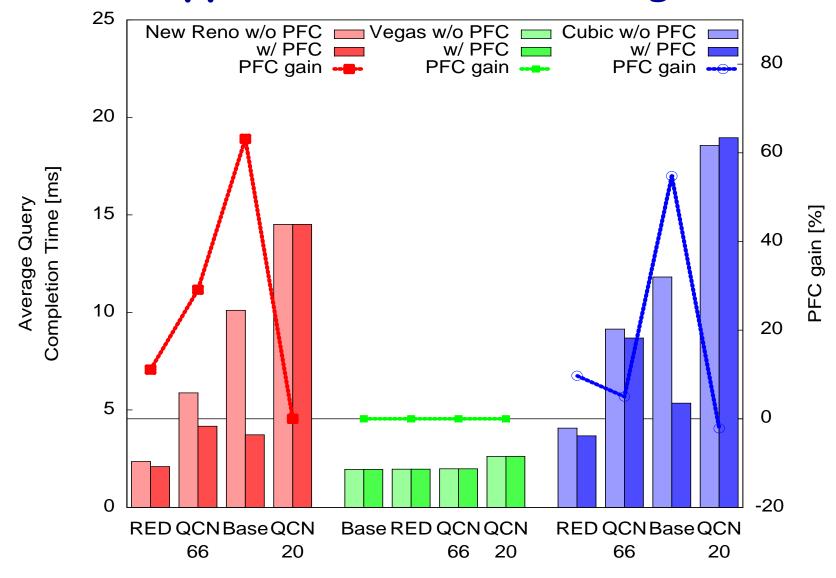

- TCP incast
 - 7 sources -> 1 destination
 - From t_0 =Oms to t_1 =100ms admissible traffic
 - Followed by a 10ms 4x overload of the destination
- Tested in the simulation environment only

Congestive Synthetic Traffic (2)



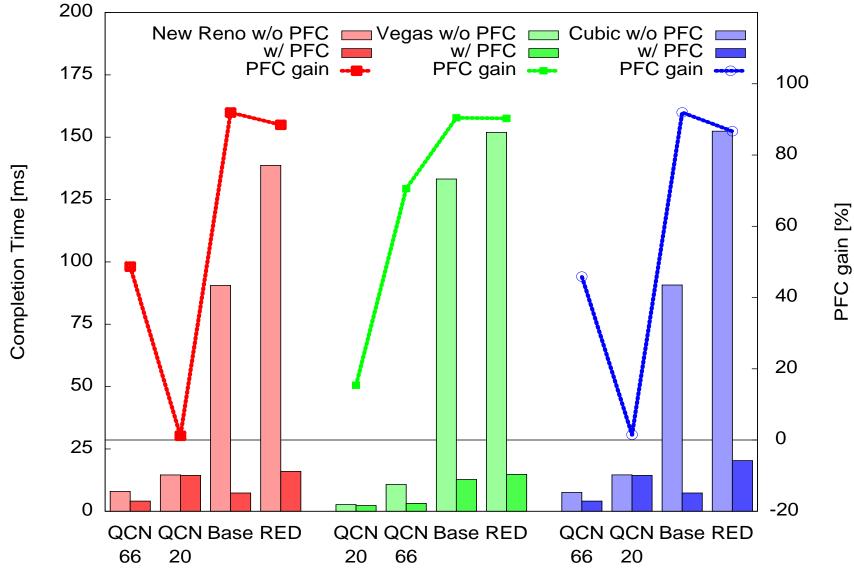
IBM Research GmbH, ZRL

Congestive Synthetic Traffic (3): QCN

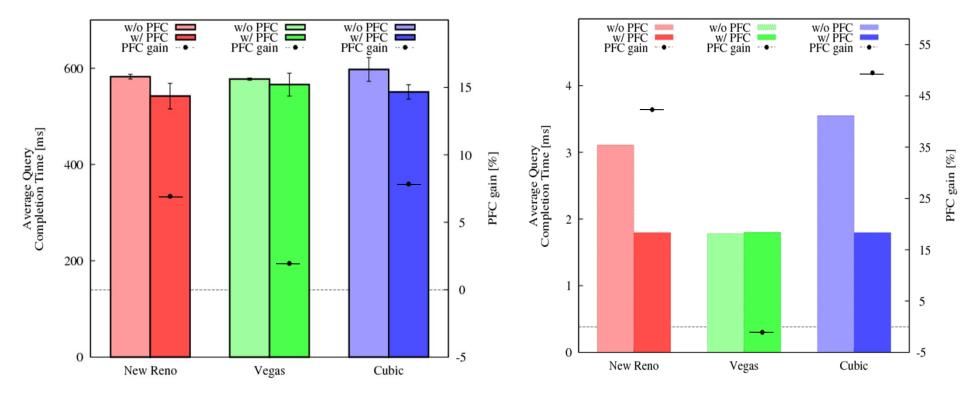

Commercial Workloads: Incast Culprits

- Queries Partition / Aggregate, Scatter/Gather, MapReduce
 - Nodes in chassis 0 are High Level Aggregators (HLA)
 - Each HLA chooses a random Mid Level Aggregator (MLA) in chassis 1 to 4 and distributes the query to them
 - Each MLA distributes the query to all the other servers in it's own chassis that act as Workers (W)
 - Edges 1,2 are Requests
 - Edges 3,4 are Replies (answers)
 - Replies and requests are sent and received in parallel
- Background traffic each server in chassis 1 to 4 chooses a random destination and sends it a single flow

Simulation:


P/A Applications + TCP background

IBM Research GmbH, ZRL


Simulation:

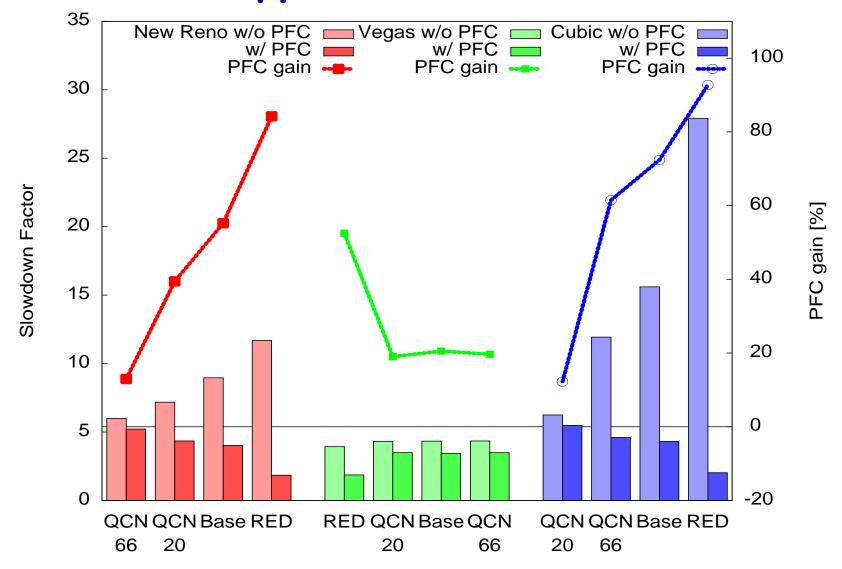
P/A Applications + UDP background

IBM Research GmbH, ZRL

Hardware Platform Validation (1) P/A workload w/o background

Hardware Results

Simulation Results


IBM Research GmbH, ZRL

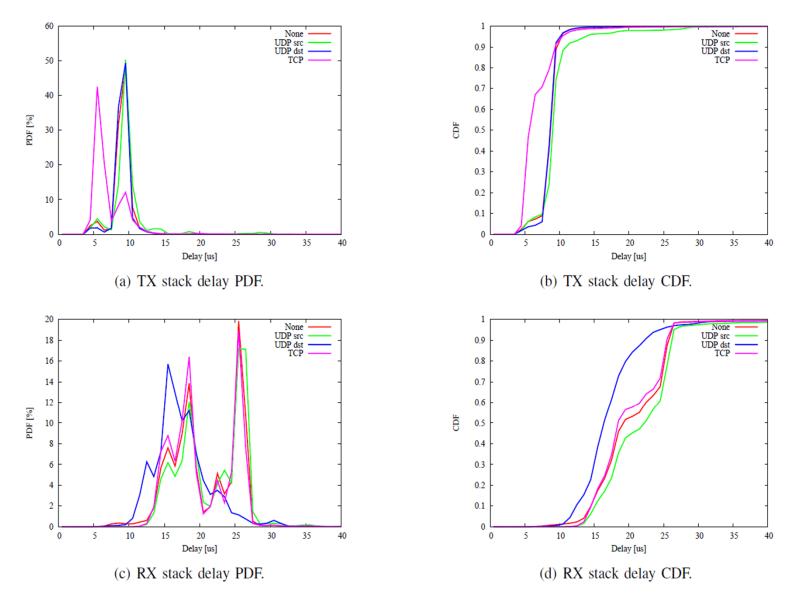
Hardware Platform Validation (2)

- PFC is always beneficial...
- Not as spectacular as in the 10G DCB
- Why only 7-8% improvement?
 - 100x slower network (Fast Ethernet vs. 10Gbps)
 - No CEE support
 - Only 10 end nodes (10 vs. 80)
 - Simple network topology (3 switches)
 - No access to the 802.3x PAUSE thresholds
 - Consistent w/ most recent other h/w publications

Simulation:

Scientific Applications - HPC Workload

IBM Research GmbH, ZRL


Conclusions

- How does TCP perform over CEE ?
 - TCP Vegas is the best
 - Cubic not well suited
- Is PFC beneficial ?
 - YES: Loss is a latency singularity!
- Is QCN beneficial?
 - Depends
 - if TCP competes against UDP => YES
 - on the proper tuning per application => Not practical
 - This actually may mean NO
 - Ditto for RED
- To fix: TCP's RTO calculations are broken for DCN

Backup slides

OS Stack delays

IBM Research GmbH, ZRL

Simulation Parameters

Parameter	Value	Unit	Parameter	Value	Unit
ТСР					
buffer size	128	KB	TX delay	9.5	μ s
max buffer size	256	KB	RX delay	24	μs
default RTO	10	ms	timer quanta	1	$\mu \mathrm{s}$
min RTO	2	ms	reassembly queue	200	seg.
RTO variance	20	ms			
ECN-RED					
min thresh.	25.6	KB	W_q	0.002	
max thresh.	76.8	KB	P_{max}	0.02	
QCN					
$\overline{Q_{eq}}$	20 or 66	KB	fast recovery thresh.	5	
W_d	2		min. rate	100	Kb/s
G_d	0.5		active incr.	5	Mb/s
CM timer	15	ms	hyperactive incr.	50	Mb/s
sample interval	150	KB	min decr. factor	0.5	
byte count limit	150	KB	extra fast recovery	enat	oled
PFC	•				
min thresh.	80	KB	max thresh.	97	KB
Network hardwar	e				
link speed	10	Gb/s	adapter delay	500	ns
frame size	1500	В	switch buffer size/port	100	KB
adapter buffer size	512	KB	switch delay	100	ns