

Two-level Cache Architecture

to Reduce Memory Accesses

for IP Lookups

Sunil Ravinder, Mario Nascimento,

Mike MacGregor
Department of Computing Science

University of Alberta

for IP Lookups

Outline

� IP Lookups: Longest-prefix matching

� Prefix caching

� Substride caching, 2-level architecture� Substride caching, 2-level architecture

� Modelling cache hit rates

� Optimal two-level designs

� Experimental results

� Conclusions

IP Lookups

� IP lookups provide forwarding decisions based
on the incoming packet's destination address.

� Involves searching the longest prefix that

matches the packet's destination address.

Successful prefix search determines the output � Successful prefix search determines the output
port (next hop).

IP dest. addr 192.16.28.3

Forwarding
Decision

IP Lookups

Forwarding Engine

Next HopNext Hop DecisionIncoming
IP Destination

Address

Routing Table192.16.28.3

138.196.0.0/16

192.16.28.0/24 P1

P2

Prefix Next Hop

Routing Table192.16.28.3

A classic solution: Prefix caching

� Cache prefixes (and next hops) from previous
lookups.

� A hit in the prefix cache gives the next hop.

� Benefits from temporal locality.Benefits from temporal locality.

� Better than just caching full addresses because
it also captures spatial locality.

Assisting prefix cache misses

� Missing the PC usually forces a table traversal.

� Let’s try to decrease the cost of a PC miss!

� Dynamic substride cache: A new cache
organization that stores “substrides”.

� Lookups that hit in the DSC proceed directly
from an internal node within the routing table -
skipping several memory accesses.

Dynamic substride cache (DSC)

� We obtain substrides by shortening a (recently
looked up) prefix by k bits.

� e.g. for prefix 0001* and k = 1 we obtain the

substride 000*.

DSC stores <substride, table node addr> pairs.� DSC stores <substride, table node addr> pairs.

1

0

1

0

P1

0

P1

0

P3

traversal

1

0

1

0

P1

0

0

P3P1

substride

traversal

Dynamic substride cache (DSC)

� A substride captures a wider IP address space
than its parent prefix.

� Larger values of k increase the space spanned

(�DSC hit rate), but also increase the number of
memory accesses after a DSC hit (�hit cost)memory accesses after a DSC hit (�hit cost)

1

0

1

0

P1

0

P1

0

P3

1

0

1

0

P1

0

P1

0

P3

1

0

1

0

P1

0

0

P3P1
k = 2

1

0

1

0

P1

0

0

P3P1

1

0

1

0

P1

0

0

P3

k = 1

1

0

1

0

P1

0

0

P3P1

k = 0

Proposed architecture

miss full table traversal

Low level memory
(contains IP routing table

in a trie data structure)

IP dest.
address

hit

Prefix Cache
Dynamic
Substride
Cache (DSC)

Next Hop

hitmiss

shortcut into
routing table

Proposed architecture

� Prefix cache sees destination address stream
first. Focused on exploiting temporal and

spatial locality.

� DSC assists lookups that fall in“popular”IP � DSC assists lookups that fall in“popular”IP
address ranges. Assists lookups that miss the

prefix cache.

� Lookups that miss the PC, but hit in the DSC will
skip many memory references.

A short example

111100
101000 (PC)
000101

1111
1010 (DSC)
0001

111100
101000 (PC)
000101

1111
1010 (DSC)
0001

[A]

New reference:
000100111

Hit in DSC

Miss in PC

New reference:
01111001010

Miss in DSC

[B]

New reference:
111100110011

Miss in PC

[C]

Hit in PC

000100
111100 (PC)
101000

0001
1111 (DSC)
1010

000100
111100 (PC)
101000

0001
1111 (DSC)
1010

011110
000100 (PC)
111100

0111
0001 (DSC)
1111

011110
000100 (PC)
111100

0111
0001 (DSC)
1111

Optimal design

� Partition a given number of cache lines between
the PC and DSC.

� Our objective is to minimize the average number

of memory accesses.

Requires a model for cache hit rates.� Requires a model for cache hit rates.

� Start from the footprint function:

� u(k) is the number of unique references in a

stream at the time of the kth reference

� W reflects working set size, a reflects locality

u(k) = Wk a

Hit rate modelling

� take derivative and evaluate at u(k)=C

� derivative of u(k) is the instantaneous
rate of unique references

evaluate at point where unique refs. � evaluate at point where unique refs.
observed have just filled the cache –
this gives the miss rate

� this does not obey the boundary
condition at C=0

M(C) = aW 1/ aC(1−1/ a)

Hit rate modelling

� We propose:

H(x) =1− x

A
+1









−θ

� θ captures the locality in the trace

� A captures the initial hit rate behavior

� H(0)=0, H(∞)=1

� use the same general form of model
for both the PC and the DSC

Optimization Tableau

min

� Fi are the number of references resolved by the PC, DSC and
routing table, respectively

� mi is the number of memory references required when
resolving a reference at level i

(F0m0 + F1m1 + F2m2)

resolving a reference at level i

� m0=0, m1=5, m2=32

Subject to:

total capacity

DSC hits

full table traversals

c0 + c1 = C

F1 = L − L × H0 c0()[] × H1 c1() ≤ L

F2 = L − F0 − F1 ≤ L

Hit rate models in the tableau

� PC and DSC hit rates are modeled as

� A0(c0), A1(c1), θ0 (c0) and θ1 (c1) are
all nonlinear functions (rather than

H(x) =1− x

A
+1









−θ

all nonlinear functions (rather than
just constants)

� break them into linear segments and
add selector variables to choose the
correct segment

� interpolate linearly within a segment

Experiments

� seven traces: four high locality, three
low locality

� all from public sources, paired with a
routing table from the same routerrouting table from the same router

� 6K to 292K prefixes in the tables

� verified optimization tableau by
comparing to exhaustive search

Example optimization surface

Average number of memory
accesses per lookup

Scheme upcb.2 ISP3 FUNET ISP2 ISP1 upcb.1 bell

PC+DSC 4.26 3.26 2.64 1.38 0.89 0.44 0.37

MPC 6.03 4.23 2.78 1.52 1.36 0.61 0.48

Shyu 6.42 4.85 4.25 1.71 1.49 1.13 0.97Shyu 6.42 4.85 4.25 1.71 1.49 1.13 0.97

Akhbari-
zadeh

7.68 5.62 4.32 1.79 3.68 1.92 1.56

Kasnavi 8.34 7.63 5.69 2.84 5.18 4.39 3.67

Multizon
e

10.91 8.47 6.04 2.95 5.77 6.13 5.02

Address
cache

16.67 9.73 6.76 3.26 6.65 9.16 8.94

Conclusions

� Adding the DSC following the PC reduces average number of
memory accesses per lookup

� Reductions up to 40% compared to other current proposals.

� Works well even with low-locality traffic.

Incremental updates possible. � Incremental updates possible.

� Cache hit rate model obeys boundary conditions, usable for
caches in general.

� Optimization tableau verified as accurate by comparing to
exhaustive search.

