
Dissemination of Address
Bindings in Multi-substrate

Overlay Networks

Jorg Liebeherr Majid Valipour

University of Toronto

1

University of Toronto

Internet-centric Networking

3GWiFi

128.100.128.100 64.2.125.201

WiFi

2

WiFi

Internet

• 16:15, Dec 1, 2008.
• traceroute from a 3G interface on an Macbook to a Linux PC.
• Physical distance between systems is approx. 1m.
• jorg:~$ ifconfig
• lo0: flags=8049<UP,LOOPBACK,RUNNING,MULTICAST> mtu 16384
• inet6 fe80::1%lo0 prefixlen 64 scopeid 0x1
• inet 127.0.0.1 netmask 0xff000000
• inet6 ::1 prefixlen 128
• gif0: flags=8010<POINTOPOINT,MULTICAST> mtu 1280
• stf0: flags=0<> mtu 1280
• fw0: flags=8863<UP,BROADCAST,SMART,RUNNING,SIMPLEX,MULTICAST> mtu 2030
• lladdr 00:1f:f3:ff:fe:68:72:12
• media: autoselect <full-duplex> status: inactive
• supported media: autoselect <full-duplex>
• en1: flags=8823<UP,BROADCAST,SMART,SIMPLEX,MULTICAST> mtu 1500
• ether 00:1f:5b:b7:89:cf
• media: autoselect (<unknown type>) status: inactive

Example:
Laptop 1: Macbook with 3G interface
Laptop 2: Thinkpad with Ethernet interface
Distance <1m
jorg:~$ traceroute 130.149.220.38
traceroute to 130.149.220.38 (130.149.220.38), 64 hops max, 40 byte packets
1 82.113.122.185 (82.113.122.185) 311.829 ms 339.046 ms 350.075 ms

3

• media: autoselect (<unknown type>) status: inactive
• supported media: autoselect
• en0: flags=8863<UP,BROADCAST,SMART,RUNNING,SIMPLEX,MULTICAST> mtu 1500
• ether 00:1f:f3:56:8a:9f
• media: autoselect status: inactive
• supported media: autoselect 10baseT/UTP <half-duplex>

10baseT/UTP <full-duplex> 10baseT/UTP <full-duplex,hw-loopback> 10baseT/UTP <full-duplex,flow-control> 100baseTX <half-duplex> 100baseTX <full-duplex> 100baseTX <full-
duplex,hw-loopback> 100baseTX <full-duplex,flow-control> 1000baseT <full-duplex> 1000baseT <full-duplex,hw-loopback> 1000baseT <full-duplex,flow-control> none

• vmnet8: flags=8863<UP,BROADCAST,SMART,RUNNING,SIMPLEX,MULTICAST> mtu 1500
• inet 192.168.130.1 netmask 0xffffff00 broadcast 192.168.130.255
• ether 00:50:56:c0:00:08
• vmnet1: flags=8863<UP,BROADCAST,SMART,RUNNING,SIMPLEX,MULTICAST> mtu 1500
• inet 192.168.236.1 netmask 0xffffff00 broadcast 192.168.236.255
• ether 00:50:56:c0:00:01
• ppp0: flags=8051<UP,POINTOPOINT,RUNNING,MULTICAST> mtu 1500
• inet 10.40.34.63 --> 10.64.64.64 netmask 0xff000000
• jorg:~$ traceroute 130.149.220.38
• traceroute to 130.149.220.38 (130.149.220.38), 64 hops max, 40 byte packets
• 1 82.113.122.185 (82.113.122.185) 311.829 ms 339.046 ms 350.075 ms
• 2 82.113.123.226 (82.113.123.226) 369.430 ms 339.371 ms 349.988 ms
• 3 OSRMUN1-Vl212.net.de.o2.com (82.113.122.53) 339.959 ms 369.970 ms 369.174 ms
• 4 IARMUN1-Gi0-2-199.net.de.o2.com (82.113.122.2) 349.670 ms 335.778 ms 349.720 ms
• 5 IARMUN2-Gi-0-1.net.de.o2.com (82.113.122.58) 329.990 ms 359.114 ms 359.717 ms
• 6 xmwc-mnch-de02-gigaet-2-26.nw.mediaways.net (195.71.164.225) 319.921 ms 338.751 ms 389.796 ms
• 7 zr-fra1-ge0-2-0-5.x-win.dfn.de (188.1.231.93) 369.923 ms 389.062 ms 409.913 ms
• 8 zr-pot1-te0-7-0-2.x-win.dfn.de (188.1.145.138) 419.876 ms 449.205 ms 439.918 ms
• 9 xr-tub1-te2-3.x-win.dfn.de (188.1.144.222) 429.851 ms 409.338 ms 429.804 ms
• 10 kr-tu-berlin.x-win.dfn.de (188.1.33.82) 439.768 ms 439.172 ms 450.061 ms
• 11 t-labs.gate.TU-Berlin.DE (130.149.235.15) 449.921 ms 418.957 ms 409.705 ms
• 12 * * *

1 82.113.122.185 (82.113.122.185) 311.829 ms 339.046 ms 350.075 ms
2 82.113.123.226 (82.113.123.226) 369.430 ms 339.371 ms 349.988 ms
3 OSRMUN1-Vl212.net.de.o2.com (82.113.122.53) 339.959 ms 369.970 ms 369.174 ms
4 IARMUN1-Gi0-2-199.net.de.o2.com (82.113.122.2) 349.670 ms 335.778 ms 349.720 ms
5 IARMUN2-Gi-0-1.net.de.o2.com (82.113.122.58) 329.990 ms 359.114 ms 359.717 ms
6 xmwc-mnch-de02-gigaet-2-26.nw.mediaways.net (195.71.164.225) 319.921 ms 338.751 ms 389.796 ms
7 zr-fra1-ge0-2-0-5.x-win.dfn.de (188.1.231.93) 369.923 ms 389.062 ms 409.913 ms
8 zr-pot1-te0-7-0-2.x-win.dfn.de (188.1.145.138) 419.876 ms 449.205 ms 439.918 ms
9 xr-tub1-te2-3.x-win.dfn.de (188.1.144.222) 429.851 ms 409.338 ms 429.804 ms
10 kr-tu-berlin.x-win.dfn.de (188.1.33.82) 439.768 ms 439.172 ms 450.061 ms
11 t-labs.gate.TU-Berlin.DE (130.149.235.15) 449.921 ms 418.957 ms 409.705 ms
12 * * *
13 * * *
14 * * *

An Analogy

Internet today
appears like

Mainframe computing
of 1970s

3GWiFi

128.100.128.100 64.2.125.201

WiFi

4Internet

WiFi

Overlay -based Networking

• Applications/devices self-
organize as a network

• Application networks define their
own address space

• Access infrastructure only if

WiFi

10010011 11110100

Overlay network

5

• Access infrastructure only if
needed

Public
IP network

ZigBee

100101

101 111 101

Overlay network

What is an overlay anyway?

• An overlay network is a virtual
network of nodes and logical links
built on top of an existing network

• A virtual link in the overlay
corresponds to a path in the
underlay

6

Substrate (“underlay”) network

underlay

Sensors/Motes

Multiple Substrate

Public
IP network

7

• Connection to a single infrastructure/address space not feasible or desirable
• Objective:

Build self-organizing overlay network over any coll ection of substrates

New Network
Layers

Private IP
networks

Multi-substrate Networks

NAT IPv6IPv4

8

Multi-substrate Networks

WiFi

9

GigE

Multi-substrate Networks

10

ZigBee Application-layer
Overlay

ZigBee
Public IP network

Address Bindings in Single -substrate Overlay

C

A DB

Overlay node
identifier

Substrate address

• Address binding: [A; SA(A)]

11

Substrate Network

SA(A)
SA(C)

SA(B)
SA(D)

Substrate address

C

A DB

Address Bindings in Multi-substrate Overlay

Overlay node
identifier

Substrate address

SA(A) SA(B)

Substrate S3Substrate S2Substrate S1

SAS1(A)

SAS1(C)

SAS2(C)

SAS2(B) SAS3(A)

SAS3(B)

SAS3(D)

• More complex address binding: [A; SA S1(A), SAS3(A)]

12

Substrate address

Cross Substrate Advertising

• To send a message over a substrate network to a
destination, a node must use the proper binding for that
destination

Problem:
How to efficiently propagate information about address

13

How to efficiently propagate information about address
bindings?

Solution:
Protocol mechanisms for exchanging address bindings
� Cross Substrate Advertisement (CSA)

This paper :
Design and evaluate protocol mechanisms for CSA

CSA Mechanism: Direct Exchange

Direct Exchange: Use directly connected substrates to
exchange address bindings

Example:
• B prefers non-broadcast Substrate 2, but does not have needed address
• Use broadcast-enabled Substrate 1 to advertise address for Substrate 2

14

B
Substrate S2
(no broadcast)A

Substrate S1
(broadcast enabled)

SAS2(A)

Hello
Hello (+ SAS2(A))

Hello

CSA Mechanism: Relayed Exchange

Relayed Exchange: Intermediate nodes forward address
binding information

Example:
• C joins the overlay network on Substrate 3, but prefers to use Substrate 1
• A forwards its address bindings to B, which relays it to C

15

B

C

Substrate 3Substrate S2

A

Substrate S1
(no broadcast)

SAS1(A)

Cross Substrate Advertising (simplified)
- Outgoing -

Overlay SocketNode

Cross-Substrate Advertisement

ID = A

Source: A

16

Node Adapter

Adapter

Interface

1

Interface

2

Interface

3

SAS1(A) SAS2(A) SAS3(A)

SAS1(A)

SAS2(A)

SAS3(A)

List of substrate addresses

Source: A SAS1(A) SAS2(A) SAS3(A)

Cross Substrate Advertising (simplified)
- Incoming -

Overlay SocketNode

Cross-Substrate Advertisement

ID Substrate addresses

Source: A

17

Node Adapter

Adapter

Interface

2

Interface

3

ID Substrate addresses

A SAS1(A), SAS1(A), SAS1(A)

Source: A SAS1(A) SAS1(A) SAS1(A)

Implementation

• CSA Protocol realized as part of an open source overlay
software system (www.hypercast.org)

• Implemented as a layer:
– Mechanisms are independent of protocol that builds – Mechanisms are independent of protocol that builds

topology

• Considers preference for substrates
• CSA message types:

– Request address list
– Update

18

Evaluate Methods for Relayed Address Exchange

Exchange address lists
periodically Attach address lists to

Gossip Protocol-driven
dissemination

19

periodically Attach address lists to
protocol messages

Add address list
to each message
with info on node

Request address list
when info is needed

Add preferred address
to each message with
info on node

“Push” “Pull”“Push Single”

Experimental Evaluation

• Local Emulab Testbed
• 20 Linux nodes

CPU 2xQuad-Core Xeon 5400 (2 Ghz)

RAM 4G DDR2

• Software:
• Hypercast with CSA

• Delaunay Triangulation protocol

• Multiple UDP/IP substrates

Interface 8x1Gbps (4 Intel card, 4 NetFPGA)

Mapping of Nodes to Substrates

• K x K substrates � (K+1) x (K+1) regions
• Nodes distributed uniformly across regions

K=2

R R
R11

R22

R12 R13

R23

R31

R21

R33R23

Performance metrics

• Stability:
Do nodes reach a stable state in overlay topology ?
– % of nodes satisfying stability criterion for local neighborhood

• Connectivity: Do nodes form a single overlay network?
– # of partitioned topologies

22

A single stable overlay topology has formed when
(1) 100% of nodes are stable; and
(2) there is one topology

Stability

K=8 (64 substrates), 648 nodes

Push/Pull

Push-singlePush-single and gossip

None

Gossip

250 ms

500 ms

1000 ms

Connectivity

K=8 (64 substrates), 648 nodes

N
um

be
r

of
 p

ar
tit

io
ns

N
um

be
r

of
 p

ar
tit

io
ns

N
um

be
r

of
 p

ar
tit

io
ns

N
um

be
r

of
 p

ar
tit

io
ns

Stability

K=17 (289 substrates), 2592 nodes

Push/Pull

Push-singlePush-single and gossip

None

Gossip

250 ms

500 ms

1000 ms

Protocol overhead

Received Traffic (average per node): K=17 (289 substrates), 2592 nodes

Stability under Churn

Push/Pull

Push-singlePush-single and gossip

Percentage of stable nodes: K=8, 648 nodes and 25% leave at t=250

None

Gossip

250 (ms)

500 (ms)

1000 (ms)

Summary

• Support for self-organizing overlay protocols with multiple
substrate networks

• Developed methods for exchanging address bindings
– Cross-Substrate Advertisement

• Experimental evaluation: • Experimental evaluation:
– Effective in achieving connectivity even with large number

of substrates
– Trade-off of overhead vs. convergence

• CSA mechanisms crucial for self-organizing multi-substrate
overlay networks

Overlay Sockets

29

Problem to solve: Multiple substrate networks

Overlay Socket

Forwarding Engine Message Store

Overlay Socket Interface

S
ta

ti
s

ti
c

s
 I

n
te

r
fa

c
e

Application

Receive

Buffer

Overlay Node

Node Adapter Socket Adapter

Application Program

30

Substrate

Substrate 2

Substrate 3

Multi-substrate overlay socket

s
ti

c
s

 I
n

te
r
fa

c
e

Adapter has one

31

S
ta

ti
s

Substrate

Substrate 2

Substrate 3

Adapter has one
interface for each
substrate.

