

Metering Re-ECN: Performance Evaluation and its Applicability in Cellular Networks

Ying Zhang, Ingemar Johansson, Howard Green, Mallik Tatipamula

Ericsson Research

Resource allocation and usage accountability

- Mobile data traffic grows rapidly
- Operators need to reduce OPEX
 - Need efficient resource allocation and flow management
- Resource utilization is not balanced
 - A few large flows constituting a large portion of total traffic

Problem

- Problem: defining and enforcing resource fair sharing in cellular networks
- > The definition of fair sharing
 - Existing proposals control relative flow rates
 - Equal flow rate does not imply fairness
 - Fairness should be applied to the principle entities in the network
 - E.g. user or user groups
 - Fairness should be defined on one's action on other
 - How much each user's transfers restrict other transfers

Re-ECN [Sigcomm05]

- Building upon ECN
 - Marking packets instead of dropping during congestion
- Re-inserting the congestion feedback to the network
 - Carrrying prediction of congestion caused on the remaining path
- Providing information to hold senders accountable
 - Track amount of congestion that a flow causes downstream

Applying Re-ECN in Cellular network

- Interesting properties:
 - Does not enforce any bitrate limitation
 - Congestion volume is the important measure
 - Controls the overall congestion level in the system and thereby ensure a better QoS for all users
 - Enforces the applications to share the available bandwidth in a "fair" way
- Main challenges:
 - Performance gain of deploying in cellular network is not quantified
 - Feasibility of deployment is not clear
 - Endpoints need changes
 - Incremental deployment

Outline of this talk

- Motivation
- Introduction to Re-ECN
- > Two deployment strategies of Re-ECN in Cellular network
- Performance analysis
- Conclusion

ECN (RFC3168)

 Network is unaware of the congestion a flow causes downstream

- Only endpoints have full knowledge

re-ECN (re-inserted feedback)

Packets expose congestion

Congestion exposed at any node in the network

Incentive framework

Outline of this talk

- Motivation
- Introduction to Re-ECN
- > Two deployment strategies of Re-ECN in Cellular network
- Performance analysis
- Conclusion

Drawback: deployment overhead

GTP-U tunneling

Traffic are transferred in tunnels
 between mobile functional nodes

- > Supporting ECN in the GTP-U tunnels
 - Outer IP header is ECN capable
 - Do not copy marking on outer IP header to inner IP header
 - GTP-U uses optional sequence number for feedback

- Outgoing interface on Serving-GW and PDN-GW are made ECN capable to mark the packets
 - Setting ECN-CE bits on outer IP header probabilistically based on queue size
 - Routers along the path may be ECN-capable

- > eNodeB collects ECN-CE marks and feeds it back to PDN-GW in GTP-U header extension
 - Feedback contains congestion on path from PGW to eNodeB
 - Report frequency is kept sufficiently low to minimize overhead

- > PDN-GW receives the feedback and re-inserts the congestion information into the GTP-U headers
 - PDN-GW uses a token-bucket algorithm to allocate resources over time
 - PDN-GW prioritize based on the ECN marked packets and the available tokens
 - Routers and S-GW along the path can prioritize the flows based on the feedbacks.

Advantages

- > Builds a Re-ECN like concept in a 3GPP domain
- Does not require modification of endpoints like Re-ECN does
- GTP-U tunnel between PDN-GW and eNodeB is used to carry congestion information
 - eNodeB reports congestion information back to PDN-GW
 - PDN-GW can use information for:
 - Policing, limit congestion volume for a given user
 - Different user categories may be allowed different congestion volume quotas (Gold, Silver, Bronze)
 - > Diagnosis
 - Find weak or heavily loaded points in the network
 - Find sources of DDoS attacks
 - Find services that load network more than justified/allowed

Outline of this talk

- Motivation
- Introduction to Re-ECN
- > Two deployment strategies of Re-ECN in Cellular network
- Performance analysis
- Conclusion

Simulation setup

- > NS-2 simulator 2.30
 - UMTS/HSDPA Extension EURANE
 - Re-ECN module
- > Questions to answer
 - Impact of Re-ECN Parameter settings
 - Impact of network conditions
 - Comparison with other resource control mechanisms
- > Metrics: goodput, fairness

Impact of RE-ECN parameters

- > Policer:
 - Token bucket rate: r tokens/sec
 - Bucket initial size and the maximum bucket size
- > ECN Marking
 - Marking probability
 - Minimum queue size and

The more tokens, the more resources are allocated to the user

Impact of RE-ECN parameters

- > Policer:
 - Token bucket rate: r tokens/sec
 - Bucket initial size and the maximum bucket size
- > ECN Marker
 - Marking probability
 - Minimum queue size and n

Larger initial bucket size leads to higher goodput but worse fairness

Impact of RE-ECN parameters

- > Policer:
 - Token bucket rate: r tokens/sec
 - Bucket initial size and the maximum bucket size
- > ECN Marker
 - Marking probability
 - Minimum queue size and m

Marking probability p also controls the restrictiveness

Comparison with other resource control schemes

ECN and Re-ECN perform best The difference between ECN and Re-ECN is not significant

Summary and conclusion

- More evaluation results
 - Parameter setting has large impact on the performance
 - Large transmission error rate in the air interface will result in low performance
 - Re-ECN framework can be used for defending against DoS attack and providing QoS for different applications
- Propose two architecture framework for Re-ECN in LTE networks
 - Keeping the end hosts unchanged
 - Easy to deploy

Q&A?

Backup slides

Impact of network conditions

> Different error rate

With small error rate, Re-ECN has both high throughput and high fairness
The benefit becomes less significant as the transmission error rate increases

