Joint Mobile Energy Replenishment and Data Gathering in Wireless Rechargeable Sensor Networks

Miao Zhao, Ji Li and Yuanyuan Yang Stony Brook University Sep 8, 2011

Outline

Introduction

- Joint mobile energy replenishment and data gathering (J-MERDG)
 - Background of our work
 - System architecture and timing of operation
 - Anchor point selection
 - Optimal mobile data gathering scheme
- Numerical results
- Conclusion

1. Introduction

Wireless sensor networks (WSNs)

- Applications
 - Military: battle field surveillance
 - Environment: water pollutions
 - Industry/agriculture: machine health, soil moisture
 - Daily life: health status, smart home

Main tasks of sensors

- Surveillance: temperature, humidity, sound, atmospheric pressure
- Data gathering: aggregate data from scattered sensors to data sink

Energy constraint in wireless sensor networks

Limited energy supply: batteries

- Energy consumption: sensing + wireless communications
 - Wireless communications is the major consumer
- The closer to the data sink, the faster to deplete energy

Renewable energy supply to prolong network lifetime

- Energy harvesting
 - Solar, wind, thermal energy, ...

- Sensitive to the ambient environment dynamics
 - Solar harvesting: $\pi_r = I \times \eta_p \times \rho_e \times A$
- Electromagnetic radiation based wireless transfer
 - Low efficiency: $P_{Rx} \propto \frac{P_{Tx}}{R^3}$
 - Even with directional antennas

Challenges in designing a WSN

- Network performance:
 - How well can it serve?
 - High network utility
 - Low data latency
- Network lifetime:
 - How long can it serve?
 - The sensor nodes deplete their energy could make the network disconnected
 - Replacement of the dead sensor nodes is challenging & costly

- Performance v.s. lifetime

2. Joint mobile energy replenishment and data gathering (J-MERDG)

High efficiency wireless power recharge

- Wireless power transfer via magnetic resonance

60W over 2m @40% (MIT)

60W over 2-3 ft @75% (Intel)

3.3kW over 18 cm @90% (WiTricity)

- New battery material for ultra-fast charging
 - Charging rate ~400C
 - Fully charge a 2200mAh battery in seconds!

Mobile data gathering

Mobile data gathering (MDG)

- One or multiple vehicles (SenCars)
- SenCar sojourns at specified locations (*anchor points*) for data collection and node recharging
- Sensors upload data to SenCar when it arrives

Characteristic and advantages of mobile data gathering

- Greatly save energy at sensors
 - SenCar fully or partially takes over the routing burden from sensors
- Short-range communications between sensors and SenCars
 - Single-hop or limited multi-hop routing for data uploading
- Work well for both connected and disconnected networks
 - SenCar plays as a "bridge" to link sub-networks

System architecture (J-MERDG)

Wireless charging of the sensor nodes

Architecture of joint mobile energy replenishment and data gathering (J-MERDG).

Timing of operation (J-MERDG)

In each time interval

- Select a subset of sensors and consider the locations of selected sensors as anchor points
 - Q: How to select sensors?
- SenCar visits anchor points to charge the located sensors
- At each anchor point, SenCar gathers data from nearby sensors via multihop routing
 - Q: How to achieve satisfactory performance for data gathering?

Sensors report battery status to SenCar

Timing of joint mobile energy replenishment and data gathering (JMERDG).

Anchor point selection algorithm

- Find sensors with urgent need of energy replenishment as many as possible with given L.
 - Sort sensors in the increasing order of battery energy
 - Iteratively reduce number of sensors to half each time by considering TSP length among the elements

An example of anchor point selection result.

ANCHOR POINT SELECTION ALGORITHM FOR TIME INTERVAL *k*

\sqrt{S} is the set of sensors, $B_e^{(k-1)}$ is the set of energy states of sensors at the end of time interval $k-1$, and L is the tour length pound				
nput: S = {1,2,,N}, B ^(k-1) _{e(k)} = { $\breve{b}_i^{(k-1)} i \in S$ }, and L Dutput: Anchor point list A ^(k) _{e(k)} for time interval				
Sort the battery states in $B_e^{(\kappa-1)}$ in an increasing order and record				
he result in another set B';				
viap S to another set S' by rearranging the sensors in the B'				
$u \leftarrow 1; v \leftarrow S' ; m \leftarrow 0; p \leftarrow 0;$				
while true do				
if $u > v$				
$p \leftarrow v$; break;				
end if $m = \left \frac{1}{2} (u+v) \right ;$				
// We use $S'(m)$ to represent the m_{tb} element in S'				
$A^{(k)} \leftarrow \{S'(1), S'(2), \dots, S'(m); $ Find an approximate shortest tour among the anchor points in				
$A^{(k)}$ and let $TSP(A^{(k)})$ denote its length;				
case				
$TSP(A^{(k)}) < L: u \leftarrow m+1;$ $TSP(A^{(k)}) = L: p \leftarrow m; break;$				
$\operatorname{TSP}(\mathbf{A}^{(k)}) > L : v \leftarrow m-1;$				
end case				
$ \begin{array}{l} \text{end while} \\ A^{(k)} \leftarrow \{S'(1), S'(2), \dots, S'(p)\} \end{array} $				
Find an approximate shortest tour among the anchor points				
n A ^(k)				

Optimal mobile data gathering scheme (MDG)

Important notations (for a particular time interval k)

- *U_r(·)* : data utility function, strictly concave, increasing, twice-differentiable with respect to the amount of data uploaded from sensor i
- $f_{ij,a}^{(k)}$: flow rate on link (i,j) destined to SenCar at anchor point a

 $r_{ia}^{(k)}$

: data rate of sensor i when SenCar sojourns at anchor point a

MDG: solution

- MDG lacks of strict concavity
- Proximal approximation based algorithm
- Iterative steps in proximal approximation
 - Add a quadratic term $-\frac{1}{2c} \| \mathbf{r}^{(k)} \mathbf{x}^{(k)} \|_2^2 = -\frac{1}{2c} \sum_{i \in S} \sum_{a \in A^{(k)}} \left(r_{i,a}^{(k)} x_{i,a}^{(k)} \right)^2$
 - **X** is an additional vector and c is a positive constant
 - In iteration t

Step 1: Fix $x_{i,a}^{(k)} = x_{i,a}^{(k)}[t]$ for all $i \in S$ and $a \in A^{(k)}$ and solve the following problem to obtain the optimal $r_{i,a}^{(k)}[t]$ and $f_{ij,a}^{(k)}[t]$.

$$\max_{\mathbf{x}^{(k)},\mathbf{f}^{(k)}} \sum_{i \in S} U_i \left(\sum_{a \in A^{(k)}} r_{i,a}^{(k)} q \tau^{(k)} \right) - \frac{1}{2c} \| \mathbf{r}^{(k)} - \mathbf{x}^{(k)} \|_2^2$$
(5)

subject to constraints (2), (3) and (4).

Step 2: Set $x_{i,a}^{(k)}[t+1] = r_{i,a}^{(k)}[t]$ for all $i \in S$ and $a \in A^{(k)}$.

• Distributed implementation developed based on dual decomposition

3. Numerical results

Network setup

- 100m×100m area
- 10 wireless rechargeable sensors
- Utility function $U_i(\cdot) = w_i \log(\sum r_{i,a}^{(k)} q\tau + 1)$
- -1 hour for each time interval^a length T
- 5 migration tours in each time interval.

Parameter settings

Parameter	Value	Parameter	Value
B_i	2100mAh	e_{ij}	0.3mJ/Kbit
W _i	100	$e_{i\Lambda_i}$	0.02J/Kbit
$\theta(n)$	$\frac{1}{1+10n}$	L	200m
\mathcal{V}_{s}	1m/s	σ	0.9

Convergence of Proximal Approximation Based Algorithm

- Convergence of proximal approximation based algorithm
 - Data rates: stable after 10 iterations
 - Recovered flow rates: differences within 5% of their optimal values after 500 iterations

Performance of J-MERDG

- High network utility & perpetual network operations
 - Higher cumulative network utility can be obtained in the cases with a smaller T.
 - More chances for energy replenishment under a smaller *T*.

9 times (*T* = 1 hour) v.s. twice (*T* = 6 hours).

J-MERDG vs. mobile data gathering in solar harvesting system (MDG-SH)

- High network utility: 48%, 59% and 66% higher than MDG-SH in sunny, cloudy and shadowy days, respectively.
- Stable performance both during daytime and night time.

• Solar irradiance data from National Renewable Energy Laboratory.

• $\pi_r = I \times 0.06 \times 1369 mm^2$

. Conclusion

- Joint design of energy replenishment and data gathering (J-MERDG) by exploiting mobility: the first work.
- Anchor points selection algorithm: balance between the energy replenishing range and data gathering latency.
- Flow-level network utility maximization model. We propose a proximal approximation based algorithm to obtain the system-wide optimum by adjusting data rates, link scheduling and flow routing in a distributed manner.
- Extensive numerical results: perpetual operations of the network AND significant network utility enhancement (outperforms solar harvesting system by 48%).

Thank you!