FACULTY OF SCIENCE

COMPUTING SCIENCE

MG-Local: A Multivariable Control Framework for Optimal Wireless Resource Management

Chen Liu (Ph.D Candidate) Dr. M. H MacGregor & Dr. Janelle Harms

Outline

- Introduction
- MG-Local Resource Management
- Performance Results
- Implementation and Application
- Conclusions

Introduction

User Perspective

- Increasing application variety
- Growing traffic demands
- Diverse Quality of Service (QoS) requirements

Network Perspective

- Limited resources
- Lossy transmissions
- Time-varying network conditions

Challenges

Effective control vs. dynamic interference

Adaptive multivariable control

Efficient resource utilization vs. waste

- G-Local optimization

Fair resource allocation vs. diversity and interference

- Configurable and adaptive fairness

Control overhead vs. control-message passing

Local information inference

Adaptive Multivariable Control (1/3)

Temporal interference

- Earlier transmissions
- Simultaneous transmissions
- Future transmissions

Spatial interference

- Hidden terminals
- Exposed terminals

Adaptive Multivariable Control (2/3)

- Transmission probability (P_i)

- Defines the probability to transmit when the physical carrier sensing detects a busy medium
- Controls both hidden and exposed terminals

• Avoidance window $(Awin_i)$

- Specifies the maximum number of slots that a node can randomly select to wait before starting transmission
- Controls collisions caused by simultaneous transmissions

Resolution window (Rwin_i)

- Defines the contention window to avoid repeated collisions
- Controls collisions caused by future transmissions

Adaptive MultiVariable Control (3/3)

Resource consumption model

$$x_i = R(P_i, Awin_i, Rwin_i)$$

- $= e_1 \cdot P_i + e_2 \cdot Awin_i + e_3 \cdot Rwin_i$
- + $e_4 \cdot P_i \cdot Awin_i + e_5 \cdot P_i \cdot Rwin_i$
- + $e_6 \cdot Awin_i \cdot Rwin_i + e_7$

$$coll_{i} = CL(P_{i}, Awin_{i}, Rwin_{i})$$

$$= f_{1} \cdot P_{i} + f_{2} \cdot Awin_{i} + f_{3} \cdot Rwin_{i}$$

$$+ f_{4} \cdot P_{i} \cdot Awin_{i} + f_{5} \cdot P_{i} \cdot Rwin_{i}$$

$$+ f_{6} \cdot Awin_{i} \cdot Rwin_{i} + f_{7}$$

Least square fitting

Noise processing

$$x_i^m(t) = w \cdot x_i^m(t) + (1 - w) \cdot x_i^m(t - 1)$$

$$coll_i^m(t) = w \cdot coll_i^m(t) + (1 - w) \cdot coll_i^m(t - 1)$$

G-Local Optimization (1/2)

- Reduces the gap between resource allocation and utilization
- Supports various fairness criteria
- Approaches the global optimum via local inference without message passing
- Has the advantages of both global and local optimization

G-Local Optimization (2/2)

Formulation

$$\max k \cdot U_i(x_i) - (1 - k) \cdot (C_i(x_i) + W_i(x_i))$$

s.t. XMIN $\leq x_i \leq XMAX$

Components

Consumption utility

$$U_i = \log(x_i)$$

Consumption cost

– Waste cost

$$C_{i} = \frac{1}{x_{f}} \cdot x_{i}$$
$$W_{i} = \frac{coll_{i}}{B} + \frac{(x_{f} - x_{i})}{B}$$

MG-Local Framework (1/3)

ATATA10

Combines the adaptive multivariable control and G-Local optimization

$$\begin{aligned} \max \ V(P_i, Awin_i, Rwin_i) &= k \cdot logR(P_i, Awin_i, Rwin_i) \\ &- (1-k) \cdot \frac{n_i^{share} - 1}{B} \cdot R(P_i, Awin_i, Rwin_i) \\ &+ (1-k) \cdot (\frac{CL(P_i, Awin_i, Rwin_i)}{B} + \frac{1}{n_i^{share}}) \end{aligned}$$

s.t. $0 < P_i < 1$; $AWINMIN \leq Awin_i < AWINMAX$; $RWINMIN \leq Rwin_i < RWINMAX$;

MG-Local Framework (2/3)

Lagrange Transformation

$$\begin{array}{ll} max \quad V(P_{i}, Awin_{i}, Rwin_{i}) &+ \lambda_{i}^{pl} \cdot P_{i} - \lambda_{i}^{p2} \cdot (P_{i} - 1) \\ &- \lambda_{i}^{cal} \cdot (CAMIN - Awin_{i}) - \lambda_{i}^{ca2} \cdot (Awin_{i} - CAMAX) \\ &- \lambda_{i}^{crl} \cdot (CRMIN - Rwin_{i}) - \lambda_{i}^{cr2} \cdot (Rwin_{i} - CRMAX) \end{array}$$

Dual Problem

ATAT010

 $D(P_i, Awin_i, Rwin_i, \lambda_i) = max L$ min $D(P_i, Awin_i, Rwin_i, \lambda_i)$

MG-Local Framework (3/3)

Control Policies

TATAT01

$$\begin{split} P_{i}(t) &= P_{i}(t-1) + k_{p} \cdot \frac{\partial L}{\partial P_{i}} \\ Awin_{i}(t) &= Awin_{i}(t-1) + k_{ca} \cdot \frac{\partial L}{\partial Awin_{i}} \\ Rwin_{i}(t) &= Rwin_{i}(t-1) + k_{cr} \cdot \frac{\partial L}{\partial Rwin_{i}} \end{split}$$

Experimental Results

Comparative Study

- CSMA/CA
- Single Variable Control
- Global Optimization
- Multivariable control with SPSA

System Parameters

Parameters	Value	
Packet size	512 B	
Channel capacity	244 pps	
Transmission range	200 meters	
Carrier sensing range	400 meters	

Three-Link Experiment

7476101

Three-Link Results

TATATO

	Link 1 (pps)	Link 2 (pps)	Link 3 (pps)
ID	122.07	81.38	122.07
AM	116.32	61.68	114.54
SP	120.71	25.41	121.02
SVC	67.23	44.45	67.35
GB	68.93	42.65	69.21
CSMA/CA-ET	182.10	1.02	182.09
CSMA/CA-HT	65.37	55.55	65.30

Department of Computing Science

Large Random Networks

Conclusions

We propose a novel framework of resource management: MG-Local

- Improve network control via adaptive multivariable control
- Achieve optimal trade-off between fair allocation and efficient utilization
- Provide configurable fairness support
- Incurs zero message passing via local information inference

Work in progress

- Extend MG-Local to multi-hop wireless networks
- Extend MG-Local to achieve cross-layer congestion and collision control

Thank you!

TATAT0

Questions?