Measurement-Based Admission Control for Flow-Aware Implicit Service Differentiation

Jordan Augé (UPMC Sorbonnes Universités & CNRS), Sara Oueslati (Orange Labs), James Roberts (INRIA)

23rd International Teletraffic Congress (ITC 2011), San Francisco (CA), Sep 6-8, 2011

ELE DOG

Outline

1 Introduction to Cross-Protect

2 MBAC algorithms for Cross-Protect

Outline

1 Introduction to Cross-Protect

2 MBAC algorithms for Cross-Protect

3 Evaluation

ELE DOG

A proposition to realize implicit differentiation of streaming and elastic flows, and guarantee their performance.

ELE DOG

A proposition to realize implicit differentiation of streaming and elastic flows, and guarantee their performance.

Streaming and elastic flows

= nan

A proposition to realize implicit differentiation of streaming and elastic flows, and guarantee their performance.

A proposition to realize implicit differentiation of streaming and elastic flows, and guarantee their performance.

A proposition to realize implicit differentiation of streaming and elastic flows, and guarantee their performance.

A proposition to realize implicit differentiation of streaming and elastic flows, and guarantee their performance.

A proposition to realize implicit differentiation of streaming and elastic flows, and guarantee their performance.

Streaming and elastic flows

Combination of two mechanisms

provide estimators

I DAC

ХР

A proposition to realize implicit differentiation of streaming and elastic flows, and guarantee their performance.

Streaming and elastic flows

Combination of two mechanisms

provide estimators

Assumption for streaming traffic

Peak rate r less than a threshold p (e.g. p = .01C)

• licit in backbone networks

example: 16Mb/s HDTV flows on a 40Gb/s link (\sim .001*C*)

Evaluation

Conclusion

Motivations: link operating regimes

-

Evaluation 000000 Conclusion

Motivations: link operating regimes

-

Motivations: link operating regimes

"transparent"

negligible loss and delay

FIFO sufficient

Motivations: link operating regimes

"transparent"

and delay

FIFO sufficient

excellent for elastic, some streaming loss needs differenciation

Evaluation

Conclusion

Motivations: link operating regimes

"transparent"

"elastic"

"congested"

negligible loss and delay

FIFO sufficient

excellent for elastic, some streaming loss needs differenciation

low throughput, significant loss needs overload control

ELE DOG

Priority Fair Queueing

ingress

egress

< (T) >

三日 のへで

Evaluation

Conclusion

Priority Fair Queueing

ingress

egress

< 🗇 >

三日 のへで

→ < Ξ → </p>

Priority Fair Queueing

ingress

egress

< (T) >

三日 のへで

Evaluation

Conclusion

Priority Fair Queueing

三日 のへで

→ < ∃→

< 17 ▶

Evaluation

Conclusion

Priority Fair Queueing

< 17 ▶

Evaluation

Conclusion

Priority Fair Queueing

▶ < ∃ ▶</p>

< 17 ▶

三日 のへの

Evaluation

Conclusion

Priority Fair Queueing

Priority Fair Queueing

Discrimination: flows under/over fair rate

Bufferless multiplexing context for streaming

- Aggregate load
- Flow peak rate

Performance insensitive to detailed traffic characteristics

EL OQO

Outline

1 Introduction to Cross-Protect

2 MBAC algorithms for Cross-Protect

Requirements for a Cross-Protect MBAC

Discriminate flows

- Assumption: streaming flows peak rate < p
- Flows over *p* typically elastic and/or should be adaptive.
- Both will be handled in the priority queue

Cope with a minimal set of assumptions

- priority load and fair rate estimates
- maximum protected flow peak rate p
- NO indication of end of flows (timeout)

II DOG

Approach:

Spare bandwidth to prevent overload:

Approach:

Spare bandwidth to prevent overload:

• Gaussian approximation of aggregate load

Approach:

Spare bandwidth to prevent overload:

- Gaussian approximation of aggregate load
- Introduction of a critical timescale \sim flow timescale

Approach:

Spare bandwidth to prevent overload:

- Gaussian approximation of aggregate load
- Introduction of a critical timescale \sim flow timescale

Limitations

- Threshold set for all traffic
- Prevent favourable state for differentiation

= nan

Approach:

Spare bandwidth to prevent overload:

- Gaussian approximation of aggregate load
- Introduction of a critical timescale \sim flow timescale

Limitations

- Threshold set for all traffic
- Prevent favourable state for differentiation

Approach:

Spare bandwidth to prevent overload:

- Gaussian approximation of aggregate load
- Introduction of a critical timescale \sim flow timescale

Limitations

- Threshold set for all traffic
- Prevent favourable state for differentiation

Evaluation 000000 Conclusion

A Poisson approximation (1/2)

< 17 ▶

Evaluation

Conclusion

A Poisson approximation (1/2)

Evaluation

Conclusion

A Poisson approximation (1/2)

 A_t : smoothed priority load.

 $\hat{\sigma}_t^2 = A_t p$ (Poisson)

79% utilization for p = .01C and overflow prob. $\epsilon = 10^{-2}$

ELE DOG

A Poisson approximation (2/2)

Flows of peak rate > p

• Link reach saturation due to high variance of traffic

< (T) >

ELE DQA

A Poisson approximation (2/2)

Flows of peak rate > p

- Link reach saturation due to high variance of traffic
- Flows of higher peak rate backlogged
- PL decreases, new admissions

ELE DOG

A Poisson approximation (2/2)

Flows of peak rate > p

- Link reach saturation due to high variance of traffic
- Flows of higher peak rate backlogged
- PL decreases, new admissions

EL OQO

A Poisson approximation (2/2)

Flows of peak rate > p

- Link reach saturation due to high variance of traffic
- Flows of higher peak rate backlogged
- PL decreases, new admissions

ELE DOG

Evaluation 000000

A Poisson approximation (2/2)

Flows of peak rate > p

- Link reach saturation due to high variance of traffic
- Flows of higher peak rate backlogged
- PL decreases, new admissions
- New admission condition on instantaneous fair rate

ELE DOG

A Poisson approximation (2/2)

Flows of peak rate > p

Flows of peak rate < p

- Link reach saturation due to high variance of traffic
- Flows of higher peak rate backlogged
- PL decreases, new admissions
- New admission condition on instantaneous fair rate

(Poisson) might be too conservative

$$\widehat{\sigma}_t^2 = \min(A_t p, \sigma)$$
 (MinVar)

Slot size importance: $\tau = \mathbf{k} L/p$

- k < 1: variance overestimated
- k >> 1: reactivity to load changes !

Outline

1 Introduction to Cross-Protect

2 MBAC algorithms for Cross-Protect

Evaluation: Simulation set-up

Topology

- C = 10Mb/s (depends only on C/p ratio)
- Packet size L = 1000 bytes
- Protected rate: p = 100 kb/s
- Sampling interval: $\tau = kL/p$, k = 1, 2

Traffic pattern

Flow peak rates

Evaluation: Utilization vs. overflow

< (T) >

ELE DQA

Evaluation: Utilization vs. overflow

Evaluation: Utilization vs. overflow

ELE DQA

= nac

< (T) >

ELE SQC

ELE DOG

→ < ∃ →</p>

< 17 ▶

三日 のへの

< (T) >

ELE SQC

Evaluation: Differentiation

- should be differentiated
- excess load removed by packet loss

EL OQO

▲ 同 → - ▲ 三

Evaluation 000000

Evaluation: Differentiation

< 17 ▶

ELE DOG

Evaluation: Differentiation

EL OQO

< 17 ▶

Evaluation: Performance under flashcrowd (1/2)

- We introduce a limit on the number of admission per slot
- No flow termination indication: hard to introduce back-off strategy

= nan

Evaluation: Performance under flashcrowd (2/2)

MBAC for Flow-level Implicit Service Differentiation

∃ > J. Augé, S. Oueslati, J. Roberts

ELE DOG

MBAC for Flow-level Implicit Service Differentiation

J. Augé, S. Oueslati, J. Roberts

Outline

1 Introduction to Cross-Protect

2 MBAC algorithms for Cross-Protect

Conclusion

Use of Cross-Protect to offer performance guarantees to streaming and elastic traffic.

We have adapted a simple MBAC algorithm to protect streaming flows and allow for service differentiation.

Comprehensive set of simulation to demonstrate its performance.

Most problematic case is flashcrowd scenario

- (esp. heavy tail, TCP traffic)
- How to improve and react to the detection of such events ?
- Maybe a need to introduce flow preemption schemes...

Contact: jordan.auge@lip6.fr

∃ ► ▲ ∃ ► ∃ = √Q ∩

Backup slides

Evaluation: Differentiation (details)

(Poisson)

(MinVar, k=1)

```
(MinVar, k=2)
```


MBAC for Flow-level Implicit Service Differentiation

J. Augé, S. Oueslati, J. Roberts

Evaluation: Impact of jitter (1/2)

CBR flows typically acquire jitter in network routers

Simulation: Poisson stream of packets during on period [Better than Poisson conjecture]

on
$$\sim \mathcal{E}xp$$
 off
 $t_{on} \sim \mathcal{E}xp$

Evaluation: Impact of jitter (2/2)

Packet bursts are served at the fair rate

- No loss in simulation: packets are delayed instead of being dropped
- Unjittering as a supplementary advantage of Cross-Protect (provided sufficient buffer space)