

Approximate Fairness through Limited Flow List

Addisu Tadesse Eshete

Yuming Jiang

23rd International Teletraffic Congress, San Francisco, USA

September 7, 2011

Outline

- The Research Problem
- Background and Motivation
- Approximate Fairness through Partial Finish Time
 - Main idea
 - Results
- Conclusion

The Rearch Problem

Max-min Fairness (congestion)

$$C = \sum_{f} \min(r_{fair}, r_f)$$

Flow Fairness

Background & Motivation

E2E design principle

FIFO Routers + E2E Congestion Avoidance

FIFO Routers

- Simple 🔊
- Stateless: «fate-sharing»
- Robust: «survivability»
- Scalable: 100x '95 to '09

E2E Congestion Avoidance

FIFO Routers + E2E Congestion Avoidance (CA)

- Simple *best effort* point-to-point *egalitarian* forwarding
- No service differentiation or flow protection

Background and Motivation

Per Flow Fair Queueing

- IntServ Intelligence in the network (routers)
- *Fine grained flow state stored* and maintained at routers
- *Signaling* for resource reservation and admission control

PFFQ Implementation

o Based on Packet Tags:

- Start and Finish tags on packet arrival
- Server virtual time v(t)
- Examples: WFQ, WF²Q, WF²Q+, SFQ, SCFQ

Per Flow Fair Queueing may be complex!! Q2S

 $S(p_f^j) = \max\left(v\left[A(p_f^j)\right], F(p_f^{j-1})\right)$ $F(p_f^j) = S(p_f^j) + \frac{l_f^j}{r_f}$

where $F(p_f^0) = 0$.

Router's output port classify classify

Background

Can we design stateless or partially stateful single queue architectures to enforce fairness (flow protection)?

Problem Statement

Related works: repeat

Existing proposals:

- RED/REDvariations (one aggregate FIFO queue)
- **PFFQ** (one FIFO queue per flow *)
- CSFQ (one aggregate non-FIFO queue, dynamic packet state)

Issues with existing protocols:

1.Stateful and complex

– SFQ, WFQ

2. Target *specific* traffic type

- Fair RED—TCP
- CSFQ—UDP

3.Less Robust—require proper router configurations

– CSFQ

DNTNU

Approximate Fairness through Partial Finish Time

«approximate fairness of PFFQ with partial state»

Key AFpFT components

- 1. Virtual tag computation and maintenance
 - E.g., Limited flow data in FLOW LIST
- 2. Flow and router relationship (see router roles in paper)
 - Edge or core router per flow
- 3. Buffer management (see paper for details)
 - Recovering impaired fairness for high rate flows
 - Avoiding loss synchronization

AFpFT has two tag encodings

 $S(p_{f}^{j}) = \max\left(v[A(p_{f}^{j})], F(p_{f}^{j-1})\right)$ Cheap encoding

- Directly plucked from server
- New flows
- Flows rarely fill up the buffer
- Relative small and TCP friendly flows
- Brought to queue front

Expensive encoding

- F(.) taken from Flow list FL
- Flows that occupy the buffer frequently
- Fast, big and less TCP friendly
- Pushed to queue tail
 - FL size ~ Buffer size
- Traditional routers buffer capacity= RTT × C_bottleneck
- Fast, big flows are a minority!!

Other Details

- Frequently buffered flows
 - Also *listed* and *high rate* flows
 - High rate flows are *minority* in the Internet

- Router roles
 - Edge: keep state for all flows
 - Inner: keep state of buffered flows only
- Update flow list:
 - Packet dropped: decrement packet's flow contribution
 - No flow packet in buffer: remove flow from list

NTNU

Selected Results/Single Link

Jain's Fairness Index /TCP/				
RED	0.9329			
FRED	0.9905			
CSFQ	0.9994			
AFpFT	0.9999			

$$F = \frac{(\sum_{i} x_{i})^{2}}{n \sum_{i} x_{i}^{2}}$$

Single Link Results

Selected Results/Single Link

• We steadily increase UDP rate to 5Mbps

Average TCP throughput

UDP throughput (logscale)

Selected Results/Single Link

- Only CBR flows
- Flow *i* sends at 0.3125**i* Mbps (*i*=1, ..., 32)

Selected Results/Multiple Congested Links²⁸

Conclusion

- AFpFT:
 - Partially stateteful but highly fair
 - Robust cf. CSFQ
 - Scheduling integrated with buffer management
 - No loss synchronization as in aggregate queues
 - Comparable flow state to AFD (state for minority high rate flows)
 - Time priority to small and well behaved flows
 - Better fairness than FRED, CSFQ

Approach	State Info	Queue Nr.	Impl. Chall.	Fairness
PFFQ	Stateful	One per flow	Dynamic queue nr	Excellent
RED	Stateless	One FIFO queue	Parameter config	Good – hom.t. Bad – het.t.
FRED	Local partial state	One FIFO queue	Parameter config	Very good
CSFQ	Stateless router, stateful pkt	One non-FIFO q.	Dynamic pkt state	UDP- Excellent TCP – Very Good
AFpFT	Local partial state	One non-FIFO q.	?	Excellent

