Dispatching Problem with Fixed Size Jobs and Processor Sharing Discipline

E. Hyytiä, A. Penttinen, S. Aalto and J. Virtamo

Department of Communications and Networking Aalto University, School of Electrical Engineering, Finland

7.9.2011

Aalto University School of Electrical Engineering

Upon arrival a job is routed to one of the m servers

23rd ITC, San Fransisco, USA

- Upon arrival a job is routed to one of the m servers
- Each server processes jobs according to a certain scheduling discipline (e.g., PS)

- Upon arrival a job is routed to one of the m servers
- Each server processes jobs according to a certain scheduling discipline (e.g., PS)
- Objective: minimize the mean delay (mean sojourn time)

- Upon arrival a job is routed to one of the *m* servers
- Each server processes jobs according to a certain scheduling discipline (e.g., PS)
- Objective: minimize the mean delay (mean sojourn time)
- Examples:
 - job assignment in supercomputing
 - traffic routing
 - web-server farms, and
 - other distributed computing systems

State-independent Policies:

1. Bernoulli splitting (RND):

Choose queue in random using probabilities p_i :

- i) RND-U splits the arrival stream uniformly, $p_i = 1/m$
- ii) RND- ρ balances the load, $p_i = c_i / \sum_i c_j$
- iii) RND-opt uses the p_i that minimize the mean sojourn time

State-independent Policies:

1. Bernoulli splitting (RND):

Choose queue in random using probabilities p_i :

- i) RND-U splits the arrival stream uniformly, $p_i = 1/m$
- ii) RND- ρ balances the load, $p_i = c_i / \sum_i c_j$
- iii) RND-opt uses the p_i that minimize the mean sojourn time

State-dependent Policies:

1. Join-the-Shortest-Queue (JSQ):

Optimal when Poisson arrivals, Exponential jobs, identical servers, and only the occupancy is known (Winston, 1977).

State-independent Policies:

1. Bernoulli splitting (RND):

Choose queue in random using probabilities p_i :

- i) RND-U splits the arrival stream uniformly, $p_i = 1/m$
- ii) RND- ρ balances the load, $p_i = c_i / \sum_i c_j$
- iii) RND-opt uses the p_i that minimize the mean sojourn time

State-dependent Policies:

1. Join-the-Shortest-Queue (JSQ):

Optimal when Poisson arrivals, Exponential jobs, identical servers, and only the occupancy is known (Winston, 1977).

2. Round-robin (RR):

Optimal with identical servers that were initially in a same state (Ephremides et. al, 1980).

State-independent Policies:

1. Bernoulli splitting (RND):

Choose queue in random using probabilities p_i :

- i) RND-U splits the arrival stream uniformly, $p_i = 1/m$
- ii) RND- ρ balances the load, $p_i = c_i / \sum_i c_j$
- iii) RND-opt uses the p_i that minimize the mean sojourn time

State-dependent Policies:

1. Join-the-Shortest-Queue (JSQ):

Optimal when Poisson arrivals, Exponential jobs, identical servers, and only the occupancy is known (Winston, 1977).

2. Round-robin (RR).

Optimal with identical servers that were initially in a same state (Ephremides et. al, 1980).

3. Least-Work-Left (LWL)

Pick the queue with the shortest backlog (Sharifnia, 1997).

• Poisson arrival process, rate λ

- Poisson arrival process, rate λ
- Fixed job size d

- Poisson arrival process, rate λ
- Fixed job size d
- *m* parallel heterogeneous servers:

- Poisson arrival process, rate λ
- Fixed job size d
- *m* parallel heterogeneous servers:
 - Server specific processing rates c_i

- Poisson arrival process, rate
- Fixed job size d
- *m* parallel heterogeneous servers:
 - Server specific processing rates c_i
 - Processor Sharing (PS) scheduling discipline

- Poisson arrival process, rate λ
- Fixed job size d
- m parallel heterogeneous servers:
 - Server specific processing rates c_i
 - Processor Sharing (PS) scheduling discipline
- Queue states (remaining service times) are known to the dispatcher

- Poisson arrival process, rate
- Fixed job size d
- m parallel heterogeneous servers:
 - Server specific processing rates c_i
 - Processor Sharing (PS) scheduling discipline
- Queue states (remaining service times) are known to the dispatcher
- Objective: minimize the mean delay

Delay costs and relative value

Delay costs are accrued at rate

 $N_{z}(t) \triangleq$ "the number of jobs in the system",

where **z** denotes the initial state at time t = 0.

Delay costs and relative value

Delay costs are accrued at rate

 $N_{z}(t) \triangleq$ "the number of jobs in the system",

where **z** denotes the initial state at time t = 0.

Delay costs accrued during (0, t): $V_{z}(t) \triangleq \int_{0}^{t} N_{z}(s) ds$.

Delay costs and relative value

Delay costs are accrued at rate

 $N_{z}(t) \triangleq$ "the number of jobs in the system",

where **z** denotes the initial state at time t = 0.

Delay costs accrued during (0, t): $V_{z}(t) \triangleq \int_{0}^{t} N_{z}(s) ds$.

Relative value: the expected difference in the cumulative costs between a system initially in state **z** and a system in equilibrium,

$$v_{\mathbf{z}} \triangleq \lim_{t \to \infty} \operatorname{E}[V_{\mathbf{z}}(t) - r t]$$
$$= \lim_{t \to \infty} \left(\operatorname{E}\left[\int_0^t N_{\mathbf{z}}(s) \, ds\right] - \operatorname{E}[N] t \right).$$

Size- and state-aware setting; future arrivals not known

- Size- and state-aware setting; future arrivals not known
- Idea: start with a reasonable basic dispatching policy, and carry out the first policy iteration (FPI) step

- Size- and state-aware setting; future arrivals not known
- Idea: start with a reasonable basic dispatching policy, and carry out the first policy iteration (FPI) step
- Policy iteration finds the optimal policy, and the FPI step typically yields the highest improvement.

- Size- and state-aware setting; future arrivals not known
- Idea: start with a reasonable basic dispatching policy, and carry out the first policy iteration (FPI) step
- Policy iteration finds the optimal policy, and the FPI step typically yields the highest improvement.
- Requires the relative values of states vz

- Size- and state-aware setting; future arrivals not known
- Idea: start with a reasonable basic dispatching policy, and carry out the first policy iteration (FPI) step
- Policy iteration finds the optimal policy, and the FPI step typically yields the highest improvement.
- Requires the relative values of states vz
- However, our state-space is extremely complex (remaining service requirements at each queue)

Decomposition to independent M/D/1-PS queues

Deriving a relative value is generally a difficult task.

Decomposition to independent M/D/1-PS queues

- Deriving a relative value is generally a difficult task.
- However, any state-independent policy feeds each server jobs according to a Poisson process (cf. Bernoulli split)

Decomposition to independent M/D/1-PS queues

- Deriving a relative value is generally a difficult task.
- However, any state-independent policy feeds each server jobs according to a Poisson process (cf. Bernoulli split)

Analyze single M/D/1-PS queues instead?

Figure: FPI considers a single decision, after which one falls back to the basic policy.

Figure: FPI considers a single decision, after which one falls back to the basic policy.

Can we solve the latter exactly?

Figure: FPI of state-independent basic policy: later arrivals are dispatched according to the basic policy, isolating the queues.

Aalto University School of Electrical Engineering

Figure: FPI of state-independent basic policy: later arrivals are dispatched according to the basic policy, isolating the queues.

The relative values v_{z_1} and v_{z_2} tell us which is the better option!

Figure: Comparison between two states in each queue.

Figure: Comparison between two states in each queue.

Increments in the **queue specific relative values** $v_z^{(1)}$ and $v_z^{(2)}$ tell us which queue to choose!

Roadmap

1. Assume a state-independent basic policy.

Roadmap

- 1. Assume a state-independent basic policy.
- 2. Derive relative values for an "isolated queue".

Roadmap

- 1. Assume a state-independent basic policy.
- 2. Derive relative values for an "isolated queue".
- 3. Relative value of the whole system is the sum of the queue specific relative values:

$$V_{\mathbf{Z}} = \sum_{i} V_{\mathbf{Z}_{i}}.$$

Roadmap

- 1. Assume a state-independent basic policy.
- 2. Derive relative values for an "isolated queue".
- 3. Relative value of the whole system is the sum of the queue specific relative values:

$$v_{\mathbf{z}} = \sum_{i} v_{\mathbf{z}_{i}}.$$

4. Carry out FPI \Rightarrow new efficient dispatching policy.

Roadmap

- 1. Assume a state-independent basic policy.
- 2. Derive relative values for an "isolated queue".
- 3. Relative value of the whole system is the sum of the queue specific relative values:

$$v_{\mathbf{z}} = \sum_{i} v_{\mathbf{z}_{i}}.$$

4. Carry out FPI \Rightarrow new efficient dispatching policy.

In practice, it is sufficient to know, e.g., $v_z - v_0$.

Next step:

Derive $v_z - v_0$ for an M/D/1-PS queue.

Notation:

• λ is the Poisson arrival rate.

Notation:

- λ is the Poisson arrival rate.
- $\rho = \lambda d$ and d denotes the fixed job size.

Notation:

- λ is the Poisson arrival rate.
- $\rho = \lambda d$ and d denotes the fixed job size.
- ► $\mathbf{z} = (\Delta_1; ..; \Delta_n)$ are the remaining service times, $\Delta_i > \Delta_{i+1}$

Notation:

- λ is the Poisson arrival rate.
- $\rho = \lambda d$ and d denotes the fixed job size.
- ► $\mathbf{z} = (\Delta_1; ..; \Delta_n)$ are the remaining service times, $\Delta_i > \Delta_{i+1}$

Proposition: The size-aware relative value of state **z** with respect to the delay in an M/D/1-PS queue is given by

$$\mathbf{v}_{(\Delta_1;\ldots;\Delta_n)} - \mathbf{v}_0 = \boxed{\frac{\lambda}{1-\rho} u_{\mathbf{z}}^2 - u_{\mathbf{z}} + 2\sum_{i=1}^n i \,\Delta_i.}$$

where v_0 denotes the relative value of an empty system, and $u_z = \sum_i \Delta_i$ the backlog in the queue.

(1)

- Consider two systems under the same arrivals:
 - ▶ S1 initially in state $\mathbf{z} = (\Delta_1; ..; \Delta_n)$ with $\Delta_1 \ge ... \ge \Delta_n$.
 - S2 initially empty.

- Consider two systems under the same arrivals:
 - ▶ S1 initially in state $\mathbf{z} = (\Delta_1; ..; \Delta_n)$ with $\Delta_1 \ge ... \ge \Delta_n$.
 - S2 initially empty.
- Once S1 is empty, the two systems behave equivalently

- Consider two systems under the same arrivals:
 - S1 initially in state $\mathbf{z} = (\Delta_1; ..; \Delta_n)$ with $\Delta_1 \ge ... \ge \Delta_n$.
 - S2 initially empty.
- Once S1 is empty, the two systems behave equivalently
- Without new arrivals, the total delay accrued in S1 is

$$\tau_{\mathbf{z}} = \Delta_n \cdot n^2 + (\Delta_{n-1} - \Delta_n) \cdot (n-1)^2 + \ldots + (\Delta_1 - \Delta_2),$$
$$= \sum_{i=1}^n (2i-1)\Delta_i.$$
(2)

- Consider two systems under the same arrivals:
 - S1 initially in state $\mathbf{z} = (\Delta_1; ..; \Delta_n)$ with $\Delta_1 \ge ... \ge \Delta_n$.
 - S2 initially empty.
- Once S1 is empty, the two systems behave equivalently
- Without new arrivals, the total delay accrued in S1 is

$$\tau_{\mathbf{z}} = \Delta_n \cdot n^2 + (\Delta_{n-1} - \Delta_n) \cdot (n-1)^2 + \ldots + (\Delta_1 - \Delta_2),$$
$$= \sum_{i=1}^n (2i-1)\Delta_i.$$
(2)

Each arrival increases the total delay (*immediate cost*)

$$s_{\mathbf{z}} = \tau_{(d;\Delta_1;..;\Delta_n)} - \tau_{(\Delta_1;..;\Delta_n)} = 2 u_{\mathbf{z}} + d.$$
(3)

- Consider two systems under the same arrivals:
 - S1 initially in state $\mathbf{z} = (\Delta_1; ..; \Delta_n)$ with $\Delta_1 \ge ... \ge \Delta_n$.
 - S2 initially empty.
- Once S1 is empty, the two systems behave equivalently
- Without new arrivals, the total delay accrued in S1 is

$$\tau_{\mathbf{z}} = \Delta_n \cdot n^2 + (\Delta_{n-1} - \Delta_n) \cdot (n-1)^2 + \ldots + (\Delta_1 - \Delta_2),$$
$$= \sum_{i=1}^n (2i-1)\Delta_i.$$
(2)

Each arrival increases the total delay (*immediate cost*)

$$s_{\mathbf{z}} = \tau_{(d;\Delta_1;..;\Delta_n)} - \tau_{(\Delta_1;..;\Delta_n)} = \boxed{2 \, u_{\mathbf{z}} + d.} \tag{3}$$

- Utilize the lack of memory of Poisson arrivals.
- ► Virtual busy periods similar (S1 has an offset in backlog ⇒ the mean contribution of a busy period.

Aalto University School of Electrical Engineering

- Consider two systems under the same arrivals:
 - S1 initially in state $\mathbf{z} = (\Delta_1; ..; \Delta_n)$ with $\Delta_1 \ge ... \ge \Delta_n$.
 - S2 initially empty.
- Once S1 is empty, the two systems behave equivalently
- Without new arrivals, the total delay accrued in S1 is

$$\tau_{\mathbf{z}} = \Delta_n \cdot n^2 + (\Delta_{n-1} - \Delta_n) \cdot (n-1)^2 + \ldots + (\Delta_1 - \Delta_2),$$
$$= \sum_{i=1}^n (2i-1)\Delta_i.$$
(2)

Each arrival increases the total delay (*immediate cost*)

$$s_{\mathbf{z}} = \tau_{(d;\Delta_1;..;\Delta_n)} - \tau_{(\Delta_1;..;\Delta_n)} = \boxed{2 \, u_{\mathbf{z}} + d.}$$
(3)

- Utilize the lack of memory of Poisson arrivals.
- Details in the paper.

Engineering

Corollary: The expected cost due to accepting a new task to an M/D/1-PS queue at state $\mathbf{z} = (\Delta_1; ..; \Delta_n)$ is given by

$$w_{\mathsf{z}} = v_{(d;\Delta_1;..;\Delta_n)} - v_{(\Delta_1;..;\Delta_n)} = \boxed{\frac{2 u_{\mathsf{z}} + d}{1 - \rho}}.$$
(4)

Corollary: The expected cost due to accepting a new task to an M/D/1-PS queue at state $\mathbf{z} = (\Delta_1; ..; \Delta_n)$ is given by

$$w_{\mathbf{z}} = v_{(d;\Delta_1;..;\Delta_n)} - v_{(\Delta_1;..;\Delta_n)} = \boxed{\frac{2 u_{\mathbf{z}} + d}{1 - \rho}}.$$
(4)

That is, the immediate cost divided by $1 - \rho$.

23rd ITC, San Fransisco, USA

Corollary: The expected cost due to accepting a new task to an M/D/1-PS queue at state $\mathbf{z} = (\Delta_1; ..; \Delta_n)$ is given by

$$w_{\mathbf{z}} = v_{(d;\Delta_1;..;\Delta_n)} - v_{(\Delta_1;..;\Delta_n)} = \boxed{\frac{2 u_{\mathbf{z}} + d}{1 - \rho}}.$$
(4)

That is, the immediate cost divided by $1 - \rho$.

Preemptive M/G/1-LIFO: Immediate cost in an M/G/1-LIFO is (n + 1)x, where x is the size of the new task.

Corollary: The expected cost due to accepting a new task to an M/D/1-PS queue at state $\mathbf{z} = (\Delta_1; ..; \Delta_n)$ is given by

$$w_{\mathbf{z}} = v_{(d;\Delta_1;..;\Delta_n)} - v_{(\Delta_1;..;\Delta_n)} = \boxed{\frac{2 u_{\mathbf{z}} + d}{1 - \rho}}.$$
(4)

That is, the immediate cost divided by $1 - \rho$.

Preemptive M/G/1-LIFO: Immediate cost in an M/G/1-LIFO is (n + 1)x, where x is the size of the new task. Similarly, the expected cost due to accepting a new task with size x is

$$w_{\mathsf{z}} = \boxed{\frac{(n+1)x}{1-\rho}},$$

i.e., the immediate cost divided by $1 - \rho$.

Assume: relative values v_z are available for basic policy

- Assume: relative values vz are available for basic policy
- Improved decision according to FPI at state z:

$$\alpha(\mathbf{z}) \triangleq \underset{i}{\operatorname{argmin}} \left(\mathbf{v}_{\mathbf{z}'(i)} - \mathbf{v}_{\mathbf{z}} \right) = \underset{i}{\operatorname{argmin}} w_{\mathbf{z}(i)}$$

where $\mathbf{z}'(i)$ is the new state if the job is added to queue *i*.

- Assume: relative values vz are available for basic policy
- Improved decision according to FPI at state z:

$$\alpha(\mathbf{z}) \triangleq \underset{i}{\operatorname{argmin}} \left(\mathbf{v}_{\mathbf{z}'(i)} - \mathbf{v}_{\mathbf{z}} \right) = \underset{i}{\operatorname{argmin}} w_{\mathbf{z}(i)}$$

where $\mathbf{z}'(i)$ is the new state if the job is added to queue *i*.

"Choose the action with the smallest expected future cost"

- Assume: relative values vz are available for basic policy
- Improved decision according to FPI at state z:

$$\alpha(\mathbf{z}) \triangleq \underset{i}{\operatorname{argmin}} \left(\mathbf{v}_{\mathbf{z}'(i)} - \mathbf{v}_{\mathbf{z}} \right) = \underset{i}{\operatorname{argmin}} w_{\mathbf{z}(i)}$$

where $\mathbf{z}'(i)$ is the new state if the job is added to queue *i*.

"Choose the action with the smallest expected future cost"

Basic policy RND-ρ balances load, ρ_i = ρ_j, and FPI reduces to

$$\alpha(\mathbf{z}) = \operatorname*{argmin}_{i} (u_i(\mathbf{z}) + 0.5 d_i).$$

Policy family $\mathcal{P}(\beta)$

Policy family $\mathcal{P}(\beta)$ with policy parameter β is defined by

 $\underset{i}{\operatorname{argmin}} u_i(\mathbf{z}) + \beta \cdot d_i.$

LWL^- :	$\beta = 0$	"smallest backlog before"
LWL^+ :	$\beta = 1$	"smallest backlog afterwards"
FPI - ρ :	eta= 0.5	"compromise between the above"

Policy family $\mathcal{P}(\beta)$

Policy family $\mathcal{P}(\beta)$ with policy parameter β is defined by

 $\underset{i}{\operatorname{argmin}} u_i(\mathbf{z}) + \beta \cdot d_i.$

LWL-:	$\beta = 0$	"smallest backlog before"
LWL^+ :	$\beta = 1$	"smallest backlog afterwards"
FPI - ρ :	$\beta = 0.5$	"compromise between the above"

Numerical examples

Performance metrics:

- 1. Absolute mean delay (sojourn time)
- 2. Relative delay when compared to FPI policy

Numerical examples

Performance metrics:

- 1. Absolute mean delay (sojourn time)
- 2. Relative delay when compared to FPI policy

Scenarios:

- 1. Symmetric case with two identical servers
- 2. Asymmetric case with two heterogeneous servers

Additionally, policy optimization within $\ensuremath{\mathcal{P}}$

17/22

Identical servers

- Two policies, i) RND-U, ii) LWL/FPI/RR, and single server
- Left: resulting mean sojourn time
- Right: relative performance against the LWL

Identical servers

- Two policies, i) RND-U, ii) LWL/FPI/RR, and single server
- Left: resulting mean sojourn time
- Right: relative performance against the LWL
- Optimal state-independent policy: RND-U

Identical servers

- Two policies, i) RND-U, ii) LWL/FPI/RR, and single server
- Left: resulting mean sojourn time
- Right: relative performance against the LWL
- Optimal state-independent policy: RND-U
- Optimal state-dependent policy: LWL/FPI-U/RR,

"Choose the queue with a smaller backlog"

- Left: mean sojourn time
- Right: relative performance against the FPI-p policy

Aalto University School of Electrical Engineering

- Left: mean sojourn time
- Right: relative performance against the FPI-p policy
- Both LWL policies are clearly suboptimal

- Left: mean sojourn time
- Right: relative performance against the FPI-p policy
- Both LWL policies are clearly suboptimal
- FPI-ρ makes very good dispatching decisions for all ρ

- Left: mean sojourn time
- Right: relative performance against the FPI-ρ policy
- Both LWL policies are clearly suboptimal
- FPI-ρ makes very good dispatching decisions for all ρ
- Gray area: optimal policy from $\mathcal{P}(\beta)$, defined by

$$u_i(\mathbf{z}) + \beta \cdot d_i$$

• Two servers, $d_1 = 1$ and $d_2 = 4$

1.0

23rd ITC, San Fransisco, USA

- Two servers, $d_1 = 1$ and $d_2 = 4$
- x-axis: policy parameter β

y-axis: arrival rate λ

z-axis: mean delay relative to the optimal at given λ

- Two servers, $d_1 = 1$ and $d_2 = 4$
- *x*-axis: policy parameter β
 - *y*-axis: arrival rate λ
 - z-axis: mean delay relative to the optimal at given λ
- Valley: delay is within 1% from the minimum at given λ

- Two servers, $d_1 = 1$ and $d_2 = 4$
- x-axis: policy parameter β
 y-axis: arrival rate λ
 z-axis: mean delay relative to the optimal at given λ
- Valley: delay is within 1% from the minimum at given λ
- FPI- ρ ($\beta = 0.5$) close to optimal optimal (within \mathcal{P})

Size- and state-aware dispatching problem can be approached in MDP framework

23rd ITC, San Fransisco, USA

- Size- and state-aware dispatching problem can be approached in MDP framework
- FPI requires the relative values of the basic policy

- Size- and state-aware dispatching problem can be approached in MDP framework
- FPI requires the relative values of the basic policy
- For a state-independent basic policy, sufficient to analyze M/D/1-PS queue in isolation

- Size- and state-aware dispatching problem can be approached in MDP framework
- FPI requires the relative values of the basic policy
- For a state-independent basic policy, sufficient to analyze M/D/1-PS queue in isolation
- ► We give the relative value for a size-aware M/D/1-PS

- Size- and state-aware dispatching problem can be approached in MDP framework
- FPI requires the relative values of the basic policy
- For a state-independent basic policy, sufficient to analyze M/D/1-PS queue in isolation
- ► We give the relative value for a size-aware M/D/1-PS
- General case of M/G/1-PS seems to be difficult, however, exact result for a size-aware M/M/1-PS is also available (*Hyytiä et. al, Performance 2011*)

- Size- and state-aware dispatching problem can be approached in MDP framework
- FPI requires the relative values of the basic policy
- For a state-independent basic policy, sufficient to analyze M/D/1-PS queue in isolation
- ► We give the relative value for a size-aware M/D/1-PS
- General case of M/G/1-PS seems to be difficult, however, exact result for a size-aware M/M/1-PS is also available (*Hyytiä et. al, Performance 2011*)
- For FCFS, LCFS, SPT and SRPT, the size-aware relative values are available for M/G/1 (submitted)

- Size- and state-aware dispatching problem can be approached in MDP framework
- FPI requires the relative values of the basic policy
- For a state-independent basic policy, sufficient to analyze M/D/1-PS queue in isolation
- ► We give the relative value for a size-aware M/D/1-PS
- General case of M/G/1-PS seems to be difficult, however, exact result for a size-aware M/M/1-PS is also available (*Hyytiä et. al, Performance 2011*)
- For FCFS, LCFS, SPT and SRPT, the size-aware relative values are available for M/G/1 (submitted)

Thanks!

21/22

References:

- E. Hyytiä, A. Penttinen and S. Aalto, Size- and State-Aware Dispatching Problem with Queue-Specific Job Sizes, December, 2010, (submitted).
- E. Hyytiä, A. Penttinen, S. Aalto and J. Virtamo, Dispatching problem with fixed size jobs and processor sharing discipline, in 23rd International Teletraffic Congress (ITC'23), September 2011, San Fransisco, USA.
- E. Hyytiä, J. Virtamo, S. Aalto and A. Penttinen, <u>M/M/1-PS Queue and Size-Aware Task Assignment</u>, in IFIP PERFORMANCE, October 2011, Amsterdam, Netherlands, (to appear).

