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Dispatching problem to parallel queues

α
λ

Dispatcher

PS−queues

I Upon arrival a job is routed to one of the m servers

I Each server processes jobs according to a certain
scheduling discipline (e.g., PS)

I Objective: minimize the mean delay (mean sojourn time)
I Examples:

I job assignment in supercomputing
I traffic routing
I web-server farms, and
I other distributed computing systems
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Heuristic policies
State-independent Policies:

1. Bernoulli splitting (RND):
Choose queue in random using probabilities pi :

i) RND-U splits the arrival stream uniformly, pi = 1/m
ii) RND-ρ balances the load, pi = ci/

∑
j cj

iii) RND-opt uses the pi that minimize the mean sojourn time

State-dependent Policies:

1. Join-the-Shortest-Queue (JSQ):
Optimal when Poisson arrivals, Exponential jobs, identical
servers, and only the occupancy is known (Winston, 1977).

2. Round-robin (RR):
Optimal with identical servers that were initially in
a same state (Ephremides et. al, 1980).

3. Least-Work-Left (LWL):
Pick the queue with the shortest backlog
(Sharifnia, 1997).
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State-aware dispatching with constant job size

α
λ

Dispatcher

PS−queues

I Poisson arrival process, rate λ

I Fixed job size d
I m parallel heterogeneous servers:

I Server specific processing rates ci
I Processor Sharing (PS) scheduling discipline

I Queue states (remaining service times) are known to the
dispatcher

I Objective: minimize the mean delay
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Delay costs and relative value
Delay costs are accrued at rate

Nz(t) , ”the number of jobs in the system”,

where z denotes the initial state at time t = 0.

Delay costs accrued during (0, t): Vz(t) ,
∫ t

0
Nz(s) ds.

Relative value: the expected difference in the cumulative costs
between a system initially in state z and a system in equilibrium,

vz , lim
t→∞

E[Vz(t)− r t ]

= lim
t→∞

(
E
[∫ t

0
Nz(s) ds

]
− E[N] t

)
.
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Approach: MDP and first policy iteration (FPI)

I Size- and state-aware setting; future arrivals not known

I Idea: start with a reasonable basic dispatching policy, and
carry out the first policy iteration (FPI) step

I Policy iteration finds the optimal policy, and the FPI step
typically yields the highest improvement.

I Requires the relative values of states vz

I However, our state-space is extremely complex
(remaining service requirements at each queue)
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Decomposition to independent M/D/1-PS queues

I Deriving a relative value is generally a difficult task.

I However, any state-independent policy feeds each server
jobs according to a Poisson process (cf. Bernoulli split)

1

1

1
λ/3

λ/3

λ/3

λ
1

1

1

RND

Analyze single M/D/1-PS queues instead?
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FPI of state-independent basic policy

c1

c2

2λλ1
queue

states?
+

arrivals

PS

PS

Dispatch

⇒
c1

c2

queue

states

2λ

λ1

later

arrivals

later

arrivals

this

task ? PS

PS

Figure: FPI considers a single decision, after which one falls back to
the basic policy.

Can we solve the latter exactly?

7.9.2011 23rd ITC, San Fransisco, USA 8/22



FPI of state-independent basic policy

c1

c2

2λλ1
queue

states?
+

arrivals

PS

PS

Dispatch

⇒
c1

c2

queue

states

2λ

λ1

later

arrivals

later

arrivals

this

task ? PS

PS

Figure: FPI considers a single decision, after which one falls back to
the basic policy.

Can we solve the latter exactly?

7.9.2011 23rd ITC, San Fransisco, USA 8/22



FPI of state-independent basic policy

c1

c2

2λλ1
queue

states?
+

arrivals

PS

PS

Dispatch

⇒
c1

c2

queue

states

2λ

λ1

later

arrivals

later

arrivals

this

task ? PS

PS

Figure: FPI considers a single decision, after which one falls back to
the basic policy.

Can we solve the latter exactly?

7.9.2011 23rd ITC, San Fransisco, USA 8/22



FPI of state-independent basic policy

c1

c2

queue

states

2λ

λ1

later

arrivals

later

arrivals

this

task ? PS

PS

⇒
c2

2λ

λ1
c1

c2
2λ

λ1
c1

OR?

state z1 state z2

Figure: FPI of state-independent basic policy: later arrivals are
dispatched according to the basic policy, isolating the queues.

The relative values vz1 and vz2 tell us
which is the better option!
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FPI of state-independent basic policy
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⇒
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OR?

State of only one queue changes.

Figure: Comparison between two states in each queue.

Increments in the queue specific relative val-
ues v (1)

z and v (2)
z tell us which queue to choose!
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Roadmap

1. Assume a state-independent basic policy.

2. Derive relative values for an “isolated queue”.
3. Relative value of the whole system is the sum of the queue

specific relative values:

vz =
∑

i

vzi .

4. Carry out FPI⇒ new efficient dispatching policy.

In practice, it is sufficient to know, e.g., vz − v0.

Next step:
Derive vz − v0 for an M/D/1-PS queue.
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Relative value for an M/D/1-PS queue

Notation:
I λ is the Poisson arrival rate.

I ρ = λd and d denotes the fixed job size.
I z = (∆1; ..; ∆n) are the remaining service times, ∆i > ∆i+1

Proposition: The size-aware relative value of state z with
respect to the delay in an M/D/1-PS queue is given by

v(∆1;..;∆n) − v0 =
λ

1− ρu2
z − uz + 2

n∑
i=1

i ∆i . (1)

where v0 denotes the relative value of an empty system,
and uz =

∑
i ∆i the backlog in the queue.
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Proof sketched
I Consider two systems under the same arrivals:

I S1 initially in state z = (∆1; ..; ∆n) with ∆1 ≥ . . . ≥ ∆n.
I S2 initially empty.

I Once S1 is empty, the two systems behave equivalently
I Without new arrivals, the total delay accrued in S1 is

τz = ∆n · n2 + (∆n−1 −∆n) · (n − 1)2 + . . .+ (∆1 −∆2),

=
n∑

i=1

(2i − 1)∆i . (2)

I Each arrival increases the total delay (immediate cost)

sz = τ(d ;∆1;..;∆n) − τ(∆1;..;∆n) = 2 uz + d . (3)

I Utilize the lack of memory of Poisson arrivals.
I Virtual busy periods similar (S1 has an offset in backlog)
⇒ the mean contribution of a busy period.

I Details in the paper.
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Cost of a new task in M/D/1-PS
Corollary: The expected cost due to accepting a new task to
an M/D/1-PS queue at state z = (∆1; ..; ∆n) is given by

wz = v(d ;∆1;..;∆n) − v(∆1;..;∆n) =
2 uz + d

1− ρ . (4)

That is, the immediate cost divided by 1− ρ.

Preemptive M/G/1-LIFO: Immediate cost in an M/G/1-LIFO
is (n + 1)x , where x is the size of the new task. Similarly, the
expected cost due to accepting a new task with size x is

wz =
(n + 1)x

1− ρ ,

i.e., the immediate cost divided by 1− ρ.
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First policy iteration (FPI) with M/D/1-PS

I Assume: relative values vz are available for basic policy

I Improved decision according to FPI at state z:

α(z) , argmin
i

(
vz′(i) − vz

)
= argmin

i
wz(i)

where z′(i) is the new state if the job is added to queue i .

“Choose the action with the smallest expected future cost”

I Basic policy RND-ρ balances load, ρi = ρj , and FPI
reduces to

α(z) = argmin
i

(ui(z) + 0.5 di) .
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Policy family P(β)
Policy family P(β) with policy parameter β is defined by

argmin
i

ui(z) + β · di .

LWL− : β = 0 “smallest backlog before”
LWL+ : β = 1 “smallest backlog afterwards”
FPI-ρ : β = 0.5 “compromise between the above”

State-dependent policies in P(β)
are of the switch-over type:

LW
L
-

FPI-
Ρ LW

L
+

Choose
Queue 2

Choose
Queue 1

0 1 2 3 4
0

1

2

3

4

u1H t L

u
2

HtL

State- dependent policies: d1=1 and d2= 2
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Numerical examples

Performance metrics:
1. Absolute mean delay (sojourn time)
2. Relative delay when compared to FPI policy

Scenarios:
1. Symmetric case with two identical servers
2. Asymmetric case with two heterogeneous servers

Additionally, policy optimization within P

α
λ

Dispatcher

PS−queues
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Asymmetric servers: d1 = 1 and d2 = 4
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ui(z) + β · di .
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Policy optimization in P(β)

Two servers
d1=1, d2=4

O
ptim

al region

1.01

1.02

1.05

1.1

1.15

1.2
1.25

1.01

1.02

1.05

1.1

1.15

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Policy parameter Β

A
rr

iv
al

ra
te
Λ

Equivalue contours of the relative mean sojourn time

I Two servers, d1 = 1 and d2 = 4

I x-axis: policy parameter β
y -axis: arrival rate λ
z-axis: mean delay relative to the optimal at given λ

I Valley: delay is within 1% from the minimum at given λ
I FPI-ρ (β = 0.5) close to optimal optimal (within P)

7.9.2011 23rd ITC, San Fransisco, USA 20/22



Policy optimization in P(β)

Two servers
d1=1, d2=4

O
ptim

al region

1.01

1.02

1.05

1.1

1.15

1.2
1.25

1.01

1.02

1.05

1.1

1.15

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Policy parameter Β

A
rr

iv
al

ra
te
Λ

Equivalue contours of the relative mean sojourn time

I Two servers, d1 = 1 and d2 = 4
I x-axis: policy parameter β

y -axis: arrival rate λ
z-axis: mean delay relative to the optimal at given λ

I Valley: delay is within 1% from the minimum at given λ
I FPI-ρ (β = 0.5) close to optimal optimal (within P)

7.9.2011 23rd ITC, San Fransisco, USA 20/22



Policy optimization in P(β)

Two servers
d1=1, d2=4

O
ptim

al region

1.01

1.02

1.05

1.1

1.15

1.2
1.25

1.01

1.02

1.05

1.1

1.15

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Policy parameter Β

A
rr

iv
al

ra
te
Λ

Equivalue contours of the relative mean sojourn time

I Two servers, d1 = 1 and d2 = 4
I x-axis: policy parameter β

y -axis: arrival rate λ
z-axis: mean delay relative to the optimal at given λ

I Valley: delay is within 1% from the minimum at given λ

I FPI-ρ (β = 0.5) close to optimal optimal (within P)

7.9.2011 23rd ITC, San Fransisco, USA 20/22



Policy optimization in P(β)

Two servers
d1=1, d2=4

O
ptim

al region

1.01

1.02

1.05

1.1

1.15

1.2
1.25

1.01

1.02

1.05

1.1

1.15

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Policy parameter Β

A
rr

iv
al

ra
te
Λ

Equivalue contours of the relative mean sojourn time

I Two servers, d1 = 1 and d2 = 4
I x-axis: policy parameter β

y -axis: arrival rate λ
z-axis: mean delay relative to the optimal at given λ

I Valley: delay is within 1% from the minimum at given λ
I FPI-ρ (β = 0.5) close to optimal optimal (within P)

7.9.2011 23rd ITC, San Fransisco, USA 20/22



Conclusions

I Size- and state-aware dispatching problem can be
approached in MDP framework

I FPI requires the relative values of the basic policy
I For a state-independent basic policy, sufficient to analyze

M/D/1-PS queue in isolation
I We give the relative value for a size-aware M/D/1-PS
I General case of M/G/1-PS seems to be difficult, however,

exact result for a size-aware M/M/1-PS is also available
(Hyytiä et. al, Performance 2011)

I For FCFS, LCFS, SPT and SRPT, the size-aware relative
values are available for M/G/1 (submitted)

Thanks!
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