
Dispatching Problem with Fixed Size Jobs
and

Processor Sharing Discipline

E. Hyytiä, A. Penttinen, S. Aalto and J. Virtamo

Department of Communications and Networking
Aalto University, School of Electrical Engineering, Finland

7.9.2011

7.9.2011 23rd ITC, San Fransisco, USA 1/22

Dispatching problem to parallel queues

α
λ

Dispatcher

PS−queues

I Upon arrival a job is routed to one of the m servers

I Each server processes jobs according to a certain
scheduling discipline (e.g., PS)

I Objective: minimize the mean delay (mean sojourn time)
I Examples:

I job assignment in supercomputing
I traffic routing
I web-server farms, and
I other distributed computing systems

7.9.2011 23rd ITC, San Fransisco, USA 2/22

Dispatching problem to parallel queues

α
λ

Dispatcher

PS−queues

I Upon arrival a job is routed to one of the m servers
I Each server processes jobs according to a certain

scheduling discipline (e.g., PS)

I Objective: minimize the mean delay (mean sojourn time)
I Examples:

I job assignment in supercomputing
I traffic routing
I web-server farms, and
I other distributed computing systems

7.9.2011 23rd ITC, San Fransisco, USA 2/22

Dispatching problem to parallel queues

α
λ

Dispatcher

PS−queues

I Upon arrival a job is routed to one of the m servers
I Each server processes jobs according to a certain

scheduling discipline (e.g., PS)
I Objective: minimize the mean delay (mean sojourn time)

I Examples:
I job assignment in supercomputing
I traffic routing
I web-server farms, and
I other distributed computing systems

7.9.2011 23rd ITC, San Fransisco, USA 2/22

Dispatching problem to parallel queues

α
λ

Dispatcher

PS−queues

I Upon arrival a job is routed to one of the m servers
I Each server processes jobs according to a certain

scheduling discipline (e.g., PS)
I Objective: minimize the mean delay (mean sojourn time)
I Examples:

I job assignment in supercomputing
I traffic routing
I web-server farms, and
I other distributed computing systems

7.9.2011 23rd ITC, San Fransisco, USA 2/22

Heuristic policies
State-independent Policies:

1. Bernoulli splitting (RND):
Choose queue in random using probabilities pi :

i) RND-U splits the arrival stream uniformly, pi = 1/m
ii) RND-ρ balances the load, pi = ci/

∑
j cj

iii) RND-opt uses the pi that minimize the mean sojourn time

State-dependent Policies:

1. Join-the-Shortest-Queue (JSQ):
Optimal when Poisson arrivals, Exponential jobs, identical
servers, and only the occupancy is known (Winston, 1977).

2. Round-robin (RR):
Optimal with identical servers that were initially in
a same state (Ephremides et. al, 1980).

3. Least-Work-Left (LWL):
Pick the queue with the shortest backlog
(Sharifnia, 1997).

7.9.2011 23rd ITC, San Fransisco, USA 3/22

Heuristic policies
State-independent Policies:

1. Bernoulli splitting (RND):
Choose queue in random using probabilities pi :

i) RND-U splits the arrival stream uniformly, pi = 1/m
ii) RND-ρ balances the load, pi = ci/

∑
j cj

iii) RND-opt uses the pi that minimize the mean sojourn time

State-dependent Policies:

1. Join-the-Shortest-Queue (JSQ):
Optimal when Poisson arrivals, Exponential jobs, identical
servers, and only the occupancy is known (Winston, 1977).

2. Round-robin (RR):
Optimal with identical servers that were initially in
a same state (Ephremides et. al, 1980).

3. Least-Work-Left (LWL):
Pick the queue with the shortest backlog
(Sharifnia, 1997).

7.9.2011 23rd ITC, San Fransisco, USA 3/22

Heuristic policies
State-independent Policies:

1. Bernoulli splitting (RND):
Choose queue in random using probabilities pi :

i) RND-U splits the arrival stream uniformly, pi = 1/m
ii) RND-ρ balances the load, pi = ci/

∑
j cj

iii) RND-opt uses the pi that minimize the mean sojourn time

State-dependent Policies:

1. Join-the-Shortest-Queue (JSQ):
Optimal when Poisson arrivals, Exponential jobs, identical
servers, and only the occupancy is known (Winston, 1977).

2. Round-robin (RR):
Optimal with identical servers that were initially in
a same state (Ephremides et. al, 1980).

3. Least-Work-Left (LWL):
Pick the queue with the shortest backlog
(Sharifnia, 1997).

7.9.2011 23rd ITC, San Fransisco, USA 3/22

Heuristic policies
State-independent Policies:

1. Bernoulli splitting (RND):
Choose queue in random using probabilities pi :

i) RND-U splits the arrival stream uniformly, pi = 1/m
ii) RND-ρ balances the load, pi = ci/

∑
j cj

iii) RND-opt uses the pi that minimize the mean sojourn time

State-dependent Policies:

1. Join-the-Shortest-Queue (JSQ):
Optimal when Poisson arrivals, Exponential jobs, identical
servers, and only the occupancy is known (Winston, 1977).

2. Round-robin (RR):
Optimal with identical servers that were initially in
a same state (Ephremides et. al, 1980).

3. Least-Work-Left (LWL):
Pick the queue with the shortest backlog
(Sharifnia, 1997).

7.9.2011 23rd ITC, San Fransisco, USA 3/22

State-aware dispatching with constant job size

α
λ

Dispatcher

PS−queues

I Poisson arrival process, rate λ

I Fixed job size d
I m parallel heterogeneous servers:

I Server specific processing rates ci
I Processor Sharing (PS) scheduling discipline

I Queue states (remaining service times) are known to the
dispatcher

I Objective: minimize the mean delay

7.9.2011 23rd ITC, San Fransisco, USA 4/22

State-aware dispatching with constant job size

α
λ

Dispatcher

PS−queues

I Poisson arrival process, rate λ
I Fixed job size d

I m parallel heterogeneous servers:
I Server specific processing rates ci
I Processor Sharing (PS) scheduling discipline

I Queue states (remaining service times) are known to the
dispatcher

I Objective: minimize the mean delay

7.9.2011 23rd ITC, San Fransisco, USA 4/22

State-aware dispatching with constant job size

α
λ

Dispatcher

PS−queues

I Poisson arrival process, rate λ
I Fixed job size d
I m parallel heterogeneous servers:

I Server specific processing rates ci
I Processor Sharing (PS) scheduling discipline

I Queue states (remaining service times) are known to the
dispatcher

I Objective: minimize the mean delay

7.9.2011 23rd ITC, San Fransisco, USA 4/22

State-aware dispatching with constant job size

α
λ

Dispatcher

PS−queues

I Poisson arrival process, rate λ
I Fixed job size d
I m parallel heterogeneous servers:

I Server specific processing rates ci

I Processor Sharing (PS) scheduling discipline
I Queue states (remaining service times) are known to the

dispatcher
I Objective: minimize the mean delay

7.9.2011 23rd ITC, San Fransisco, USA 4/22

State-aware dispatching with constant job size

α
λ

Dispatcher

PS−queues

I Poisson arrival process, rate λ
I Fixed job size d
I m parallel heterogeneous servers:

I Server specific processing rates ci
I Processor Sharing (PS) scheduling discipline

I Queue states (remaining service times) are known to the
dispatcher

I Objective: minimize the mean delay

7.9.2011 23rd ITC, San Fransisco, USA 4/22

State-aware dispatching with constant job size

α
λ

Dispatcher

PS−queues

I Poisson arrival process, rate λ
I Fixed job size d
I m parallel heterogeneous servers:

I Server specific processing rates ci
I Processor Sharing (PS) scheduling discipline

I Queue states (remaining service times) are known to the
dispatcher

I Objective: minimize the mean delay

7.9.2011 23rd ITC, San Fransisco, USA 4/22

State-aware dispatching with constant job size

α
λ

Dispatcher

PS−queues

I Poisson arrival process, rate λ
I Fixed job size d
I m parallel heterogeneous servers:

I Server specific processing rates ci
I Processor Sharing (PS) scheduling discipline

I Queue states (remaining service times) are known to the
dispatcher

I Objective: minimize the mean delay

7.9.2011 23rd ITC, San Fransisco, USA 4/22

Delay costs and relative value
Delay costs are accrued at rate

Nz(t) , ”the number of jobs in the system”,

where z denotes the initial state at time t = 0.

Delay costs accrued during (0, t): Vz(t) ,
∫ t

0
Nz(s) ds.

Relative value: the expected difference in the cumulative costs
between a system initially in state z and a system in equilibrium,

vz , lim
t→∞

E[Vz(t)− r t]

= lim
t→∞

(
E
[∫ t

0
Nz(s) ds

]
− E[N] t

)
.

7.9.2011 23rd ITC, San Fransisco, USA 5/22

Delay costs and relative value
Delay costs are accrued at rate

Nz(t) , ”the number of jobs in the system”,

where z denotes the initial state at time t = 0.

Delay costs accrued during (0, t): Vz(t) ,
∫ t

0
Nz(s) ds.

Relative value: the expected difference in the cumulative costs
between a system initially in state z and a system in equilibrium,

vz , lim
t→∞

E[Vz(t)− r t]

= lim
t→∞

(
E
[∫ t

0
Nz(s) ds

]
− E[N] t

)
.

7.9.2011 23rd ITC, San Fransisco, USA 5/22

Delay costs and relative value
Delay costs are accrued at rate

Nz(t) , ”the number of jobs in the system”,

where z denotes the initial state at time t = 0.

Delay costs accrued during (0, t): Vz(t) ,
∫ t

0
Nz(s) ds.

Relative value: the expected difference in the cumulative costs
between a system initially in state z and a system in equilibrium,

vz , lim
t→∞

E[Vz(t)− r t]

= lim
t→∞

(
E
[∫ t

0
Nz(s) ds

]
− E[N] t

)
.

7.9.2011 23rd ITC, San Fransisco, USA 5/22

Approach: MDP and first policy iteration (FPI)

I Size- and state-aware setting; future arrivals not known

I Idea: start with a reasonable basic dispatching policy, and
carry out the first policy iteration (FPI) step

I Policy iteration finds the optimal policy, and the FPI step
typically yields the highest improvement.

I Requires the relative values of states vz

I However, our state-space is extremely complex
(remaining service requirements at each queue)

7.9.2011 23rd ITC, San Fransisco, USA 6/22

Approach: MDP and first policy iteration (FPI)

I Size- and state-aware setting; future arrivals not known
I Idea: start with a reasonable basic dispatching policy, and

carry out the first policy iteration (FPI) step

I Policy iteration finds the optimal policy, and the FPI step
typically yields the highest improvement.

I Requires the relative values of states vz

I However, our state-space is extremely complex
(remaining service requirements at each queue)

7.9.2011 23rd ITC, San Fransisco, USA 6/22

Approach: MDP and first policy iteration (FPI)

I Size- and state-aware setting; future arrivals not known
I Idea: start with a reasonable basic dispatching policy, and

carry out the first policy iteration (FPI) step
I Policy iteration finds the optimal policy, and the FPI step

typically yields the highest improvement.

I Requires the relative values of states vz

I However, our state-space is extremely complex
(remaining service requirements at each queue)

7.9.2011 23rd ITC, San Fransisco, USA 6/22

Approach: MDP and first policy iteration (FPI)

I Size- and state-aware setting; future arrivals not known
I Idea: start with a reasonable basic dispatching policy, and

carry out the first policy iteration (FPI) step
I Policy iteration finds the optimal policy, and the FPI step

typically yields the highest improvement.
I Requires the relative values of states vz

I However, our state-space is extremely complex
(remaining service requirements at each queue)

7.9.2011 23rd ITC, San Fransisco, USA 6/22

Approach: MDP and first policy iteration (FPI)

I Size- and state-aware setting; future arrivals not known
I Idea: start with a reasonable basic dispatching policy, and

carry out the first policy iteration (FPI) step
I Policy iteration finds the optimal policy, and the FPI step

typically yields the highest improvement.
I Requires the relative values of states vz

I However, our state-space is extremely complex
(remaining service requirements at each queue)

7.9.2011 23rd ITC, San Fransisco, USA 6/22

Decomposition to independent M/D/1-PS queues

I Deriving a relative value is generally a difficult task.

I However, any state-independent policy feeds each server
jobs according to a Poisson process (cf. Bernoulli split)

1

1

1
λ/3

λ/3

λ/3

λ
1

1

1

RND

Analyze single M/D/1-PS queues instead?

7.9.2011 23rd ITC, San Fransisco, USA 7/22

Decomposition to independent M/D/1-PS queues

I Deriving a relative value is generally a difficult task.
I However, any state-independent policy feeds each server

jobs according to a Poisson process (cf. Bernoulli split)

1

1

1
λ/3

λ/3

λ/3

λ
1

1

1

RND

Analyze single M/D/1-PS queues instead?

7.9.2011 23rd ITC, San Fransisco, USA 7/22

Decomposition to independent M/D/1-PS queues

I Deriving a relative value is generally a difficult task.
I However, any state-independent policy feeds each server

jobs according to a Poisson process (cf. Bernoulli split)

1

1

1
λ/3

λ/3

λ/3

λ
1

1

1

RND

Analyze single M/D/1-PS queues instead?

7.9.2011 23rd ITC, San Fransisco, USA 7/22

FPI of state-independent basic policy

c1

c2

2λλ1
queue

states?
+

arrivals

PS

PS

Dispatch

⇒
c1

c2

queue

states

2λ

λ1

later

arrivals

later

arrivals

this

task ? PS

PS

Figure: FPI considers a single decision, after which one falls back to
the basic policy.

Can we solve the latter exactly?

7.9.2011 23rd ITC, San Fransisco, USA 8/22

FPI of state-independent basic policy

c1

c2

2λλ1
queue

states?
+

arrivals

PS

PS

Dispatch

⇒
c1

c2

queue

states

2λ

λ1

later

arrivals

later

arrivals

this

task ? PS

PS

Figure: FPI considers a single decision, after which one falls back to
the basic policy.

Can we solve the latter exactly?

7.9.2011 23rd ITC, San Fransisco, USA 8/22

FPI of state-independent basic policy

c1

c2

2λλ1
queue

states?
+

arrivals

PS

PS

Dispatch

⇒
c1

c2

queue

states

2λ

λ1

later

arrivals

later

arrivals

this

task ? PS

PS

Figure: FPI considers a single decision, after which one falls back to
the basic policy.

Can we solve the latter exactly?

7.9.2011 23rd ITC, San Fransisco, USA 8/22

FPI of state-independent basic policy

c1

c2

queue

states

2λ

λ1

later

arrivals

later

arrivals

this

task ? PS

PS

⇒
c2

2λ

λ1
c1

c2
2λ

λ1
c1

OR?

state z1 state z2

Figure: FPI of state-independent basic policy: later arrivals are
dispatched according to the basic policy, isolating the queues.

The relative values vz1 and vz2 tell us
which is the better option!

7.9.2011 23rd ITC, San Fransisco, USA 9/22

FPI of state-independent basic policy

c1

c2

queue

states

2λ

λ1

later

arrivals

later

arrivals

this

task ? PS

PS

⇒
c2

2λ

λ1
c1

c2
2λ

λ1
c1

OR?

state z1 state z2

Figure: FPI of state-independent basic policy: later arrivals are
dispatched according to the basic policy, isolating the queues.

The relative values vz1 and vz2 tell us
which is the better option!

7.9.2011 23rd ITC, San Fransisco, USA 9/22

FPI of state-independent basic policy

c1

c2

queue

states

2λ

λ1

later

arrivals

later

arrivals

this

task ? PS

PS

⇒

λ1
c1

λ1
c1

c2
2λ

c2
2λ

OR?

State of only one queue changes.

Figure: Comparison between two states in each queue.

Increments in the queue specific relative val-
ues v (1)

z and v (2)
z tell us which queue to choose!

7.9.2011 23rd ITC, San Fransisco, USA 10/22

FPI of state-independent basic policy

c1

c2

queue

states

2λ

λ1

later

arrivals

later

arrivals

this

task ? PS

PS

⇒

λ1
c1

λ1
c1

c2
2λ

c2
2λ

OR?

State of only one queue changes.

Figure: Comparison between two states in each queue.

Increments in the queue specific relative val-
ues v (1)

z and v (2)
z tell us which queue to choose!

7.9.2011 23rd ITC, San Fransisco, USA 10/22

Roadmap

1. Assume a state-independent basic policy.

2. Derive relative values for an “isolated queue”.
3. Relative value of the whole system is the sum of the queue

specific relative values:

vz =
∑

i

vzi .

4. Carry out FPI⇒ new efficient dispatching policy.

In practice, it is sufficient to know, e.g., vz − v0.

Next step:
Derive vz − v0 for an M/D/1-PS queue.

7.9.2011 23rd ITC, San Fransisco, USA 11/22

Roadmap

1. Assume a state-independent basic policy.
2. Derive relative values for an “isolated queue”.

3. Relative value of the whole system is the sum of the queue
specific relative values:

vz =
∑

i

vzi .

4. Carry out FPI⇒ new efficient dispatching policy.

In practice, it is sufficient to know, e.g., vz − v0.

Next step:
Derive vz − v0 for an M/D/1-PS queue.

7.9.2011 23rd ITC, San Fransisco, USA 11/22

Roadmap

1. Assume a state-independent basic policy.
2. Derive relative values for an “isolated queue”.
3. Relative value of the whole system is the sum of the queue

specific relative values:

vz =
∑

i

vzi .

4. Carry out FPI⇒ new efficient dispatching policy.

In practice, it is sufficient to know, e.g., vz − v0.

Next step:
Derive vz − v0 for an M/D/1-PS queue.

7.9.2011 23rd ITC, San Fransisco, USA 11/22

Roadmap

1. Assume a state-independent basic policy.
2. Derive relative values for an “isolated queue”.
3. Relative value of the whole system is the sum of the queue

specific relative values:

vz =
∑

i

vzi .

4. Carry out FPI⇒ new efficient dispatching policy.

In practice, it is sufficient to know, e.g., vz − v0.

Next step:
Derive vz − v0 for an M/D/1-PS queue.

7.9.2011 23rd ITC, San Fransisco, USA 11/22

Roadmap

1. Assume a state-independent basic policy.
2. Derive relative values for an “isolated queue”.
3. Relative value of the whole system is the sum of the queue

specific relative values:

vz =
∑

i

vzi .

4. Carry out FPI⇒ new efficient dispatching policy.

In practice, it is sufficient to know, e.g., vz − v0.

Next step:
Derive vz − v0 for an M/D/1-PS queue.

7.9.2011 23rd ITC, San Fransisco, USA 11/22

Relative value for an M/D/1-PS queue

Notation:
I λ is the Poisson arrival rate.

I ρ = λd and d denotes the fixed job size.
I z = (∆1; ..; ∆n) are the remaining service times, ∆i > ∆i+1

Proposition: The size-aware relative value of state z with
respect to the delay in an M/D/1-PS queue is given by

v(∆1;..;∆n) − v0 =
λ

1− ρu2
z − uz + 2

n∑
i=1

i ∆i . (1)

where v0 denotes the relative value of an empty system,
and uz =

∑
i ∆i the backlog in the queue.

7.9.2011 23rd ITC, San Fransisco, USA 12/22

Relative value for an M/D/1-PS queue

Notation:
I λ is the Poisson arrival rate.
I ρ = λd and d denotes the fixed job size.

I z = (∆1; ..; ∆n) are the remaining service times, ∆i > ∆i+1

Proposition: The size-aware relative value of state z with
respect to the delay in an M/D/1-PS queue is given by

v(∆1;..;∆n) − v0 =
λ

1− ρu2
z − uz + 2

n∑
i=1

i ∆i . (1)

where v0 denotes the relative value of an empty system,
and uz =

∑
i ∆i the backlog in the queue.

7.9.2011 23rd ITC, San Fransisco, USA 12/22

Relative value for an M/D/1-PS queue

Notation:
I λ is the Poisson arrival rate.
I ρ = λd and d denotes the fixed job size.
I z = (∆1; ..; ∆n) are the remaining service times, ∆i > ∆i+1

Proposition: The size-aware relative value of state z with
respect to the delay in an M/D/1-PS queue is given by

v(∆1;..;∆n) − v0 =
λ

1− ρu2
z − uz + 2

n∑
i=1

i ∆i . (1)

where v0 denotes the relative value of an empty system,
and uz =

∑
i ∆i the backlog in the queue.

7.9.2011 23rd ITC, San Fransisco, USA 12/22

Relative value for an M/D/1-PS queue

Notation:
I λ is the Poisson arrival rate.
I ρ = λd and d denotes the fixed job size.
I z = (∆1; ..; ∆n) are the remaining service times, ∆i > ∆i+1

Proposition: The size-aware relative value of state z with
respect to the delay in an M/D/1-PS queue is given by

v(∆1;..;∆n) − v0 =
λ

1− ρu2
z − uz + 2

n∑
i=1

i ∆i . (1)

where v0 denotes the relative value of an empty system,
and uz =

∑
i ∆i the backlog in the queue.

7.9.2011 23rd ITC, San Fransisco, USA 12/22

Proof sketched
I Consider two systems under the same arrivals:

I S1 initially in state z = (∆1; ..; ∆n) with ∆1 ≥ . . . ≥ ∆n.
I S2 initially empty.

I Once S1 is empty, the two systems behave equivalently
I Without new arrivals, the total delay accrued in S1 is

τz = ∆n · n2 + (∆n−1 −∆n) · (n − 1)2 + . . .+ (∆1 −∆2),

=
n∑

i=1

(2i − 1)∆i . (2)

I Each arrival increases the total delay (immediate cost)

sz = τ(d ;∆1;..;∆n) − τ(∆1;..;∆n) = 2 uz + d . (3)

I Utilize the lack of memory of Poisson arrivals.
I Virtual busy periods similar (S1 has an offset in backlog)
⇒ the mean contribution of a busy period.

I Details in the paper.

7.9.2011 23rd ITC, San Fransisco, USA 13/22

Proof sketched
I Consider two systems under the same arrivals:

I S1 initially in state z = (∆1; ..; ∆n) with ∆1 ≥ . . . ≥ ∆n.
I S2 initially empty.

I Once S1 is empty, the two systems behave equivalently

I Without new arrivals, the total delay accrued in S1 is

τz = ∆n · n2 + (∆n−1 −∆n) · (n − 1)2 + . . .+ (∆1 −∆2),

=
n∑

i=1

(2i − 1)∆i . (2)

I Each arrival increases the total delay (immediate cost)

sz = τ(d ;∆1;..;∆n) − τ(∆1;..;∆n) = 2 uz + d . (3)

I Utilize the lack of memory of Poisson arrivals.
I Virtual busy periods similar (S1 has an offset in backlog)
⇒ the mean contribution of a busy period.

I Details in the paper.

7.9.2011 23rd ITC, San Fransisco, USA 13/22

Proof sketched
I Consider two systems under the same arrivals:

I S1 initially in state z = (∆1; ..; ∆n) with ∆1 ≥ . . . ≥ ∆n.
I S2 initially empty.

I Once S1 is empty, the two systems behave equivalently
I Without new arrivals, the total delay accrued in S1 is

τz = ∆n · n2 + (∆n−1 −∆n) · (n − 1)2 + . . .+ (∆1 −∆2),

=
n∑

i=1

(2i − 1)∆i . (2)

I Each arrival increases the total delay (immediate cost)

sz = τ(d ;∆1;..;∆n) − τ(∆1;..;∆n) = 2 uz + d . (3)

I Utilize the lack of memory of Poisson arrivals.
I Virtual busy periods similar (S1 has an offset in backlog)
⇒ the mean contribution of a busy period.

I Details in the paper.

7.9.2011 23rd ITC, San Fransisco, USA 13/22

Proof sketched
I Consider two systems under the same arrivals:

I S1 initially in state z = (∆1; ..; ∆n) with ∆1 ≥ . . . ≥ ∆n.
I S2 initially empty.

I Once S1 is empty, the two systems behave equivalently
I Without new arrivals, the total delay accrued in S1 is

τz = ∆n · n2 + (∆n−1 −∆n) · (n − 1)2 + . . .+ (∆1 −∆2),

=
n∑

i=1

(2i − 1)∆i . (2)

I Each arrival increases the total delay (immediate cost)

sz = τ(d ;∆1;..;∆n) − τ(∆1;..;∆n) = 2 uz + d . (3)

I Utilize the lack of memory of Poisson arrivals.
I Virtual busy periods similar (S1 has an offset in backlog)
⇒ the mean contribution of a busy period.

I Details in the paper.

7.9.2011 23rd ITC, San Fransisco, USA 13/22

Proof sketched
I Consider two systems under the same arrivals:

I S1 initially in state z = (∆1; ..; ∆n) with ∆1 ≥ . . . ≥ ∆n.
I S2 initially empty.

I Once S1 is empty, the two systems behave equivalently
I Without new arrivals, the total delay accrued in S1 is

τz = ∆n · n2 + (∆n−1 −∆n) · (n − 1)2 + . . .+ (∆1 −∆2),

=
n∑

i=1

(2i − 1)∆i . (2)

I Each arrival increases the total delay (immediate cost)

sz = τ(d ;∆1;..;∆n) − τ(∆1;..;∆n) = 2 uz + d . (3)

I Utilize the lack of memory of Poisson arrivals.
I Virtual busy periods similar (S1 has an offset in backlog)
⇒ the mean contribution of a busy period.

I Details in the paper.

7.9.2011 23rd ITC, San Fransisco, USA 13/22

Proof sketched
I Consider two systems under the same arrivals:

I S1 initially in state z = (∆1; ..; ∆n) with ∆1 ≥ . . . ≥ ∆n.
I S2 initially empty.

I Once S1 is empty, the two systems behave equivalently
I Without new arrivals, the total delay accrued in S1 is

τz = ∆n · n2 + (∆n−1 −∆n) · (n − 1)2 + . . .+ (∆1 −∆2),

=
n∑

i=1

(2i − 1)∆i . (2)

I Each arrival increases the total delay (immediate cost)

sz = τ(d ;∆1;..;∆n) − τ(∆1;..;∆n) = 2 uz + d . (3)

I Utilize the lack of memory of Poisson arrivals.
I Virtual busy periods similar (S1 has an offset in backlog)
⇒ the mean contribution of a busy period.

I Details in the paper.

7.9.2011 23rd ITC, San Fransisco, USA 13/22

Cost of a new task in M/D/1-PS
Corollary: The expected cost due to accepting a new task to
an M/D/1-PS queue at state z = (∆1; ..; ∆n) is given by

wz = v(d ;∆1;..;∆n) − v(∆1;..;∆n) =
2 uz + d

1− ρ . (4)

That is, the immediate cost divided by 1− ρ.

Preemptive M/G/1-LIFO: Immediate cost in an M/G/1-LIFO
is (n + 1)x , where x is the size of the new task. Similarly, the
expected cost due to accepting a new task with size x is

wz =
(n + 1)x

1− ρ ,

i.e., the immediate cost divided by 1− ρ.

7.9.2011 23rd ITC, San Fransisco, USA 14/22

Cost of a new task in M/D/1-PS
Corollary: The expected cost due to accepting a new task to
an M/D/1-PS queue at state z = (∆1; ..; ∆n) is given by

wz = v(d ;∆1;..;∆n) − v(∆1;..;∆n) =
2 uz + d

1− ρ . (4)

That is, the immediate cost divided by 1− ρ.

Preemptive M/G/1-LIFO: Immediate cost in an M/G/1-LIFO
is (n + 1)x , where x is the size of the new task. Similarly, the
expected cost due to accepting a new task with size x is

wz =
(n + 1)x

1− ρ ,

i.e., the immediate cost divided by 1− ρ.

7.9.2011 23rd ITC, San Fransisco, USA 14/22

Cost of a new task in M/D/1-PS
Corollary: The expected cost due to accepting a new task to
an M/D/1-PS queue at state z = (∆1; ..; ∆n) is given by

wz = v(d ;∆1;..;∆n) − v(∆1;..;∆n) =
2 uz + d

1− ρ . (4)

That is, the immediate cost divided by 1− ρ.

Preemptive M/G/1-LIFO: Immediate cost in an M/G/1-LIFO
is (n + 1)x , where x is the size of the new task.

Similarly, the
expected cost due to accepting a new task with size x is

wz =
(n + 1)x

1− ρ ,

i.e., the immediate cost divided by 1− ρ.

7.9.2011 23rd ITC, San Fransisco, USA 14/22

Cost of a new task in M/D/1-PS
Corollary: The expected cost due to accepting a new task to
an M/D/1-PS queue at state z = (∆1; ..; ∆n) is given by

wz = v(d ;∆1;..;∆n) − v(∆1;..;∆n) =
2 uz + d

1− ρ . (4)

That is, the immediate cost divided by 1− ρ.

Preemptive M/G/1-LIFO: Immediate cost in an M/G/1-LIFO
is (n + 1)x , where x is the size of the new task. Similarly, the
expected cost due to accepting a new task with size x is

wz =
(n + 1)x

1− ρ ,

i.e., the immediate cost divided by 1− ρ.

7.9.2011 23rd ITC, San Fransisco, USA 14/22

First policy iteration (FPI) with M/D/1-PS

I Assume: relative values vz are available for basic policy

I Improved decision according to FPI at state z:

α(z) , argmin
i

(
vz′(i) − vz

)
= argmin

i
wz(i)

where z′(i) is the new state if the job is added to queue i .

“Choose the action with the smallest expected future cost”

I Basic policy RND-ρ balances load, ρi = ρj , and FPI
reduces to

α(z) = argmin
i

(ui(z) + 0.5 di) .

7.9.2011 23rd ITC, San Fransisco, USA 15/22

First policy iteration (FPI) with M/D/1-PS

I Assume: relative values vz are available for basic policy
I Improved decision according to FPI at state z:

α(z) , argmin
i

(
vz′(i) − vz

)
= argmin

i
wz(i)

where z′(i) is the new state if the job is added to queue i .

“Choose the action with the smallest expected future cost”

I Basic policy RND-ρ balances load, ρi = ρj , and FPI
reduces to

α(z) = argmin
i

(ui(z) + 0.5 di) .

7.9.2011 23rd ITC, San Fransisco, USA 15/22

First policy iteration (FPI) with M/D/1-PS

I Assume: relative values vz are available for basic policy
I Improved decision according to FPI at state z:

α(z) , argmin
i

(
vz′(i) − vz

)
= argmin

i
wz(i)

where z′(i) is the new state if the job is added to queue i .

“Choose the action with the smallest expected future cost”

I Basic policy RND-ρ balances load, ρi = ρj , and FPI
reduces to

α(z) = argmin
i

(ui(z) + 0.5 di) .

7.9.2011 23rd ITC, San Fransisco, USA 15/22

First policy iteration (FPI) with M/D/1-PS

I Assume: relative values vz are available for basic policy
I Improved decision according to FPI at state z:

α(z) , argmin
i

(
vz′(i) − vz

)
= argmin

i
wz(i)

where z′(i) is the new state if the job is added to queue i .

“Choose the action with the smallest expected future cost”

I Basic policy RND-ρ balances load, ρi = ρj , and FPI
reduces to

α(z) = argmin
i

(ui(z) + 0.5 di) .

7.9.2011 23rd ITC, San Fransisco, USA 15/22

Policy family P(β)
Policy family P(β) with policy parameter β is defined by

argmin
i

ui(z) + β · di .

LWL− : β = 0 “smallest backlog before”
LWL+ : β = 1 “smallest backlog afterwards”
FPI-ρ : β = 0.5 “compromise between the above”

State-dependent policies in P(β)
are of the switch-over type:

LW
L
-

FPI-
Ρ LW

L
+

Choose
Queue 2

Choose
Queue 1

0 1 2 3 4
0

1

2

3

4

u1H t L

u
2

HtL

State- dependent policies: d1=1 and d2= 2

7.9.2011 23rd ITC, San Fransisco, USA 16/22

Policy family P(β)
Policy family P(β) with policy parameter β is defined by

argmin
i

ui(z) + β · di .

LWL− : β = 0 “smallest backlog before”
LWL+ : β = 1 “smallest backlog afterwards”
FPI-ρ : β = 0.5 “compromise between the above”

State-dependent policies in P(β)
are of the switch-over type:

LW
L
-

FPI-
Ρ LW

L
+

Choose
Queue 2

Choose
Queue 1

0 1 2 3 4
0

1

2

3

4

u1H t L

u
2

HtL

State- dependent policies: d1=1 and d2= 2

7.9.2011 23rd ITC, San Fransisco, USA 16/22

Numerical examples

Performance metrics:
1. Absolute mean delay (sojourn time)
2. Relative delay when compared to FPI policy

Scenarios:
1. Symmetric case with two identical servers
2. Asymmetric case with two heterogeneous servers

Additionally, policy optimization within P

α
λ

Dispatcher

PS−queues

7.9.2011 23rd ITC, San Fransisco, USA 17/22

Numerical examples

Performance metrics:
1. Absolute mean delay (sojourn time)
2. Relative delay when compared to FPI policy

Scenarios:
1. Symmetric case with two identical servers
2. Asymmetric case with two heterogeneous servers

Additionally, policy optimization within P

α
λ

Dispatcher

PS−queues

7.9.2011 23rd ITC, San Fransisco, USA 17/22

Identical servers

 1

 2

 3

 4

 5

 6

 7

 8

 0 0.2 0.4 0.6 0.8 1

M
ea

n
so

jo
ur

n
tim

e
E

[T
]

Offered load ρ

Dispatching system with 2 servers: d1=1 and d2=1

RND-U
LWL/FPI-U

single server

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 0.2 0.4 0.6 0.8 1

R
el

at
iv

e
pe

rf
or

m
an

ce
 E

[T
]/E

[T
F

P
I]

Offered load ρ

Dispatching system with 2 servers: d1=1 and d2=1

optim
al state-independent: R

ND-U

optimal state-dependent: LWL = FPI-U = round-robin

single server

RND-U
LWL/FPI

single server

I Two policies, i) RND-U, ii) LWL/FPI/RR, and single server
I Left: resulting mean sojourn time
I Right: relative performance against the LWL

I Optimal state-independent policy: RND-U
I Optimal state-dependent policy: LWL/FPI-U/RR,

“Choose the queue with a smaller backlog”

7.9.2011 23rd ITC, San Fransisco, USA 18/22

Identical servers

 1

 2

 3

 4

 5

 6

 7

 8

 0 0.2 0.4 0.6 0.8 1

M
ea

n
so

jo
ur

n
tim

e
E

[T
]

Offered load ρ

Dispatching system with 2 servers: d1=1 and d2=1

RND-U
LWL/FPI-U

single server

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 0.2 0.4 0.6 0.8 1

R
el

at
iv

e
pe

rf
or

m
an

ce
 E

[T
]/E

[T
F

P
I]

Offered load ρ

Dispatching system with 2 servers: d1=1 and d2=1

optim
al state-independent: R

ND-U

optimal state-dependent: LWL = FPI-U = round-robin

single server

RND-U
LWL/FPI

single server

I Two policies, i) RND-U, ii) LWL/FPI/RR, and single server
I Left: resulting mean sojourn time
I Right: relative performance against the LWL
I Optimal state-independent policy: RND-U

I Optimal state-dependent policy: LWL/FPI-U/RR,

“Choose the queue with a smaller backlog”

7.9.2011 23rd ITC, San Fransisco, USA 18/22

Identical servers

 1

 2

 3

 4

 5

 6

 7

 8

 0 0.2 0.4 0.6 0.8 1

M
ea

n
so

jo
ur

n
tim

e
E

[T
]

Offered load ρ

Dispatching system with 2 servers: d1=1 and d2=1

RND-U
LWL/FPI-U

single server

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 0.2 0.4 0.6 0.8 1

R
el

at
iv

e
pe

rf
or

m
an

ce
 E

[T
]/E

[T
F

P
I]

Offered load ρ

Dispatching system with 2 servers: d1=1 and d2=1

optim
al state-independent: R

ND-U

optimal state-dependent: LWL = FPI-U = round-robin

single server

RND-U
LWL/FPI

single server

I Two policies, i) RND-U, ii) LWL/FPI/RR, and single server
I Left: resulting mean sojourn time
I Right: relative performance against the LWL
I Optimal state-independent policy: RND-U
I Optimal state-dependent policy: LWL/FPI-U/RR,

“Choose the queue with a smaller backlog”

7.9.2011 23rd ITC, San Fransisco, USA 18/22

Asymmetric servers: d1 = 1 and d2 = 4

 1

 2

 3

 4

 5

 6

 7

 8

 0 0.2 0.4 0.6 0.8 1

M
ea

n
so

jo
ur

n
tim

e
E

[T
]

Offered load ρ

Dispatching system with 2 servers: d1=1 and d2=4

RND-ρ
RND-opt

LWL+

LWL-

FPI-ρ
single server

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 0.2 0.4 0.6 0.8 1

R
el

at
iv

e
pe

rf
or

m
an

ce
 E

[T
]/E

[T
F

P
I]

Offered load ρ

Dispatching system with 2 servers: d1=1 and d2=4

RND-ρ

RND-opt

LWL- LWL+

optimal in P(β)
single

RND-ρ
RND-opt

LWL+

LWL-

FPI-ρ
single server

I Left: mean sojourn time
I Right: relative performance against the FPI-ρ policy

I Both LWL policies are clearly suboptimal
I FPI-ρ makes very good dispatching decisions for all ρ
I Gray area: optimal policy from P(β), defined by

ui(z) + β · di .

7.9.2011 23rd ITC, San Fransisco, USA 19/22

Asymmetric servers: d1 = 1 and d2 = 4

 1

 2

 3

 4

 5

 6

 7

 8

 0 0.2 0.4 0.6 0.8 1

M
ea

n
so

jo
ur

n
tim

e
E

[T
]

Offered load ρ

Dispatching system with 2 servers: d1=1 and d2=4

RND-ρ
RND-opt

LWL+

LWL-

FPI-ρ
single server

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 0.2 0.4 0.6 0.8 1

R
el

at
iv

e
pe

rf
or

m
an

ce
 E

[T
]/E

[T
F

P
I]

Offered load ρ

Dispatching system with 2 servers: d1=1 and d2=4

RND-ρ

RND-opt

LWL- LWL+

optimal in P(β)
single

RND-ρ
RND-opt

LWL+

LWL-

FPI-ρ
single server

I Left: mean sojourn time
I Right: relative performance against the FPI-ρ policy
I Both LWL policies are clearly suboptimal

I FPI-ρ makes very good dispatching decisions for all ρ
I Gray area: optimal policy from P(β), defined by

ui(z) + β · di .

7.9.2011 23rd ITC, San Fransisco, USA 19/22

Asymmetric servers: d1 = 1 and d2 = 4

 1

 2

 3

 4

 5

 6

 7

 8

 0 0.2 0.4 0.6 0.8 1

M
ea

n
so

jo
ur

n
tim

e
E

[T
]

Offered load ρ

Dispatching system with 2 servers: d1=1 and d2=4

RND-ρ
RND-opt

LWL+

LWL-

FPI-ρ
single server

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 0.2 0.4 0.6 0.8 1

R
el

at
iv

e
pe

rf
or

m
an

ce
 E

[T
]/E

[T
F

P
I]

Offered load ρ

Dispatching system with 2 servers: d1=1 and d2=4

RND-ρ

RND-opt

LWL- LWL+

optimal in P(β)
single

RND-ρ
RND-opt

LWL+

LWL-

FPI-ρ
single server

I Left: mean sojourn time
I Right: relative performance against the FPI-ρ policy
I Both LWL policies are clearly suboptimal
I FPI-ρ makes very good dispatching decisions for all ρ

I Gray area: optimal policy from P(β), defined by

ui(z) + β · di .

7.9.2011 23rd ITC, San Fransisco, USA 19/22

Asymmetric servers: d1 = 1 and d2 = 4

 1

 2

 3

 4

 5

 6

 7

 8

 0 0.2 0.4 0.6 0.8 1

M
ea

n
so

jo
ur

n
tim

e
E

[T
]

Offered load ρ

Dispatching system with 2 servers: d1=1 and d2=4

RND-ρ
RND-opt

LWL+

LWL-

FPI-ρ
single server

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 0.2 0.4 0.6 0.8 1

R
el

at
iv

e
pe

rf
or

m
an

ce
 E

[T
]/E

[T
F

P
I]

Offered load ρ

Dispatching system with 2 servers: d1=1 and d2=4

RND-ρ

RND-opt

LWL- LWL+

optimal in P(β)
single

RND-ρ
RND-opt

LWL+

LWL-

FPI-ρ
single server

I Left: mean sojourn time
I Right: relative performance against the FPI-ρ policy
I Both LWL policies are clearly suboptimal
I FPI-ρ makes very good dispatching decisions for all ρ
I Gray area: optimal policy from P(β), defined by

ui(z) + β · di .

7.9.2011 23rd ITC, San Fransisco, USA 19/22

Policy optimization in P(β)

Two servers
d1=1, d2=4

O
ptim

al region

1.01

1.02

1.05

1.1

1.15

1.2
1.25

1.01

1.02

1.05

1.1

1.15

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Policy parameter Β

A
rr

iv
al

ra
te
Λ

Equivalue contours of the relative mean sojourn time

I Two servers, d1 = 1 and d2 = 4

I x-axis: policy parameter β
y -axis: arrival rate λ
z-axis: mean delay relative to the optimal at given λ

I Valley: delay is within 1% from the minimum at given λ
I FPI-ρ (β = 0.5) close to optimal optimal (within P)

7.9.2011 23rd ITC, San Fransisco, USA 20/22

Policy optimization in P(β)

Two servers
d1=1, d2=4

O
ptim

al region

1.01

1.02

1.05

1.1

1.15

1.2
1.25

1.01

1.02

1.05

1.1

1.15

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Policy parameter Β

A
rr

iv
al

ra
te
Λ

Equivalue contours of the relative mean sojourn time

I Two servers, d1 = 1 and d2 = 4
I x-axis: policy parameter β

y -axis: arrival rate λ
z-axis: mean delay relative to the optimal at given λ

I Valley: delay is within 1% from the minimum at given λ
I FPI-ρ (β = 0.5) close to optimal optimal (within P)

7.9.2011 23rd ITC, San Fransisco, USA 20/22

Policy optimization in P(β)

Two servers
d1=1, d2=4

O
ptim

al region

1.01

1.02

1.05

1.1

1.15

1.2
1.25

1.01

1.02

1.05

1.1

1.15

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Policy parameter Β

A
rr

iv
al

ra
te
Λ

Equivalue contours of the relative mean sojourn time

I Two servers, d1 = 1 and d2 = 4
I x-axis: policy parameter β

y -axis: arrival rate λ
z-axis: mean delay relative to the optimal at given λ

I Valley: delay is within 1% from the minimum at given λ

I FPI-ρ (β = 0.5) close to optimal optimal (within P)

7.9.2011 23rd ITC, San Fransisco, USA 20/22

Policy optimization in P(β)

Two servers
d1=1, d2=4

O
ptim

al region

1.01

1.02

1.05

1.1

1.15

1.2
1.25

1.01

1.02

1.05

1.1

1.15

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Policy parameter Β

A
rr

iv
al

ra
te
Λ

Equivalue contours of the relative mean sojourn time

I Two servers, d1 = 1 and d2 = 4
I x-axis: policy parameter β

y -axis: arrival rate λ
z-axis: mean delay relative to the optimal at given λ

I Valley: delay is within 1% from the minimum at given λ
I FPI-ρ (β = 0.5) close to optimal optimal (within P)

7.9.2011 23rd ITC, San Fransisco, USA 20/22

Conclusions

I Size- and state-aware dispatching problem can be
approached in MDP framework

I FPI requires the relative values of the basic policy
I For a state-independent basic policy, sufficient to analyze

M/D/1-PS queue in isolation
I We give the relative value for a size-aware M/D/1-PS
I General case of M/G/1-PS seems to be difficult, however,

exact result for a size-aware M/M/1-PS is also available
(Hyytiä et. al, Performance 2011)

I For FCFS, LCFS, SPT and SRPT, the size-aware relative
values are available for M/G/1 (submitted)

Thanks!

7.9.2011 23rd ITC, San Fransisco, USA 21/22

Conclusions

I Size- and state-aware dispatching problem can be
approached in MDP framework

I FPI requires the relative values of the basic policy

I For a state-independent basic policy, sufficient to analyze
M/D/1-PS queue in isolation

I We give the relative value for a size-aware M/D/1-PS
I General case of M/G/1-PS seems to be difficult, however,

exact result for a size-aware M/M/1-PS is also available
(Hyytiä et. al, Performance 2011)

I For FCFS, LCFS, SPT and SRPT, the size-aware relative
values are available for M/G/1 (submitted)

Thanks!

7.9.2011 23rd ITC, San Fransisco, USA 21/22

Conclusions

I Size- and state-aware dispatching problem can be
approached in MDP framework

I FPI requires the relative values of the basic policy
I For a state-independent basic policy, sufficient to analyze

M/D/1-PS queue in isolation

I We give the relative value for a size-aware M/D/1-PS
I General case of M/G/1-PS seems to be difficult, however,

exact result for a size-aware M/M/1-PS is also available
(Hyytiä et. al, Performance 2011)

I For FCFS, LCFS, SPT and SRPT, the size-aware relative
values are available for M/G/1 (submitted)

Thanks!

7.9.2011 23rd ITC, San Fransisco, USA 21/22

Conclusions

I Size- and state-aware dispatching problem can be
approached in MDP framework

I FPI requires the relative values of the basic policy
I For a state-independent basic policy, sufficient to analyze

M/D/1-PS queue in isolation
I We give the relative value for a size-aware M/D/1-PS

I General case of M/G/1-PS seems to be difficult, however,
exact result for a size-aware M/M/1-PS is also available
(Hyytiä et. al, Performance 2011)

I For FCFS, LCFS, SPT and SRPT, the size-aware relative
values are available for M/G/1 (submitted)

Thanks!

7.9.2011 23rd ITC, San Fransisco, USA 21/22

Conclusions

I Size- and state-aware dispatching problem can be
approached in MDP framework

I FPI requires the relative values of the basic policy
I For a state-independent basic policy, sufficient to analyze

M/D/1-PS queue in isolation
I We give the relative value for a size-aware M/D/1-PS
I General case of M/G/1-PS seems to be difficult, however,

exact result for a size-aware M/M/1-PS is also available
(Hyytiä et. al, Performance 2011)

I For FCFS, LCFS, SPT and SRPT, the size-aware relative
values are available for M/G/1 (submitted)

Thanks!

7.9.2011 23rd ITC, San Fransisco, USA 21/22

Conclusions

I Size- and state-aware dispatching problem can be
approached in MDP framework

I FPI requires the relative values of the basic policy
I For a state-independent basic policy, sufficient to analyze

M/D/1-PS queue in isolation
I We give the relative value for a size-aware M/D/1-PS
I General case of M/G/1-PS seems to be difficult, however,

exact result for a size-aware M/M/1-PS is also available
(Hyytiä et. al, Performance 2011)

I For FCFS, LCFS, SPT and SRPT, the size-aware relative
values are available for M/G/1 (submitted)

Thanks!

7.9.2011 23rd ITC, San Fransisco, USA 21/22

Conclusions

I Size- and state-aware dispatching problem can be
approached in MDP framework

I FPI requires the relative values of the basic policy
I For a state-independent basic policy, sufficient to analyze

M/D/1-PS queue in isolation
I We give the relative value for a size-aware M/D/1-PS
I General case of M/G/1-PS seems to be difficult, however,

exact result for a size-aware M/M/1-PS is also available
(Hyytiä et. al, Performance 2011)

I For FCFS, LCFS, SPT and SRPT, the size-aware relative
values are available for M/G/1 (submitted)

Thanks!

7.9.2011 23rd ITC, San Fransisco, USA 21/22

References:

1. E. Hyytiä, A. Penttinen and S. Aalto,
Size- and State-Aware Dispatching Problem with Queue-Specific Job Sizes,
December, 2010, (submitted).

2. E. Hyytiä, A. Penttinen, S. Aalto and J. Virtamo,
Dispatching problem with fixed size jobs and processor sharing discipline,
in 23rd International Teletraffic Congress (ITC’23), September 2011, San
Fransisco, USA.

3. E. Hyytiä, J. Virtamo, S. Aalto and A. Penttinen,
M/M/1-PS Queue and Size-Aware Task Assignment,
in IFIP PERFORMANCE, October 2011, Amsterdam, Netherlands, (to appear).

7.9.2011 23rd ITC, San Fransisco, USA 22/22

	Dispatching Problem
	Heuristic policies
	MDP Approach
	Decomposition
	Single M/D/1-PS queue
	Examples
	Conclusions

