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Introduction

File transfers compose much of the traffic of the current
Internet

Main measures of the quality of service (QoS) are the transfer
rates and duration of the file transfer

Being able to estimate congestion (when rates are below
desired rates) is of great importance to dimensioning capacity
to achieve QoS requirements

Doing so that is both insensitive to traffic characteristics and
tractable will lead to robust engineering rules in designing
future networks
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Scope Of Talk

The main focus of this talk will be on congestion in single
links that operate under a balanced fair allocation scheme for
heterogeneous flows with differing maximum or peak
bandwidth requirements

Using ideas from local limit large deviations of convolution
measures associated, formulas for estimating different
measures of congestion that are computationally tractable for
large parameters will be presented.
A presentation of the mathematical background can be found
in:

R. R. Mazumdar, Performance Modelling, Loss Networks and
Statistical Multiplexing, Series on Communication Networks
(J. Walrand, ed.), Morgan and Claypool, 2010.
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Nomenclature

The system is a single link with M classes of traffic

Link capacity C

Rate limits on individual flows ri , i = 1 . . .M

Traffic intensity αi = λi/µi , i = 1 . . .M

βi = αi/ri , i = 1 . . .M

Load ρ =
∑

j αj/C

Allocated bandwidth φi , i = 1 . . .M
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Flow Level Model

Introduced by Roberts and Massoulié [4]

Ignores the packet level dynamics and models the file transfers
as fluid flows

The bandwidth allocated to flows of the same class are shared
equally

In this talk, we will assume that all flows are rate limited and
go through a single bottleneck link

This can be modeled as letting each class of flow go to
separate processor sharing queues but with variable capacity
depending on number of flows in system

Thomas Bonald (Telecom Paris-Tech), Jean-Paul Haddad (Ernst and Young) and Ravi R. Mazumdar (Waterloo)Congestion in large balanced fair links



Markov Process

Let X be the state process, where the state is the numbers of
flows of each class

X is modeled as a continuous time jump Markov process

State transition rates: q(~x , ~y) =


λi ~y = ~x + ~ei

µiφi (~x) ~y = ~x − ~ei
0 Otherwise
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Bandwidth Allocation

Bandwidth allocation is a fundamental, well studied problem

Most popular and studied class of allocations are the Utility
based allocations

Let ~x be the state vector whose components xi are the
number flows of class i

max
φ

∑
j

xjU(φj(~x)/xj)

s.t.
∑

j φj(~x) ≤ C
φi (~x) ≤ xi ri

when Ui (x) = log x it is termed proportional fairness.
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Insensitive Allocations

Characterized by Balance Function Φ

Allocation is defined as φi (~x) = Φ(~x−~ei )
Φ(~x)

Insensitive allocations have the advantage that the stationary
distribution π(~x) depends on the flow size distribution only
through its mean

π(~x) = π(~0)Φ(~x)
M∏
i=1

αxi
i
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Balanced Fairness

Introduced by Bonald and Proutière [2].

Most efficient insensitive allocation is Balanced Fairness

Lemma

Consider another positive function Φ̃ such that Φ̃(0) = 1 and the
rate and capacity constraints are satisfied. Then

Φ̃(~x) ≥ Φ(~x) ∀~x ∈ ZM
+ . (1)

The Balance Function for a single link is:

Φ(~x) = max

(
1

C

M∑
i=1

Φ(~x − ~ei ), max
i : xi>0

Φ(~x − ~ei )
xi ri

)

The last constraint i.e. φi (~x) ≤ xi ri is a rate constraint on
each flow. If ri =∞ it would reduce to processor sharing.
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Balanced Fairness
Properties

The balance function can be simplified to:

Φ(~x) =



M∏
i=1

1

xi !r
xi
i

if ~xT~r ≤ C ,

1

C

M∑
i=1

Φ(~x − ~ei ) Otherwise

Lemma ∀i = 1 . . .M, φi (x) = xi ri iff ~xT~r ≤ C
This property implies that either all classes get their max rate
or none do

Theorem Stable iff ρ < 1
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Balanced Fairness and Proportional Fairness

Assuming ri =∞ ∀ i , Balanced Fairness coincides with
proportional fairness on many topologies and has been
empirically shown to approximate Proportional Fairness well in
many cases

Massoulié [3] proved some very useful theoretical connections
between Balanced Fairness and Proportional Fairness

Theorem If there exists φ̃ s.t. φBFi (n~x) −→ φ̃i (~x) as n→∞,

then φ̃(~x) = φPF (~x)

Theorem lim
n→∞

1

n
log πBF (n~x)⇒ −max

∑
j

xj log(φj/αj) s.t.

φ ∈ C
Where C is the set of feasible allocations.

Conjecture φBFi (n~x) −→ φPFi (~x) as n→∞
Walton [5] has generalized the results of Massoulié to any
max stable (ie. stability condition ρ < 1) insensitive allocation
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Congestion Metrics

We will look at three metrics related to the long run
congestion of the system:

1 Probability of congestion P - The long run fraction of time
that the system spends in a congested state.

2 Probabilities of congestion Pi - The long run probability that
an arrival of class i will arrive at a congested system or cause
the congestion in link.

3 Fi - Fraction of the average sojourn time that a customer of
class i does not get its maximum rate while in the system.
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Congestion Metrics

From PASTA and the properties of balanced fairness, one can
get a simple characterization of the first two congestion
metrics:

P =
∑

~x :~xT~r>C

π(~x)

Pi =
∑

~x :~xT~r>C−ri

π(~x)
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Congestion Metrics

Formally, we define

Fi =

Ei

[∫ τi

0
1{~X (t)T~r>C}dt

]
Ei [τi ]

Where τi is the sojourn time of a class i arrival, ~X the
stationary state process and Ei indicates the expectation with
respect to the Palm probability of arrivals of class i

For our purposes, the metric is not useful in this form and we
require an alternative characterization
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Congestion Metrics

Theorem (Swiss Army Formula) [1]

λAEA

[∫ W0

0
Z (s)dB(s)

]
= 1

t Eπ
[∫ t

0 X (s−)Z (s)dB(s)
]

Where A is a point process, Wn a sequence of marks for A,
X ,Z non-negative processes and B a non-decreasing process

Applying the Swiss Army Formula, we now get

Fi =

∑
~x :~xT~r>C

xiπ(~x)∑
~x

xiπ(~x)
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Congestion Metrics

The congestion metrics can be written as a function of far
fewer states

Lemma

P =
M∑
i=1

ρiBi

1− ρ

and
Pi = Bi + P

with
Bi =

∑
~x :C−ri<~xT~r≤C

π(~x)
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Congestion Metrics

Lemma For all i , j = 1, . . . ,M, let

Qij =
∑

~x :C−rj<~xT~r≤C

xiπ(~x),

and
Qi =

∑
~x :~xT~r>C

xiπ(~x).

Then

Qi =
ρiPi

1− ρ
+

M∑
j=1

ρjQij

1− ρ
,

Fi =
Qi

Qi +
∑

~x :~xT~r≤C

xiπ(~x)
.
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Erlang Multirate Loss System

The states that are used to calculate the congestion measures
are the same states that are used to calculate the blocking
formula in an Erlang loss system

In fact, for any state ~x : ~xT~r ≤ C , the stationary probability is
proportional to the stationary of an associated loss system
since π(~x) = π(~0)

∏
i

(αi/ri )
xi

xi !

Like the loss system counterpart, when parameters are large,
the computation becomes onerous

Using ideas from local limit large deviations of convolution
measures one can get an accurate approximation by scaling
the traffic intensities and link capacity
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Notion of a large system

The notion of a large system is obtained by scaling both the
capacity and arrival rates by a factor N. Define C (N) = NC and
λk(N) = Nλk . Note this notion extends to networks
In other words the large system can be seen as a N fold scaling of
a nominal system where connections arrive at rate λk , allocated
φk (~x)
xk

units of bandwidth, and the server capacity is C .
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Main Results

Theorem

P(N) ∼
M∑
i=1

ρiP
B
i (N)

1− ρ

and for all i = 1 . . .M:

Pi (N) ∼ PB
i (N) + P(N)
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Where:

PB
i (N) ∼ e−NI eτdε(N) d√

2πNσ

1− eτ ri

1− eτd

d is the greatest common divisor of r1, . . . , rM ,
ε(N) = NC

d −
⌊
NC
d

⌋
,

τ is the unique solution to the equation
M∑
i=1

riβie
τ ri = C ,

I = Cτ −
M∑
i=1

βi (eτ ri − 1),

σ2 =
M∑
i=1

r 2
i βie

τ ri .
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Main Results

Theorem

Fi (N) ∼ ri
NC (1− ρ)

Pi (N) +
M∑
j=1

ρj
1− ρ

PB
ij (N)

PB
ij (N) ∼ e−NIi eτidεi (N) d√

2πNσi

1− eτi rj

1− eτid
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Where:
d is the greatest common divisor of r1, . . . , rM ,

εi (N) = NC−ri
d −

⌊
NC−ri

d

⌋
,

τ is the unique solution to the equation
M∑
j=1

rjβje
τ rj = C ,

σ2 =
M∑
j=1

r 2
j βje

τ rj ,

τi = τ − ri
Nσ2 ,

Ii =
(
C − ri

N

)
τi −

M∑
j=1

βj (eτi rj − 1),

σ2
i =

M∑
j=1

r 2
i βje

τi rj
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Method of Proof

Renormalize the congestion formulas so that they are now
computed using the stationary distributions of the associated
loss system

Show that the normalization constants of the loss system and
original system coincide in the limit

Apply approximation for loss networks to the formulas for the
congestion metrics
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Numerical Example

The system has M = 3 classes of traffic

Link capacity C = 10

Rate limits r1 = 1, r2 = 2, r3 = 5

Loads ρ1/ρ = 0.5, ρ2/ρ = 0.3, ρ3/ρ = 0.2
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Numerical Example

Congestion Probabilities
Medium load, ρ = 0.6

Exact Approximation

N F1(N) F2(N) F3(N) F1(N) F2(N) F3(N)

10 9.98e-04 1.24e-03 2.36e-03 9.99e-04 1.24e-03 2.36e-03

20 5.60e-06 6.95e-06 1.32e-05 5.60e-06 6.95e-06 1.32e-05

30 3.63e-08 4.50e-08 8.57e-08 3.63e-08 4.50e-08 8.57e-08

40 2.49e-10 3.09e-10 5.89e-10 2.49e-10 3.09e-10 5.89e-10

50 1.77e-12 2.19e-12 4.18e-12 1.77e-12 2.19e-12 4.18e-12

Thomas Bonald (Telecom Paris-Tech), Jean-Paul Haddad (Ernst and Young) and Ravi R. Mazumdar (Waterloo)Congestion in large balanced fair links



Numerical Example

Congestion Probabilities
Heavy load, ρ = 0.9

Exact Approximation

N F1(N) F2(N) F3(N) F1(N) F2(N) F3(N)

10 3.65e-01 3.83e-01 4.43e-01 4.38e-01 4.59e-01 5.32e-01

20 2.22e-01 2.33e-01 2.70e-01 2.41e-01 2.53e-01 2.93e-01

30 1.43e-01 1.54e-01 1.78e-01 1.53e-01 1.61e-01 1.86e-01

40 1.01e-01 1.06e-01 1.22e-01 1.03e-01 1.08e-01 1.25e-01

50 7.07e-02 7.42e-02 8.60e-02 7.18e-02 7.54e-02 8.73e-02
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Numerical Example

Time-average congestion rates
Heavy load, ρ = 0.9

Exact Approximation

N F1(N) F2(N) F3(N) F1(N) F2(N) F3(N)

10 3.87e-01 4.26e-01 5.37e-01 4.81e-01 5.49e-01 7.74e-01

20 2.31e-01 2.50e-01 3.12e-01 2.53e-01 2.78e-01 3.59e-01

30 1.51e-01 1.62e-01 2.00e-01 1.58e-01 1.71e-01 2.14e-01

40 1.03e-02 1.10e-02 1.34e-02 1.06e-01 1.14e-01 1.40e-01

50 7.20e-02 7.69e-02 9.30e-02 7.32e-02 7.83e-02 9.52e-02
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Network Case

In general, network case is very difficult to analyze

For specific topologies, the techniques from the single link
analysis can be applied

Of practical interest is a structure occurring in access
networks referred to as a parking lot network.
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Figure: Two Link Parking Lot Network

The network has 2 links and 2 routes

Route R1 goes through both links and route R2 goes through
the second link only

Each of the M classes of traffic follow one of the two routes

Only the case that the capacities of the links satisfy C1 < C2

is of interest otherwise, the problem reduces to single link case
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Numerical Example

We conclude the presentation with a numerical example for a
parking lot example:

The system has M = 4 classes of traffic, two on each route

Link capacities C1 = 5 and C2 = 9

Rate limits on route R1 are r1 = 1, r2 = 2

Rate limits on route R2 are r3 = 1, r4 = 2

Traffic intensities on route R1 are α1 = 2, α2 = 1

Traffic intensities on route R2 are α3 = 2, α4 = 1
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Numerical Example

Congestion Probability P(N)

Exact Approximation

N

10 7.41e-04 9.04e-04

20 4.67e-06 5.20e-06

30 3.29e-08 3.51e-08

40 2.43e-10 2.52e-10
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Concluding Remarks

Extension to tree networks is possible

Balanced fairness is a good model for insensitive bandwidth
sharing in cloud computing

Close parallels with VCG auctions

Large system means we can approximate balanced fairness via
proportional fairness for which a mechanism design exists
(primal-dual).

Thomas Bonald (Telecom Paris-Tech), Jean-Paul Haddad (Ernst and Young) and Ravi R. Mazumdar (Waterloo)Congestion in large balanced fair links



References I

F. Baccelli and P. Brémaud.
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