Survivable Impairment-aware Traffic Grooming in WDM Rings

Anteneh Beshir, Fernando Kuipers, Ariel Orda, and Piet Van Mieghem

September, 2011

Introduction

- There is an ever-increasing demand for network capacity
- Wavelength Division Multiplexing (WDM) optical networks are promising candidates for future networks:
- Offer a large capacity (Tb / s)
- Provide multiple, but independent wavelength channels (lightpaths)
- Each lightpath can independently operate at high data rates

Issues in WDM networks

- Survivable:

Link-disjoint primary and backup paths
[On-line Survivable Routing in WDM Networks, Proc. of ITC, Sep. 2009]

- Impairment-aware:

Regeneration at intermediate nodes
[Impairment-aware Path Selection and Regenerator Placement in Translucent Optical Networks, Proc. of IEEE ICNP, Oct. 2010]

- Traffic Grooming:

Aggregating independent traffic streams
[Survivable Impairment-aware Traffic Grooming, Proc. of IEEE NOC, July. 2011]

Problem description

- Given:

- A network $G(N, L)$
- At each node, a transceiver = optical add/drop multiplexer (OADM) to selectively add/drop wavelengths + regenerator
- A set of requests: each request i between a node pair has a demand $\delta(i)$
- Problem:
- Minimize the number of transceivers (= dominant cost) such that
- All traffic demands are accommodated
- The capacity of each wavelength channel is not exceeded
- All lightpaths are
- Feasible: none of the segments of a lightpath should have an impairment value exceeding the impairment threshold
- Survivable: all the lightpaths should be protected

Scenario

- Ring topology (e.g. SONET/SDH rings)
- Traffic scenarios:
- Uniform Traffic (equal demand between each pair of nodes)
- Non-Uniform Traffic (traffic between nodes is arbitrary)
- Two cases:
- Impairment-agnostic: Survivability + traffic grooming
- Impairment-aware: Survivability + traffic grooming + regeneration

Solving the problem

- Problem is NP-hard (proof via reduction to bin packing problem)
- A-approximation: at most A-times worse than optimal
- Survivable traffic grooming:
- Uniform traffic: 4-approximation algorithm (USGA = Unif. Traffic Surv. Grooming Algorithm)
- Non-uniform traffic: heuristic algorithm (NSGA) with lower and upper bounds
- Survivable impairment-aware traffic grooming:
- Uniform traffic: 20-approximation algorithm (USGA extended)
- Non-uniform traffic: heuristic algorithm (extended NSGA) with lower and upper bounds

Uniform traffic: USGA example

For uniform traffic: Total number of transceivers $m \geq\left\lceil N(N-1) \sqrt{\frac{\delta}{2 C}}\right\rceil$

- $\mathrm{N}=7$ nodes, wavelength capacity $C=9$, demand $\delta=1$
- Place the nodes into sets of size $\left\lfloor\sqrt{\frac{C}{2 \delta}}\right\rfloor=2:\{1,2\} \quad\{3,4\} \quad\{5,6\} \quad\{7\}$
- Combine sets in groups (each group has own wavelength ring): $\{1,2,3,4\}\{1,2,5,6\}$ \{1,2,7\} $\{3,4,5,6\}$ \{3,4,7\} \{5,6,7\}
- Total of 21 transceivers

Simulation results uniform traffic

Results for non-uniform traffic

Conclusions

- Traffic grooming in WDM rings is NP-hard
- Approximation algorithms and bounds for uniform traffic
- Heuristic algorithms and bounds for non-uniform traffic
- Algorithms display good performance in simulations

TYODelft

