Gaussian Approximation of CDN Call Level Traffic

Andrzej Bąk Piotr Gajowniczek

Marcin Pilarski

Warsaw University of Technology Faculty of Electronics & Information Technology Institute of Telecommunications

Orange Labs, Telekomunikacja Polska SA

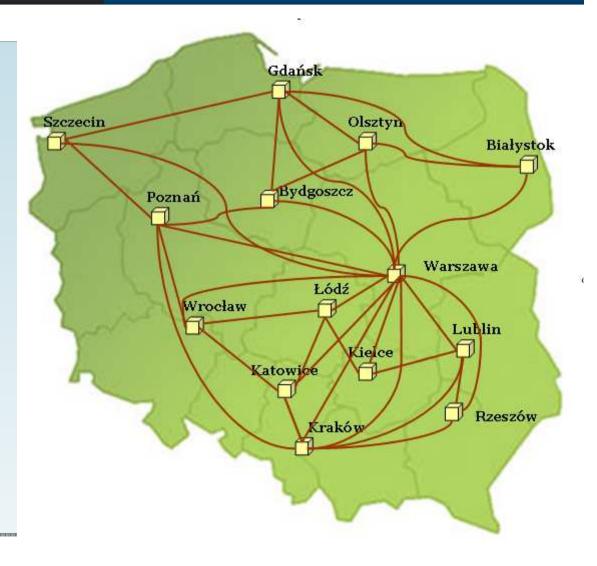
Environment for measurements Self-similarity in call-level CDN traffic Gaussian traffic model Conclusions

* The scope of the paper:

- Analysis of the properties of the stream of requests incoming to the CDN (Content Distribution Network) based on measurements made in the TP network
- Investigation of the applicability of Gaussian approach to modeling the CDN call level traffic

Environment for measurements Self-similarity in call-level CDN traffic Gaussian traffic model Conclusions

- CDN (Content Distribution Network) - caching approach to Internet data distribution
 - files, web pages, embedded objects ...
 - video and streaming

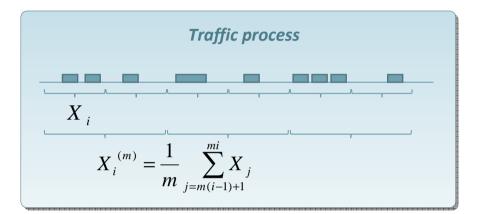

* CDN principle

- Caching infrastructure located closer to the end users
- Data distribution and caching algorithms based on user location and content popularity
- Requests from users routed to the optimal storage

Content Distribution Networks Content Provider **€**tp ♥ Other ISPs Content Provider

Environment for measurements Self-similarity in call-level CDN traffic Gaussian traffic model Conclusions **TP CDN Network**

- CDN of Polish Telecom (Telekomunikacja Polska)
- * Two real-life cases
 - Upgrade of "The Witcher" game
 - Internet transmission of events related to Polish presidential plane crash



Self-similarity & LRD

- Scaling invariance of the traffic process X_i
- 2nd order self-similarity:

 $r_k^{(m)} \sim r_k$ (1) $r_k \sim ck^{2H-1}$ (2)

- H: (famous) Hurst coefficient
- * Why LRD?
 - QOS impact

* How to measure Hurst coefficient?

- Many methods (VTP, R/S, Whittle, correlation-based, wavelet-based)
- No definite estimator

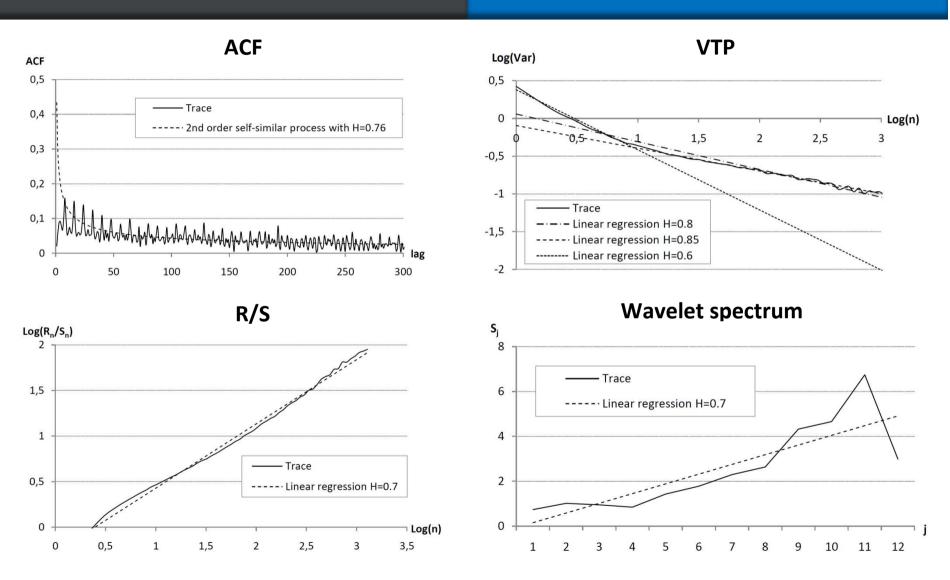
$\frac{R/S \text{ method}}{E\left(\frac{R_n}{S_n}\right) \sim cn^{H}}$	 Uses the rescaled range (R/S) statistic and its relation to Hurst parameter H is estimated using linear regression on the logarithmic plot of R/S for time range n versus log n
Variance-Time Plot $\log V^m$ vs $\log m$	 Based on the specific behavior of variance on multiple time scales for self similar processes The slope of the regression line for the plot is related to Hurst parameter

Wavelet spectrum analysis

$$S_{j}(X) := \log_{2}\left(\frac{1}{N_{j}}\sum_{k=1}^{N_{j}}d_{j,k}^{2}\right) \sim j(2H-1)$$

- Based on the shape of the wavelet spectrum, obtained from the DWS coefficients
- H is estimated using linear regression as well

A. Bąk , P. Gajowniczek - Warsaw University of Technology M. Pilarski - Orange Labs, Telekomunikacja Polska SA


Introduction Environment for measurements

Self-similarity in call-level CDN traffic

Gaussian traffic model

Conclusions

ACF and self-similarity "The Witcher" data

A. Bąk , P. Gajowniczek - Warsaw University of Technology M. Pilarski - Orange Labs, Telekomunikacja Polska SA

ACF 0,3

0,2

0,1

0

2

1,5

1

0,5

0

0

0,5

Environment for measurements Self-similarity in call-level CDN traffic

Gaussian traffic model Conclusions

ACF and self-similarity "Livestream" data

Log(n)

¬ i

11 12

10

3

ACF VTP Log(Var) 1 - Trace ---- Linear regression H=0.77 - Trace ----- Linear regression H=0.86 0,5 ----- 2nd order self-similar process with H=0.67 ----- Linear regression H=0.59 0 2,5 0,5 -0,5 -1 lag -1,5 0 50 100 150 200 250 300 Wavelet spectrum R/S $Log(R_n/S_n)$ S 8 - Trace - Trace 6 ----·Linear regression H=0.665 ----·Linear regression H=0.63 4 -----2

Log(n)

3

0

2

3

1

A. Bąk , P. Gajowniczek - Warsaw University of Technology M. Pilarski - Orange Labs, Telekomunikacja Polska SA

1,5

2

2,5

1

Gaussian Approximation of CDN Call Level Traffic

6

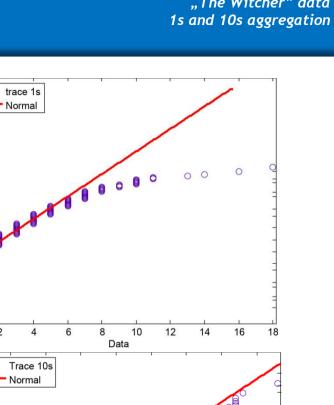
5

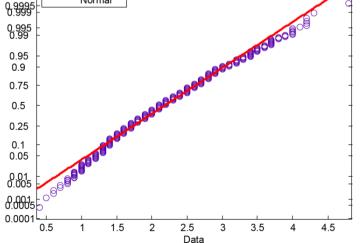
4

7

8

9


- * Gaussian model
 - $A_{s,t} = Norm\left(\lambda_{t-s}; \sigma_{t-s}^2\right)$
- Why Gaussian? **


•
$$A_t = \sum_{i=1}^n A_{i,i}$$

- Correlation structure is determined only by the variance function
- Whole spectrum of self-similar processes can be covered
- Queueing models with analytical solution exist for Gaussian traffic

* FGN (Fractional Gaussian Noise)

- Well-known incremental process with Gaussian properties
- Can be effectively generated based on three parameters: mean, variance and Hurst coefficient

0

2

0

0.9999

0.0015

0.000

0.9999

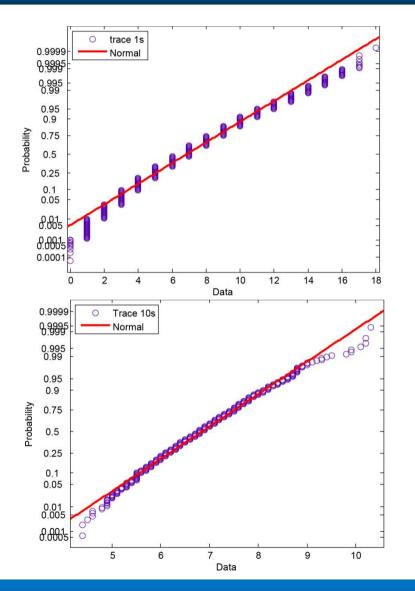
Probability

Probability 8.995 0.95 0.9 0.75 0.5 0.25 0.1

Q-Q plot "The Witcher" data

* Gaussian model

$$A_{s,t} = Norm \left(\lambda_{t-s}; \sigma_{t-s}^2\right)$$


Why Gaussian?

•
$$A_t = \sum_{i=1}^n A_{i,i}$$

- Correlation structure is determined only by the variance function
- Whole spectrum of self-similar processes can be covered
- Queueing models with analytical solution exist for Gaussian traffic

* FGN (Fractional Gaussian Noise)

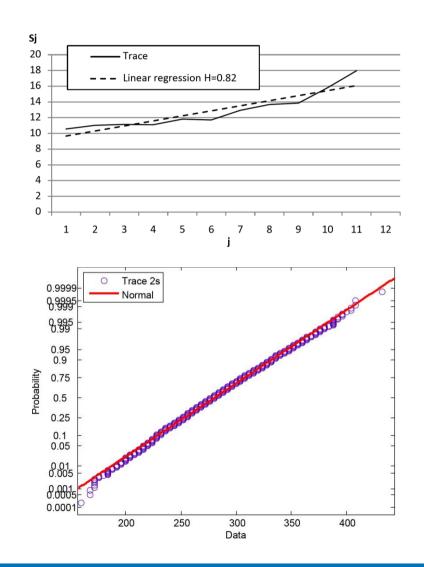
- Well-known incremental process with Gaussian properties
- Can be effectively generated based on three parameters: mean, variance and Hurst coefficient

Q-Q plot "Livestream" data 1s and 10s aggregation

Q-Q plot Compound stream 2s aggregation

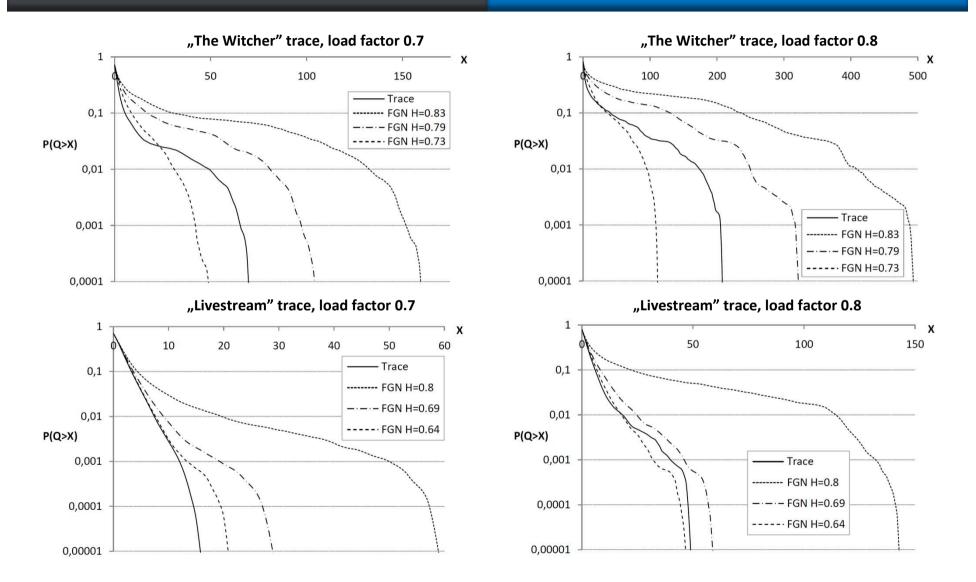
* Gaussian model

$$A_{s,t} = Norm \left(\lambda_{t-s}; \sigma_{t-s}^2\right)$$


* Why Gaussian?

•
$$A_t = \sum_{i=1}^n A_{i,i}$$

- Correlation structure is determined only by the variance function
- Whole spectrum of self-similar processes can be covered
- Queueing models with analytical solution exist for Gaussian traffic


* FGN (Fractional Gaussian Noise)

- Well-known incremental process with Gaussian properties
- Can be effectively generated based on three parameters: mean, variance and Hurst coefficient

Queue simulation

Introduction Environment for measurements Self-similarity in call-level CDN traffic Gaussian traffic model Conclusions

A. Bąk , P. Gajowniczek - Warsaw University of Technology M. Pilarski - Orange Labs, Telekomunikacja Polska SA

- We have investigated the properties of the stream of cache retrieval requests incoming to the CDN on the base of measurements
- The traces that were analyzed are self-similar & long range dependent, so there's a need to use appropriate traffic models that are able to take these properties into account
- We have investigated the Gaussian properties of the analyzed traffic to justify the use of Gaussian traffic models for CDN call level traffic

Thank you for your attention

A. Bąk , P. Gajowniczek - Warsaw University of Technology M. Pilarski - Orange Labs, Telekomunikacja Polska SA