Centrality-driven Scalable Service Migration

Panagiotis Pantazopoulos, Merkouris Karaliopoulos, Ioannis Stavrakakis

presented by M. Karaliopoulos

Advanced Networking Research Group National and Kapodistrian University of Athens {ppantaz, mkaralio,ioannis@di.uoa.gr}

The changing role(s) of end-users

□ User Generated Content \rightarrow end-user as content provider

- 25% of Google results point to UGC sites (as of 2009)
- UGC is expected to triple in 2008-2013

□ User-centric service creation \rightarrow end-user as service provider

Sources					
User inputs Operators	F	etch	(2) -	3	
For Each: Annotate		0 URL			
For Each: Replace	1	http://fee	is.feedburner.com/	0	
Rename 🗉		http://fee	ls.feedburner.com/	0	
Split 🗉		http://www.	v longhargorn com	0	
Count		S Incp.//ww	v.iongbarcorp.com		
Filter 🛛		http://fee	Is.feedburner.com/	0	
Truncate 🛛		http://ww	w.longbarcorp.com	0	
Content Analysis					
Sort 🛛					
Regex	1				
BabelFish 🛛	*	_			
Location Extractor	1	Sort			2 .
Union 🗉	*2 <	O S	ort by		
Unique II	1	e la	ubDate 🗸	in ascending	order

YAHOO! Pipes

1.1.4

Streamspin

Where to place services and content

- Properties/assumptions
 - generated almost anywhere across the network
 - lack of centralized control/coordination
 - many in number, often of local (small-scale) demand (replication: not preferable)

- Objective
 - deploy scalable and distributed mechanisms for "optimally" placing UG Service components
 - <u>in this work</u> : "optimally" \equiv minimize aggregate service access costs

Facility location problem

□ <u>INPUT</u>

- *V* : set of nodes
- w_n : demand generated by node n
- $d(x_i, n)$: distance between nodes x_i and n

<u>OUTPUT</u>

F: placement

□ *k*-median problem : open up to *k* facilities so as to minimize the total service cost

$$Cost(\mathcal{F}) = \sum_{n \in \mathcal{V}} w_n \cdot min_{x_j \in \mathcal{F}} \{ d(x_j, n) \}$$

□ 1-median: minimize the access cost of a service located at node *k*

$$Cost(k) = \sum_{n \in \mathcal{V}} w(n) \cdot d(k, n).$$

Distributed approaches to facility location

□ Centralized solutions – requires a single super-entity that

- Gathers network wide information
- Undertakes computations
- Accounts for demand/topology changes

Distributed solutions

- Theoretical work
 - require a certain (albeit small) amount of global knowledge
 - require impractical communication models (client-facility communication in each round)
 - do not always improve over existing heuristic solutions
- Heuristic solutions
 - Less rigorous but practically implementable

Heuristic local-search approaches

service migrates towards the *optimum* host (opt) in a finite number of steps

The R-balls heuristic*

- Reduce the original k-median to multiple smaller 1-median problems
 - solved within a limited neighborhood of R-hops around current facility

12

Demand generated by outer nodes is *mapped* to the nodes at the outer shell of the R-hop neighborhood $Cost(\mathcal{F}) = \sum_{n \in \mathcal{V}} w_n \cdot min_{x_j \in \mathcal{F}} \{d(x_j, n)\}$

* G. Smaragdakis, N. Laoutaris, K. Oikonomou, I. Stavrakakis, A. Bestavros, "*Distributed Server Migration for Scalable Internet Service Deployment,"* to appear in IEEE/ACM ToN

Making the search "more informed": cDSMA

R-ball heuristic

cDSMA

The presentation remainder

- □ How does cDSMA work
 - Choice of 1-median subgraph Gⁱ
 - Demand mapping and solution of the smaller-scale optimization problem
- □ How well *can* cDSMA perform
 - how close to optimal is the chosen location, how fast is this reached, how complex is this
- □ How can cDSMA be practically implemented in real networks
 - local approximations for global information

cDSMA : Capturing the topology factor

a measure of the importance of node's u social position : lies on paths linking others

□ Betweenness Centrality (u): sums the portions of all pairs' shortest paths in G that pass through node u

$$BC(u) = \sum_{s=1}^{|V|} \sum_{t=1}^{s-1} \frac{\sigma_{st}(u)}{\sigma_{st}}$$

Conditional Betweenness Centrality (*u,t*): portion of all shortest paths towards target node t in G, that pass through node u

a measure of the importance of node's u social position : ability to control information flow towards target node

$$CBC(u;t) = \sum_{s \in V, u \neq t} \frac{\sigma_{st}(u)}{\sigma_{st}}$$

cDSMA : Capturing the demand distribution

a high number of shortest paths through the node u (e.g. node 8) does not necessarily mean that equally high demand stems from their sources!

- □ *wCBC* assesses to what extent a node can serve as demand concentrator towards a given service location
 - The top a% wCBC-valued nodes are included in the 1-median subgraph

Projecting the "world outside" on the selected nodes

- wCBC metric eases the demand mapping of the *G/Gⁱ* nodes (world outside), on the selected *Gⁱ* ones
 - nodes in *G*^{*i*} exhibit an effective demand:

 $w_{eff}(n; Host) = w(n) + w_{map}(n; Host)$

- □ $W_{map} \neq 0$ only for the outer nodes of the 1mediad subgraph
 - demand of node z ∈ G/Gⁱ is "credited" only to the first Gⁱ nodes encountered on each shortest path from z towards the host

cDSMA in summary

Algorithm 1 cDSMA in G(V,E)

```
1. choose randomly node s
 2. place SERVICE @ s
 3. C_{current} \leftarrow \infty
 4. for all u \in G do compute wCBC(u; s)
 5. G_s^o \leftarrow \{ \alpha\% \text{ of } G \text{ with top } wCBC \text{ values} \} \cup \{ s \}
 6. for all u \in G_s^o do
 7. compute w_{map}(u;s)
      w_{eff}(u;s) \leftarrow w_{map}(u;s) + w(u)
 8.
 9. Host \leftarrow 1-median solution in G_s^o
10. C_{next} \leftarrow C(Host), i \leftarrow 1
11. while C_{next} < C_{current} do
       move SERVICE to Host
12.
13.
     C_{current} \leftarrow C_{next}
        for all u \in G do compute wCBC(u; Host)
14.
        G^i_{Host} \leftarrow \{ \alpha\% \text{ of } G \text{ with top } wCBC \text{ values} \} \cup \{ Host \}
15.
        for all u \in G^i_{Host} do
16.
17.
           compute w_{map}(u; Host)
18.
           w_{eff}(u; Host) \leftarrow w_{map}(u; Host) + w(u)
        NewHost \leftarrow 1 \text{-median solution in } G^i_{Host}Host \leftarrow NewHost, C_{next} \leftarrow C(NewHost), i \leftarrow i+1
19.
20.
21. end while
```

Convergence in O(N) steps

Evaluation in synthetic topologies

Evaluation of real-world network topologies

Datasets correspond to different snapshots of 7 ISPs collected by mrinfo multicast tool*

 $\alpha_{\epsilon} = argmin \{ \alpha | \beta_{alg}(\alpha) \le (1 + \epsilon) \}$

					s=0		s=1		s=2		
ISP	Dataset id/AS#	mCC nodes	Diameter	<degree></degree>	$\alpha_{0.025}$	$[G^i]$	$\alpha_{0.025}$	$\lceil G^i \rceil$	$\alpha_{0.025}$	$\lceil G^i \rceil$	_
type: Tier-1			_		80		111				33
Global Crossing	36/3549	76	10	3.71	0.047±0.001	4	0.047±0.002	4	0.046±0.001	4	
-//-	35/3549	100	9	3.78	0.045±0.002	5	0.045±0.001	5	0.043 ± 0.001	5	
NTTC-Gin	33/2914	180	11	3.53	0.024 ± 0.002	5	0.022 ± 0.002	4	0.019 ± 0.002	4	
Sprint	23/1239	184	13	3.06	0.019 ± 0.002	4	0.018±0.002	4	0.017 ± 0.002	4	
-//-	21/1239	216	12	3.07	0.016 ± 0.002	4	0.016 ± 0.002	4	0.014 ± 0.003	4	
Level-3	27/3356	339	24	3.98	0.018 ± 0.002	7	0.017 ± 0.002	6	0.014 ± 0.003	5	
-//-	13/3356	378	25	4.49	0.012 ± 0.002	5	0.012 ± 0.002	5	0.011 ± 0.002	5	
type: Transit				5	0		SP				33
TDC	46/3292	71	9	3.30	0.033 ± 0.003	3	0.027 ± 0.004	2	0.026±0.003	2	
DFN-IPX-Win	41/680	253	14	2.62	0.019±0.003	5	0.015 ± 0.003	4	0.015 ± 0.003	4	
JanetUK	40/786	336	14	2.69	0.012 ± 0.003	5	0.012 ± 0.002	5	0.013±0.002	5	
<i>c</i>											22
						1					

Less than half a dozen nodes suffice in almost all cases, even under uniform demand

* J.-J. Pansiot, P. Mérindol, B. Donnet, and O. Bonaventure, "Extracting intra-domain topology from mrinfo probing," in Proc. Passive and Active Measurement Conference (PAM), April 2010.

How much improvement does cDSMA bring?

□ Migration hop count metric (h_m) reflects the convergence speed

Experiment

- generate asymmetric service demand, Zipf (1)
- fix set of service generation points at D_{gen} hops away from optimal location

Compare 2-ball-like (LOM) vs. cDSMA

• 3% of total number of nodes form the *1-median* subgraph (6-12 nodes)

Dataset 23					Dataset 33				Dataset 27				Dataset 13			
D_{gen}	L	.OM	0	:DSMA	I	LOM cDSMA		LOM		cDSMA		LOM		cDSMA		
-	h_m	β_{alg}	h_{m}	$\beta_{alg}(3\%)$	h_m	β_{alg}	h_{m}	$\beta_{alg}(3\%)$	h_m	β_{alg}	h_m	$\beta_{alg}(3\%)$	h_m	β_{alg}	h_{m}	$\beta_{alg}(3\%)$
3	1	1.1050	2	1	1	1.0308	2	1	1	1.1109	1	1.0057	1	1.1054	1	1
4	1	1.1275	3	1	1	1.3206	2	1	1	1.2523	1	1.0057	1	1.2312	1	1
5	1	1.1632	2	1	1	1.2800	1	1.2800	2	1.1109	1	1	1	1.0434	2	1
7	1	1.6060	2	1	3	1.0308	1	1.0308	3	1.1763	1	1	1	1.4202	1	1
10	-	-	-	-	-	-	-	-	1	1.7094	2	1	1	1.4604	2	1
13	-	-	-	-	-	-	-	_	2	1.8579	1	1.0057	3	1.6887	1	1.1054

the "blind" LOM search for next-best solution either terminates prematurely or, more rarely, gets to the same result more slowly

Towards a distributed protocol implementation

Step 1: Service Advertisement

Step 2: Local metrics computation & reporting

 $\mathcal{O}(E)$ messages $\mathcal{O}(D)$ time D:diameter

 $O(d^3)$ time O(E) messages d: maximum degree

Towards a distributed protocol implementation

Step 3: Host identifies key nodes/maps the demand

Step 4 : Host solves 1-median after nodes report their pair-wise distances

pair-wise distances among key nodes $\mathcal{O}(a^2V^2)$

Implementation caveats and complexity

- Demand-aware assessment on ego-network scale fails to detect distant heavy-hitters
 - Egocentric centrality estimation of '11' does not account for the demand load coming from '16'
- Solution: node-centric passive measurements of the passing-through demand instead of computing it
 - may lose in accuracy when there are multiple shortest paths towards the service host
- Resulting complexity
 - $O(hm(a)a^2V^2)$ vs. $O(V^3)$ (brute-force approach)
 - for a=3% and hm(a)≈ 3 lead to cost reduction of one or more orders of magnitude!

Summarizing...

- ✓ We propose a heuristic algorithm (cSDMA) for *scalable* and *distributed* service placement drawing on the Social Network Analysis
 - the service migrates to the (sub)optimal location via a sequence of small-scale optimizations
 - the centrality metric singles out a subset of nodes that can act as demand concentrators and projects on them the attraction forces of the ones left-out
- The network topology structure spatial demand dynamics affect the accuracy/convergence speed of the algorithm
 - the *higher* the asymmetry (in either of above factors) the *better* the performance
 - realistic topologies exhibit enough asymmetry to achieve very good accuracy with less than a dozen nodes !
- A distributed protocol implementation was sketched and its complexity was analyzed
 - Egocentric approximations do not perform satisfactorily under asymmetric demand distributions -- passive measurement based approach under evaluation

Future directions

- Ultimate assessment of practical implementation through simulations
 - How much is lost due to local approximations

- Relaxing the `perfect cooperation assumption' :
 - Sensitivity to node churn and selfishness expressions
 - Nodes denying hosting services they are not interested in
 - Decision/game-theoretic dimension
 - e.g., mechanism design for truthful declaration of demand

Centrality-driven Scalable Service Migration

Panagiotis Pantazopoulos, Merkouris Karaliopoulos, Ioannis Stavrakakis

presented by M. Karaliopoulos

Advanced Networking Research Group National and Kapodistrian University of Athens {ppantaz, mkaralio,ioannis@di.uoa.gr}

Backup slides

...and the future : User-Centric Services

User-centric service creation: engaging end-users to generate/distribute service components

REX

💌 in ascending 💌 order

- end users with no specific knowledge
- use high-level abstraction
- graphical tools to provide interfaces for creating simple applications

http://feeds.feedburner.com/ O

http://www.longbarcorp.com O

http://feeds.feedburner.com/ O

http://www.longbarcorp.com O

Sort

Sort by

D pubDate

Rename

Split

Count

Filter

Sort

Regex

Union

Unique

Url
String

BabelFish

Truncate

Content Analysis 🖾

Location Extractor

同

R

3

回

日

圆

(5)

回

13

13

13

13

