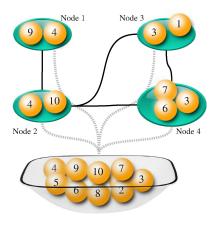
A Game Theoretic Analysis of Selfish Content Replication on Graphs

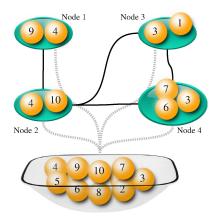

Valentino Pacifici, György Dán

Laboratory for Communication Networks School of Electrical Engineering KTH, Royal Institute of Technology Stockholm - Sweden

San Francisco, September 7, 2011

$\begin{array}{c} {\rm Problem} \ {\rm Definition} \\ \circ \circ \end{array}$		
Motivation		

The problem of content replication Scenario


• No central authority \Rightarrow Selfish nodes

Questions:

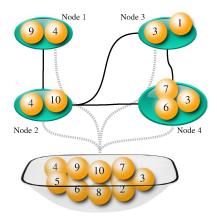
- ∃ satisfying allocation for every node?
- will the nodes be able to reach it?

$\begin{array}{c} {\rm Problem} \ {\rm Definition} \\ \circ \circ \end{array}$		
Motivation		

The problem of content replication Scenario

• No central authority \Rightarrow Selfish nodes

Questions:


- ∃ satisfying allocation for every node?
- will the nodes be able to reach it?

Applications:

- CPU caches
- Network caches
- Information centric networks

$\begin{array}{c} {\rm Problem} \ {\rm Definition} \\ \circ \circ \end{array}$		
Motivation		

The problem of content replication Scenario

• No central authority \Rightarrow Selfish nodes

Questions:

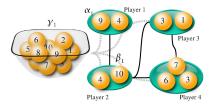
- ∃ satisfying allocation for every node?
- will the nodes be able to reach it?

Applications:

- CPU caches
- Network caches
- Information centric networks

2 / 13

Problem Definition $\bullet \circ$		Conclusions
Model		

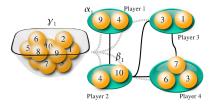

- Replication game: $\langle N, (\mathcal{R}_i), (U_i) \rangle$
 - N is the set of players
 - \mathcal{R}_i is the action set of player i
 - $r_i \in \mathcal{R}_i, r_i = (r_i^1, \dots, r_i^{|\mathcal{O}|})$ is an action of player i
 - U_i is the utility function of player i
- A strategy is the choice made by player $i \in N$
- A strategy profile specifies the strategies of every player $i \in N$

Problem Definition $\bullet \circ$		
Model		

- Replication game: $\langle N, (\mathcal{R}_i), (U_i) \rangle$
 - N is the set of players
 - \mathcal{R}_i is the action set of player i
 - $r_i \in \mathcal{R}_i, r_i = (r_i^1, \dots, r_i^{|\mathcal{O}|})$ is an action of player i
 - U_i is the utility function of player i
- A strategy is the choice made by player $i \in N$
- A strategy profile specifies the strategies of every player $i \in N$

Problem Definition $\bullet \circ$		Conclusions
Model		

- Replication game: $\langle N, (\mathcal{R}_i), (U_i) \rangle$
 - N is the set of players
 - \mathcal{R}_i is the action set of player i
 - $r_i \in \mathcal{R}_i, r_i = (r_i^1, \dots, r_i^{|\mathcal{O}|})$ is an action of player i
 - U_i is the utility function of player i
- A strategy is the choice made by player $i \in N$
- A strategy profile specifies the strategies of every player $i \in N$


- $\alpha_i \leq \beta_i < \gamma_i$
- $w_i^o \in \mathbb{R}_+$ is the demand for object $o \in \mathcal{O}$ at node $i \in N$

•
$$U_i^o(1, r_{-i}) = \begin{cases} w_i^o[\gamma_i - \alpha_i] & \text{if } \pi_i^o = 1\\ w_i^o[\beta_i - \alpha_i] & \text{if } \pi_i^o = 0 \end{cases}$$

3 / 13

Problem Definition $\bullet \circ$		Conclusions
Model		

- Replication game: $\langle N, (\mathcal{R}_i), (U_i) \rangle$
 - N is the set of players
 - \mathcal{R}_i is the action set of player i
 - $r_i \in \mathcal{R}_i, r_i = (r_i^1, \dots, r_i^{|\mathcal{O}|})$ is an action of player i
 - U_i is the utility function of player i
- A strategy is the choice made by player $i \in N$
- A strategy profile specifies the strategies of every player $i \in N$

• $\alpha_i \leq \beta_i < \gamma_i$ • $w_i^o \in \mathbb{R}_+$ is the demand for object $o \in \mathcal{O}$ at node $i \in N$

•
$$U_i^o(1, r_{-i}) = \begin{cases} w_i^o[\gamma_i - \alpha_i] & \text{if } \pi_i^o = 1\\ w_i^o[\beta_i - \alpha_i] & \text{if } \pi_i^o = 0 \end{cases}$$

3 / 13

Problem Definition ⊙●	Equilibrium existence 000	Conclusions
Nash Equilibrium		

The Equilibrium Concept

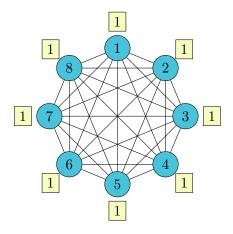
• Nash Equilibrium: a strategy profile r^* from which no player i wants to deviate unilaterally (i.e. given that the rest of the players play r^*_{-i})

• **Best reply** of player *i*: the best strategy r_i^* of player *i* given the other players' strategies

$$U_i(r_i^*, r_{-i}) \ge U_i(r_i, r_{-i}) \quad \forall \ r_i \in \mathcal{R}_i.$$

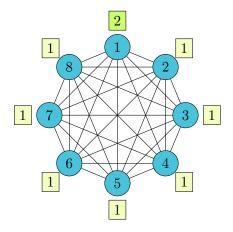
Problem Definition ⊙●	Equilibrium existence 000	Conclusions
Nash Equilibrium		

The Equilibrium Concept

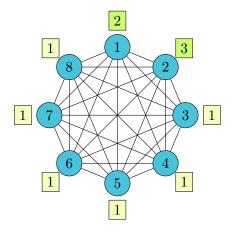

• Nash Equilibrium: a strategy profile r^* from which no player i wants to deviate unilaterally (i.e. given that the rest of the players play r^*_{-i})

• Best reply of player *i*: the best strategy r_i^* of player *i* given the other players' strategies

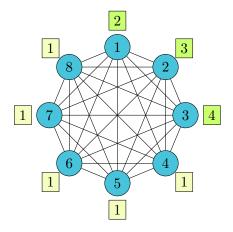
$$U_i(r_i^*, r_{-i}) \ge U_i(r_i, r_{-i}) \quad \forall \ r_i \in \mathcal{R}_i.$$


	Equilibrium existence	Conclusions
	000	
Existence of a NE		

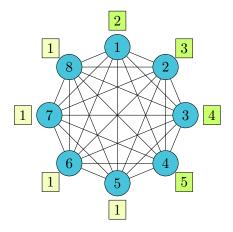
•
$$w_i^o = w^o$$
 and $w^1 > w^2 > w^3...$


	Equilibrium existence	Conclusions
	000	
Existence of a NE		

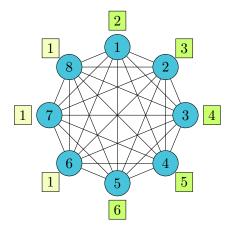
•
$$w_i^o = w^o$$
 and $w^1 > w^2 > w^3...$


	Equilibrium existence	Conclusions
	000	
Existence of a NE		

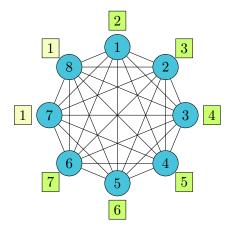
•
$$w_i^o = w^o$$
 and $w^1 > w^2 > w^3...$


	Equilibrium existence	Conclusions
	000	
Existence of a NE		

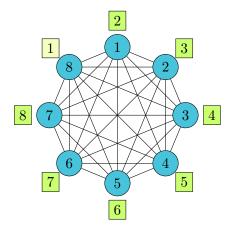
•
$$w_i^o = w^o$$
 and $w^1 > w^2 > w^3...$


	Equilibrium existence	Conclusions
	000	
Existence of a NE		

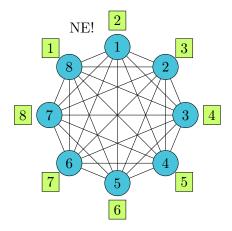
•
$$w_i^o = w^o$$
 and $w^1 > w^2 > w^3...$


	Equilibrium existence	Conclusions
	000	
Existence of a NE		

•
$$w_i^o = w^o$$
 and $w^1 > w^2 > w^3...$


	Equilibrium existence	Conclusions
	000	
Existence of a NE		

•
$$w_i^o = w^o$$
 and $w^1 > w^2 > w^3...$

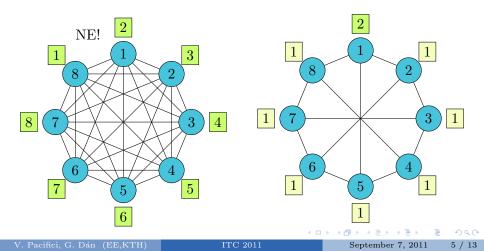

	Equilibrium existence	Conclusions
	000	
Existence of a NE		

•
$$w_i^o = w^o$$
 and $w^1 > w^2 > w^3...$

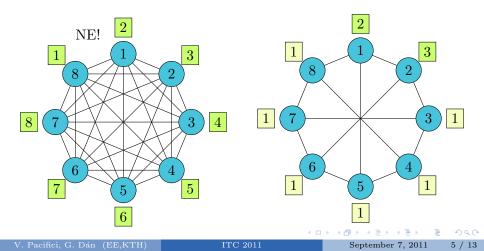
	Equilibrium existence	Conclusions
	000	
Existence of a NE		


•
$$w_i^o = w^o$$
 and $w^1 > w^2 > w^3...$

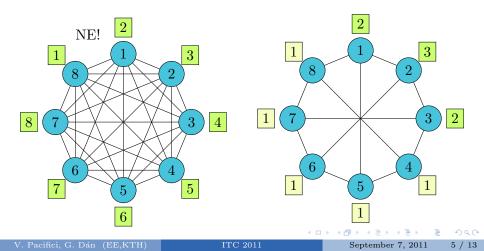
ъ


	Equilibrium existence	
	000	
Existence of a NE		

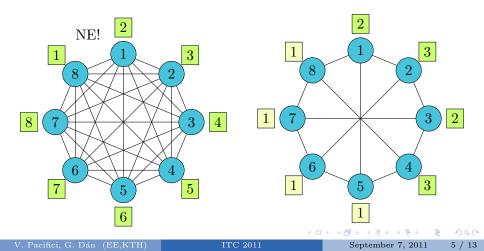
•
$$w_i^o = w^o$$
 and $w^1 > w^2 > w^3$...


	Equilibrium existence	
	000	
Existence of a NE		

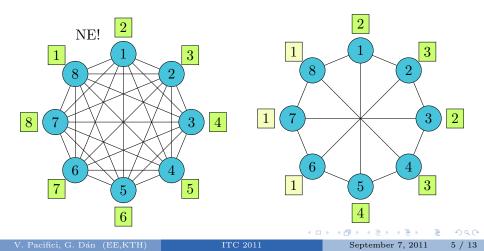
•
$$w_i^o = w^o$$
 and $w^1 > w^2 > w^3$...


	Equilibrium existence	
	000	
Existence of a NE		

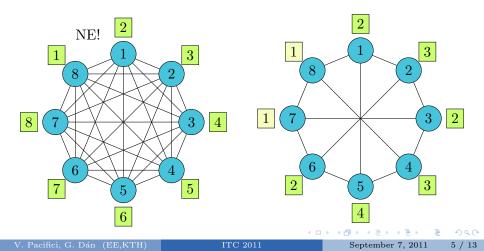
•
$$w_i^o = w^o$$
 and $w^1 > w^2 > w^3$...


	Equilibrium existence	
	000	
Existence of a NE		

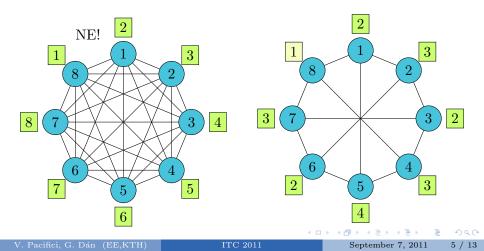
•
$$w_i^o = w^o$$
 and $w^1 > w^2 > w^3$...


	Equilibrium existence	
	000	
Existence of a NE		

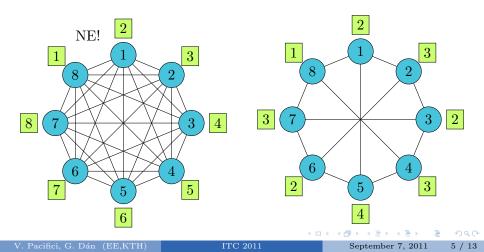
•
$$w_i^o = w^o$$
 and $w^1 > w^2 > w^3$...


	Equilibrium existence	
	000	
Existence of a NE		

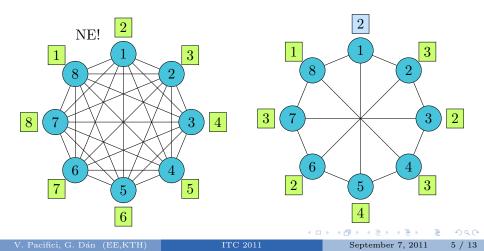
•
$$w_i^o = w^o$$
 and $w^1 > w^2 > w^3$...


	Equilibrium existence	
	000	
Existence of a NE		

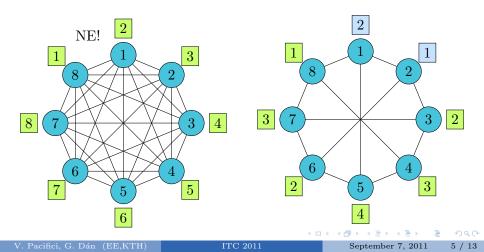
•
$$w_i^o = w^o$$
 and $w^1 > w^2 > w^3$...


	Equilibrium existence	
	000	
Existence of a NE		

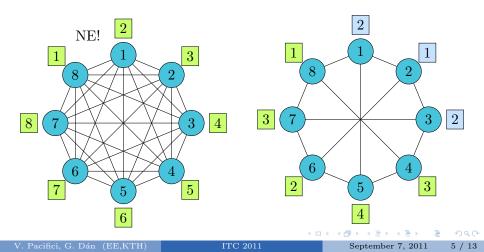
•
$$w_i^o = w^o$$
 and $w^1 > w^2 > w^3$...


	Equilibrium existence	
	000	
Existence of a NE		

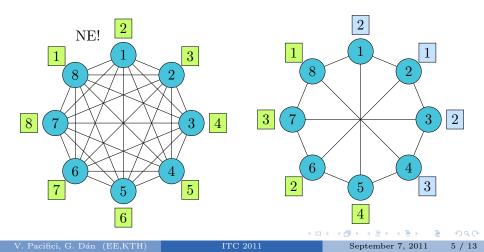
•
$$w_i^o = w^o$$
 and $w^1 > w^2 > w^3$...


	Equilibrium existence	
	000	
Existence of a NE		

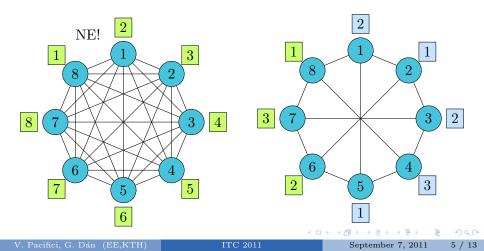
•
$$w_i^o = w^o$$
 and $w^1 > w^2 > w^3$...


	Equilibrium existence	
	000	
Existence of a NE		

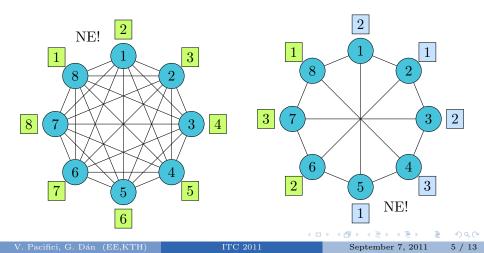
•
$$w_i^o = w^o$$
 and $w^1 > w^2 > w^3$...


	Equilibrium existence	
	000	
Existence of a NE		

•
$$w_i^o = w^o$$
 and $w^1 > w^2 > w^3$...


	Equilibrium existence	
	000	
Existence of a NE		

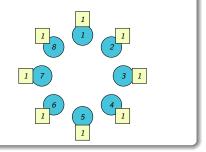
•
$$w_i^o = w^o$$
 and $w^1 > w^2 > w^3$...


	Equilibrium existence	
	000	
Existence of a NE		

•
$$w_i^o = w^o$$
 and $w^1 > w^2 > w^3$...

	Equilibrium existence	
	000	
Existence of a NE		

•
$$w_i^o = w^o$$
 and $w^1 > w^2 > w^3$...

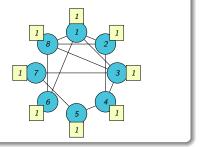


	Equilibrium existence	
	000	
Existence of a NE		

Equilibrium Existence

Algorithm

- **1** Play best replies in isolation
- **2** Re-arrange the players according to the social graph


э

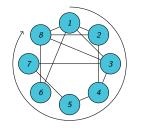
	Equilibrium existence	
	000	
Existence of a NE		

Equilibrium Existence

Algorithm

- 1 Play best replies in isolation
- 2 Re-arrange the players according to the social graph
- **3** *Give* a chance to play to every player

э

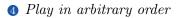

	Equilibrium existence	
	000	
Existence of a NE		

Equilibrium Existence

Algorithm

- 1 Play best replies in isolation
- 2 Re-arrange the players according to the social graph
- 3 Give a chance to play to every player

4 Play in arbitrary order



	Equilibrium existence	
	000	
Existence of a NE		

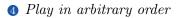
Equilibrium Existence

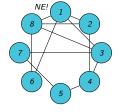
Algorithm

- 1 Play best replies in isolation
- 2 Re-arrange the players according to the social graph
- 3 Give a chance to play to every player

NE!

Theorem


Every graphical replication game possesses a pure strategy Nash equilibrium.


	Equilibrium existence	
	000	
Existence of a NE		

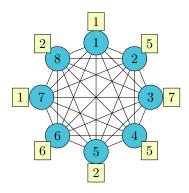
Equilibrium Existence

Algorithm

- 1 Play best replies in isolation
- Re-arrange the players according to the social graph
- 3 Give a chance to play to every player

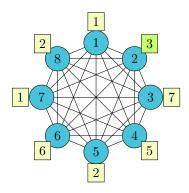
Theorem

Every graphical replication game possesses a pure strategy Nash equilibrium.

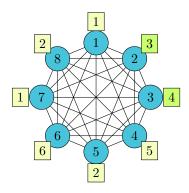

V. Pacifici, G. Dán (EE,KTH)

6 / 13

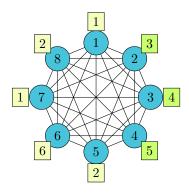
- the demands for the objects w_i^o change?
- we start playing best replies from an arbitrary strategy profile?


	Equilibrium existence 00●	$\begin{array}{c} \mathbf{Convergence} \\ \circ \circ \circ \circ \end{array}$	
The problem			

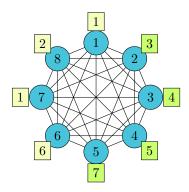
- the demands for the objects w_i^o change?
- we start playing best replies from an arbitrary strategy profile?


	Equilibrium existence 000	$\begin{array}{c} \mathbf{Convergence} \\ \circ \circ \circ \circ \end{array}$	
The problem			

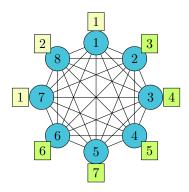
- the demands for the objects w_i^o change?
- we start playing best replies from an arbitrary strategy profile?


	Equilibrium existence 000	$\begin{array}{c} \mathbf{Convergence} \\ \circ \circ \circ \circ \end{array}$	
The problem			

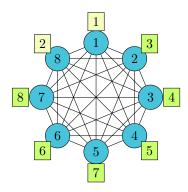
- the demands for the objects w_i^o change?
- we start playing best replies from an arbitrary strategy profile?


	Equilibrium existence 00●	$\begin{array}{c} \mathbf{Convergence} \\ \circ \circ \circ \circ \end{array}$	
The problem			

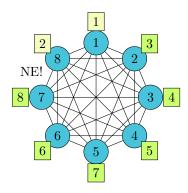
- the demands for the objects w_i^o change?
- we start playing best replies from an arbitrary strategy profile?


	Equilibrium existence 000	$\begin{array}{c} \mathbf{Convergence} \\ \circ \circ \circ \circ \end{array}$	
The problem			

- the demands for the objects w_i^o change?
- we start playing best replies from an arbitrary strategy profile?

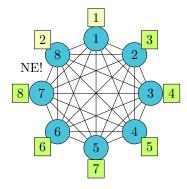

	Equilibrium existence 000	$\begin{array}{c} \mathbf{Convergence} \\ \circ \circ \circ \circ \end{array}$	
The problem			

- the demands for the objects w_i^o change?
- we start playing best replies from an arbitrary strategy profile?


	Equilibrium existence 000	$\begin{array}{c} \mathbf{Convergence} \\ \circ \circ \circ \circ \end{array}$	
The problem			

- the demands for the objects w_i^o change?
- we start playing best replies from an arbitrary strategy profile?

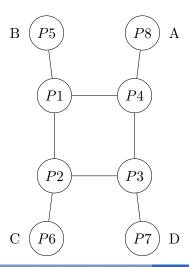
	Equilibrium existence 00●	$\begin{array}{c} \mathbf{Convergence} \\ \circ \circ \circ \circ \end{array}$	
The problem			


- the demands for the objects w_i^o change?
- we start playing best replies from an arbitrary strategy profile?

	Equilibrium existence 00●	$\begin{array}{c} \mathbf{Convergence} \\ \circ \circ \circ \circ \end{array}$	
The problem			

What if

- the demands for the objects w_i^o change?
- we start playing best replies from an arbitrary strategy profile?


Theorem

Every best reply path in a replication game played over a complete social graph is finite (i.e. does not contain any cycle).

7 / 13

	Convergence ●000	Conclusions
More results		

An example of a cycle

Dem.	A <b< th=""><th>B<c< th=""><th>C<d< th=""><th>D<a< th=""></a<></th></d<></th></c<></th></b<>	B <c< th=""><th>C<d< th=""><th>D<a< th=""></a<></th></d<></th></c<>	C <d< th=""><th>D<a< th=""></a<></th></d<>	D <a< th=""></a<>
Player	P1	P2	P3	<i>P</i> 4
r(0)	A	В	D	А
r(1)	A	В	\downarrow C	Α
r(2)	→B	В	С	A
r(3)	В	B	С	→D
r(4)	B	↓C	С	D
r(5)	A	С	C	D
r(6)	A	C	D	D
r(7)	А	→B	D	D
r(8)	А	В	D	↓A

ъ

	Convergence 0000	Conclusions
More results		

An example of a cycle

В P5P8А P1P4P2P3С P6P7D

Dem.	A <b< th=""><th>B<c< th=""><th>C<d< th=""><th>D<a< th=""></a<></th></d<></th></c<></th></b<>	B <c< th=""><th>C<d< th=""><th>D<a< th=""></a<></th></d<></th></c<>	C <d< th=""><th>D<a< th=""></a<></th></d<>	D <a< th=""></a<>
Player	P1	P2	P3	<i>P</i> 4
r(0)	A	В	D	A
r(1)	A	В	\downarrow C	А
r(2)	J→B	В	С	A
r(3)	В	В	С	⁺D
r(4)	A	В	С	D
r(5)	А	В	С	D
r(6)	А	В	С	D
r(7)	А	В	С	D
r(8)	А	В	С	D

ъ

9 / 13

	Convergence 00●0	Conclusions
More results		

Theorem

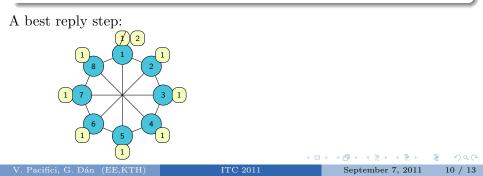
If $K_i = 1 \ \forall i \in N$, a best reply path that leads to a NE always exists.

Theorem

	$\begin{array}{c} \text{Convergence} \\ \text{OO} \bullet \text{O} \end{array}$	Conclusions
More results		

Theorem

If $K_i = 1 \ \forall i \in N$, a best reply path that leads to a NE always exists.

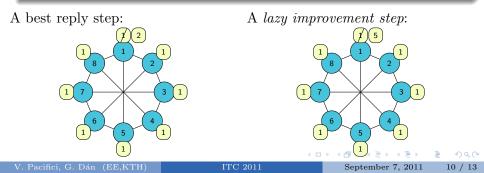

Theorem

	$\begin{array}{c} \text{Convergence} \\ \text{OO} \bullet \text{O} \end{array}$	Conclusions
More results		

Theorem

If $K_i = 1 \ \forall i \in N$, a best reply path that leads to a NE always exists.

Theorem



	$\begin{array}{c} \text{Convergence} \\ \text{OO} \bullet \text{O} \end{array}$	Conclusions
More results		

Theorem

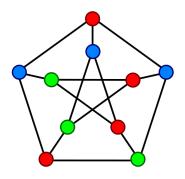
If $K_i = 1 \ \forall i \in N$, a best reply path that leads to a NE always exists.

Theorem

	Convergence 000●	Conclusions
More results		

The plesiochronous dynamic

Theorem

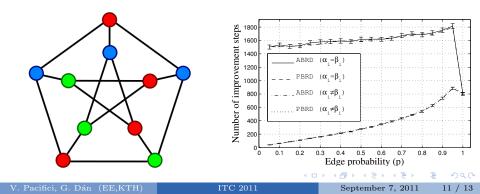

If $\beta_i = \alpha_i \ \forall i \in N$ and player *i* makes an improvement step at time *t* only if no neighboring player $j \in \mathcal{N}(i)$ makes an improvement step at time *t*, then every lazy improvement path is finite.

	Convergence	Conclusions
More results		

The plesiochronous dynamic

Theorem

If $\beta_i = \alpha_i \ \forall i \in N$ and player *i* makes an improvement step at time *t* only if no neighboring player $j \in \mathcal{N}(i)$ makes an improvement step at time *t*, then every lazy improvement path is finite.



	Convergence	Conclusions
More results		

The plesiochronous dynamic

Theorem

If $\beta_i = \alpha_i \ \forall i \in N$ and player *i* makes an improvement step at time *t* only if no neighboring player $j \in \mathcal{N}(i)$ makes an improvement step at time *t*, then every lazy improvement path is finite.

Conclusion and future work

• Conclusions

- Every replication game possesses a Nash equilibrium
- Sufficient condition to reach a Nash equilibrium
- Speedup from the plesiochronous dynamic

• Future work

- Investigate the existence of paths to the equibria in the general case
- Extend the model to include the cost for replication

Conclusion and future work

• Conclusions

- Every replication game possesses a Nash equilibrium
- Sufficient condition to reach a Nash equilibrium
- Speedup from the plesiochronous dynamic

• Future work

- Investigate the existence of paths to the equibria in the general case
- Extend the model to include the cost for replication

	Conclusions

A Game Theoretic Analysis of Selfish Content Replication on Graphs

Valentino Pacifici, György Dán

Laboratory for Communication Networks School of Electrical Engineering KTH, Royal Institute of Technology Stockholm - Sweden

San Francisco, September 7, 2011