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Trend towards Quality of Experience

� Increasing competition among Telco‘s and ISPs, among application 
and service providers, among cloud providers
� Keep customers happy, attract new customers 
� Quality as key differentiator, but only as experienced by end user

� Shift from Quality of service (QoS) to Quality of Experience (QoE)
� QoS: packet loss, delay, jitter, …
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� QoE: subjective experience/satisfaction of users of a service
� Example: VoIP user interested in speech quality

web user interested in short page load times

� What are relevant QoE influence factors ? 
� How to integrate key influence factors in appropriate QoE models ?
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Internet video
Online gaming
Web, email, and data
File sharing
VoIP

QoE Model for Web Browsing

� Importance of web traffic is 
increasing
� Related work on QoE mainly 

covers multimedia applications
� Scenario: User downloads several 

web pages within a session
� But: Random test sequences 

according to standardization

Mainly web traffic
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according to standardization
� Lack of web QoE models including 

quality changes over time
Source: Cisco Visual Networking Index: Forecast and 

Methodology, 2010-2015

Contribution:
� Subjective user study on web browsing with quality changes
� Identification of memory effect as relevant QoE influence factors
� Integration of key influence factors in appropriate QoE models



Agenda

� Conducted Subjective User Study 
� QoE Influence Factors, Design of Study
� Implementation and Measurement Setup

� Statistical Analysis of User Ratings
� Page Load Times, Memory Effect 
� Key QoE Influence Factor via Support Vector Machines
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� Key QoE Influence Factor via Support Vector Machines

� Implications on QoE Models 
� Iterative Regression Model
� Hidden Memory Markov Model

� Conclusions and Outlook



QoE Influence Factors for Web Browsing

QoE

Context

User Expectations

Memory Effects

Usage History

Task/purpose e.g. time 
killing, information retrieval

Social and cultural 
background

�Quality 

change per 

page

�Online and 

crowd-

sourcing tests
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System

Content Type of web site, e.g. 
YouTube, Google, Facebook

Transmission network, e.g. 
bandwidth, delay, jitter, loss

Client Device

Web browser

Implementation of web site

� Simple 

Photo Page

� Emulate 

page load 

time



Methodology: Subjective User Studies

� Subjective user rests required due to lack of existing studies

Picture is downloaded with 
predefined time.

Test run over several web 
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� Laboratory tests to get first insights, delay via traffic shaper
� Online tests to reach more users, local applet with def. page load 

times 

User rating on 
5-point ACR scale

Test run over several web 
pages (with changing 
network conditions)



Quantifying Quality of an Experience

Excellent

Good

5

4

Imperceptible

Perceptible

MOS Quality Impairment

Mean Opinion Score (MOS): numerical indication of t he perceived
quality of received media after compression and/or transmission

Excellent!

Bad!
Poor!

∅∅∅∅

Fair = 3
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Poor

Bad
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Annoying
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Impact of Page Load Times on QoE

� Models from literature for mapping current QoS to QoE
� IQX hypothesis when using network parameters like bandwidth 

[Hoßfeld, Fiedler, Tran-Gia, ITC 2007]

QoE(x) = a exp(-b x) + c

� Weber-Fechner law from psychophysics when using page load 
time as QoS parameter 
[Reichl et al., ICC 2010] 

QoE(x) = a ln(b x)
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� But: strong deviations from
model observable
� Only current QoS is 

considered
� Temporal effects have to

be included



The Memory Effect

Same QoS but different QoE

Good QoS
before

Bad QoS
before
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� Web pages with same page load time have different QoE, 
depending on previous QoS conditions
� Exponential decays/increase after quality changes

before



Is Memory Effect a Relevant QoE Influence Factor?

� Investigation with correlation analysis and machine learning
� Support vector machine decide two-class problems � user ratings 

are separated into ‘good quality’ and ‘bad quality’
� Implementation of SMO (Sequential Minimal Optimization) in 

WEKA machine learning software for analysis

� QoE from previous 
web site has relevant 
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web site has relevant 
impact on QoE
� Memory effect as

dominant as technical
influences (PLT)
� Only last QoE has to

be considered
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Memory has to be included in QoE Models

� Support Vector Machines
� Consider previous experiences as own variables
� Weighting factors indicate ‘importance’ of variables

� Exponential iterative regressions
� Weber-Fechner law yields f(PLT)
� Considering previous QoE via iterations
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� Considering previous QoE via iterations

� Markov models
� are memoryless,
� but can include memory by appropriate state space



Hidden Memory Markov Model

� Describe the QoE with a Hidden Markov Model (HMMM)
� Page load time as hidden state
� QoE i.e. user ratings as emission

� Sequence of web pages with
page load times xi is extended
to series of pairs (xi,xi-1)
Page load times are discretized

Hi, Hi-1

transition prob.

emission prob.
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� Page load times are discretized

� 2D-State space of HMMM is (Hi,Hi-1)
� Transition and emission probabilities

derived from user studies



Conclusions

� Time dynamics of human perception for web QoE analyzed
� Designed and conducted subjective user study on web browsing 

� Identification of memory effect as relevant QoE influence factors
� Integration of key influence factors in appropriate QoE models

� Support vector machines with additional ‘past’ variables
� Weber-Fechner law with iterative exponential regressions
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� Weber-Fechner law with iterative exponential regressions
� Hidden Markov model by increasing state space

� Consequences 
� QoE model available for performance evaluation, 

measurement studies, subjective user surveys 
� In case of unpredictable QoS: avoid memory effects (e.g. for 

QoE based traffic management, development of apps, etc.)
� In general: Interdisciplinary research required
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Local Tests in Laboratory Environment
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Online Tests with “Net-Sim -Applet”
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Statistics about the Conducted Experiments

Exp. Id #test 
users

X-point 
scale

#web 
pages

#chang
es of 
PLT

Min
PLT 
(ms)

Mean 
PLT 
(ms)

Max 
PLT 
(ms)

0 29 3 93 21 348 2594 8184

1 12 3 40 2 240 420 720

2 72 5 40 7 240 660 1200
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3 30 3 25 4 240 336 480

4 26 5 40 9 240 600 960

5 15 5 25 4 240 528 720



Local Test Run (Exp. 0)

� Page download times measured via TCPDump / HTTPFox
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Online Test Runs

� Test memory 
effect

� Test several 
effects
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Agenda

� Existing QoE Models for Web Traffic

� Measurement Settings

� QoE Characteristics
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� QoE Characteristics

� Identification of User Groups

� QoE Models



Existing QoE Models for Web Traffic

� Fidel Liberal, Armando Ferro, Jose Oscar Fajardo: “PQoS based model for 
assessing significance of providers statistically” (2005) 
� MOS = 6 - log2(t), t: total download time [s]

� R.E. Kooij, R.D. van der Mei, R. Yang: “TCP and web browsing performance in 
case of bi-directional packet loss” (2009)
� MOS = 4.75 - 0.81log(t), t: total download time [s]

� ITU-T Recommendation G.1030: “Estimating end-to-end performance in IP 

⋅ ⋅
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� ITU-T Recommendation G.1030: “Estimating end-to-end performance in IP 
networks for data applications” (2005)
� MOS = 4.298⋅exp(−0.347⋅t)+1.390, t: weighted session time [s]

� J. Shaikh, M. Fiedler, D. Collange, “Quality of Experience from user and network 
perspectives” (2010)
� MOS = 1.15 + 1.50 ln(R), R: delivery bandwidth [Mbps]
� MOS = 5.50 exp(−0.2L) , L: packet loss ratio [%]

� What’s missing? Psychological and temporal effects!



QoE Related to Page Download Time
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QoE Depending on Bandwidth and Loss
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Overview on Test Runs
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Exponential Regression

� Exponential decay / increase (similar to Raake, A. (2006a) Short-
and long-term packet loss behavior: towards speech quality
prediction for arbitrary loss distributions)

Tobias Hossfeld 27



Simple Cluster Analysis

� For each user, the average rating and the coefficient of variation of 
the user ratings is calculated

� Cluster analysis with 
k-means algorithm 
(Matlab, RapidMiner)
� As input parameter, 

only these two 0.5
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only these two 
parameters are used
� Simple approach is

already sufficient to 
detect the different 
clusters
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QoE Ratings for Different Clusters
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Implicit QoE Model: Hidden Markov Model

� Describe the QoE with a Hidden Markov Model (HMM)
� Download time as hidden state
� QoE / user ratings as emission

� State transition matrix describes
system dynamics (in terms of QoS)
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� Emission probabilities for perception
categories (MOS 1, …, 5) according
to actual state and user group

� One-dimensional HMM fails, since memory effect is not taken into 
account



2D Hidden Memory Markov Model

� Enhance the HMM by one dimension wrt. memory effect
� State of the system is a tupel

(actual download time dt_i, previous download time dt_i-1)
� QoE / user ratings as emission
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Notes about the 2D -HMMM

� Relevant outcome of subjective tests are emission probabilities 
(for given, i.e. tested, network tupels)

� Underlying network model (i.e. hidden states) can be changed
� for a proper description of a system wrt. QoE, it is important to 

describe it as 2D MMM (due to memory effect)
� then emissions probabilities remain the same and can be 

applied
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applied

� Problem is to get measurement data for all N2 states, when N
download times are observed



Discussion

� Discrete States of HMM
� Weber’s law from psychophysics (1840): The just-noticeable 

difference (∆R) of the change in a stimulus’s magnitude is 
proportional to the stimulus’s magnitude (R), rather than being 
an absolute value.

� ∆R / R = k and states of HMM are defined accordingly

� State of the system
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� State of the system
� previous download time vs. average download time (using 

exponential moving average and discretization of download 
times)

� Similar to Oliver Rose: A Memory Markov Chain for VBR traffic 
with strong positive correlations, ITC 16, Jun 1999.



Test Run 2: Complete User Survey

� Simulated QoS settings in terms of page download time are 
colored according to MOS
� Complete CDF gives overview on actual user experience, not on 

average users  (MOS1+MOS5 ~= MOS3+MOS3)

1  
MOS1 MOS2 MOS3 MOS4 MOS5
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Weber-Fechner Law

� Web traffic experiments@UniWue
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exp.0, R2 = 0.968

exp.2, R2 = 0.939

exp.4, R2 = 0.854


