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Machine-Learning (ML) in TRAC

ML was introduced to enhance port/payload-based traffic classification:

Supervised ML: based on what I ALREADY KNOW

(+) improves traditional classification techniques.

(−) needs training on full-labeled traffic datasets.

(−) labeling traffic flows is difficult, time-consuming, and costly.

Unsupervised ML: KNOWLEDGE-INDEPENDENT analysis

(+) Clustering : separate flows in classes sharing similar characteristics.

(+) classification is done by limited labeled traffic (Semi-Supervised ML ).

(−) lack of robustness: general clustering algorithms are sensitive to
initialization, specification of number of clusters, etc.

(−) difficult to cluster high-dimensional data: structure-masking by irrelevant
features, sparse spaces (“the curse of dimensionality”).
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Machine Learning in TRAC: our Proposal

We want to reduce the need of labeled traffic, limiting the impacts on
classification accuracy.
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Two-steps approach: Clustering + Semi-Supervised Classification.

Robust Clustering on unlabeled traffic flows: enhance clustering through the
combination of Sub-Space Clustering + Evidence Accumulation.
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combination of Sub-Space Clustering + Evidence Accumulation.

Label Clusters: use a small fraction λ of labeled flows per cluster.
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Two-steps approach: Clustering + Semi-Supervised Classification.

Robust Clustering on unlabeled traffic flows: enhance clustering through the
combination of Sub-Space Clustering + Evidence Accumulation.

Label Clusters: use a small fraction λ of labeled flows per cluster.

Distance-based Classification: assign closest-cluster’s label.
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Clustering for Traffic Analysis (Off-line)

Let Y = {y1, . . . ,yn } be a set of n flows captured at the network of
analysis.

Each flow yi ∈ Y is described by a set of m traffic features:
xi = (xi (1), .., xi (m)) ∈ R

m .

X = {x1, ..,xn } is the complete matrix of features, referred to as
the feature space.
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Clustering for Traffic Analysis (Off-line)

Let Y = {y1, . . . ,yn } be a set of n flows captured at the network of
analysis.

Each flow yi ∈ Y is described by a set of m traffic features:
xi = (xi (1), .., xi (m)) ∈ R

m .

X = {x1, ..,xn } is the complete matrix of features, referred to as
the feature space.

X is a black box

Retrieve natural groupings in X through clustering is challenging!!!
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How to Improve Clustering Robustness?

Idea: combine the information provided by multiple partitions of X

to “filter noise”, easing the discovery of natural groupings.

How to produce multiple partitions? → Sub-Space Clustering.

Each sub-space Xi ⊂ X is obtained by projecting X in k out of the
m original dimensions. Density-based clustering (DBSCAN) at Xi .
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Evidence Accumulation to Retrieve Natural Groupings

M
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SPLIT COMBINE

Using Sub-Space Clustering we have SPLIT the problem, how do we
COMBINE the obtained partitions? −→ Evidence Accumulation

Build a new inter-flows similarity measure S from the N partitions Pi .

Flows belonging to a natural cluster C ∗

k are likely to be co-located in the
same cluster in different partitions Pi at different sub-spaces Xi .

S (i , j ) = nij /N , where nij is the # of times that flows yi and yj were
assigned to the same cluster through the N partitions.
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Evidence Accumulation to Retrieve Natural Groupings

Sub-Space
Clustering Clustering

HierarchicalEvidence
Accumulation

SPLIT COMBINE MERGE

Using Sub-Space Clustering we have SPLIT the problem, how do we
COMBINE the obtained partitions? −→ Evidence Accumulation

The final partition P∗ = {C ∗

k } is obtained by Hierarchical Clustering on
S , MERGING the most similar flows into clusters C ∗

k .
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Semi-Supervised Classification

We build a classifier F(·) from the obtained clusters:

“Dig” the labels of a small fraction λ of flows (e.g., through DPI).
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Semi-Supervised Classification

We build a classifier F(·) from the obtained clusters:
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“Dig” the labels of a small fraction λ of flows (e.g., through DPI).

Maximum-Likelihood Labeling: label each cluster with the most present
label among the λ flows.

Classify an unknown flow yi based on its distance to the centroid of
each cluster:

labeli = F(xi ) = label

(

arg min
k

d(xi ,o
∗

k )

)
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Traffic Datasets and Traffic Features

UNIBIS dataset (2000 flows)
Controlled campus network traffic, labeled through GT classifier.

4 traffic classes: HTTP, eMail (SSL), P2P (BitTorrent, Edonkey), and
VoIP (Skype) (500 flows per traffic class).

VALTC dataset (4000 flows)
Controlled isolated network traffic, labeled through GT classifier.

8 traffic classes: HTTP, eMail (POP3), P2P (Emule, LimeWire, Azureus),
VoIP (Skype), monitoring traffic, file hosting/download.

Standard 22 Traffic Features
proto, flow duration, flow volume (bytes and pkts), pkt length (min, mean,
max, dev), and inter-arrival time (min, mean, max, dev).

features are computed in both directions.
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SSC-EA vs DBSCAN vs k -means

We measure clustering performance through Global Accuracy (GA) and
Average per-Cluster Homogeneity (ACH):

GA =

ncls∑

k=1

TP(k )

n
, ACH =

ncls∑

k=1

TP(k)

n(k)

ncls

TP(k ): correctly classified flows in cluster k (λ = 100%).

n(k ): number of flows in cluster k .

ncls: number of clusters.

evaluations performed in UNIBIS.

SSC-EA vs traditional clustering: DBSCAN and k -means.

evaluate the impact of Feature Selection (FS) in clustering algorithms.
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SSC-EA vs DBSCAN vs k -means
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(a) GA: SSC-EA vs DBSCAN. (b) ACH: SSC-EA vs k -means.

SSC-EA is more robust than DBSCAN regarding clusters’ size.

SSC-EA achieves almost perfect ACH, highly improving k -means.

SSC-EA GA is about 85%, with about 50 identified clusters.

SSC-EA GA is impacted by some big-clusters with poor homogeneity.
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Impacts of Feature Selection (FS) - Masking Features.

SSC−EA DBSCAN k−means
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(a) Average per-cluster homogeneity. (b) Global accuracy.

GA for the 22 features, and a reduced set of 13 features obtained by FS.

Selected features correspond mainly to flow volume and packet size
features (independent of network conditions).

SSC-EA is more robust against irrelevant or redundant features.

The number of SSC-EA clusters falls to about 30 with 13 features.
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Semi-Supervised vs Supervised Classification

The GA of SSC-EA slightly varies with λ (high homogeneity).

Compare SSC-EA (λ = 5%) against “full” supervised classifiers
(λ = 100%): C45, SVM, Neural Networks (NN), Bayes, and LWL.
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(a) GA(λ) (b) GA (UNIBIS) (c) GA (VALTC)

Difficult to compete with C45, SVM, NN (full training set, λ = 100%).

But limited labeled traffic provides a means for operational deployment.

Periodically run SSC-EA to recalibrate the limited-reference classifier.
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Concluding Remarks and Challenges

Reducing the need of labeled traffic is paramount to achieve
useful traffic classifiers.

Unsupervised analysis based on clustering provides a means to
achieve this goal, but robust clustering is difficult to perform.

SSC-EA improves robustness of analysis by combining multiple
outlooks of the same set of flows.

Feature selection is crucial in any classification problem, and
represents a major challenge in an unsupervised context.

Sub-Space Clustering represents an interesting paradigm for
Robust Unsupervised Data Analysis.

We have applied SSC-EA for Autonomous Network Security with
very promising results.
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Thank You for Your Attention!!

Remarks & Questions?
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