

Mitigating Signalling Overhead from Multi-Mode Mobile Terminals

Indra Widjaja and Carl Nuzman

Bell Labs, Alcatel-Lucent

•• Alcatel • Lucent 🥢

Background

- Multiple technologies (2G/3G/4G) are increasingly deployed simultaneously by cellular-network operators.
- Mobile terminals (MTs) have multi-mode capability and can switch from one technology to another *seamlessly*.

AT THE SPEED OF IDEAS[™] 2 COPYRIGHT © 2011 ALCATE JUCENT ALL RIGHTS RESERVED

Problem and Motivation

Frequent updates can stress the control plane of the network

- Can we characterize the update rate due to registration ping-ponging?
- Can we minimize the impact on signaling load?

AT THE SPEED OF IDEAS™

Solution from Standards - Idle-state Signaling Reduction (ISR)

When **ISR is not activated**, MT is registered with either technology:

- An MT moving from one cell of a given technology to another cell of a different technology has to perform a location update (TAU/RAU).

When **ISR is activated**, MT is registered with both technologies:

- No update is triggered when an MT moves from one cell to another cell of a different technology.

ISR is currently perceived to be a good thing

AT THE SPEED OF IDEAS™

ISR Activation Example

- During an update, the network decides whether to activate ISR individually for each MT
- Once ISR is activated, it remains active until the network decides not to re-activate during the next update
- MT and the network run periodic update timers. The network performs implicit detach which deactivates ISR if it does not receive a periodic update after the timer expires. MT deactivates ISR if it cannot perform a periodic update.

AT THE SPEED OF IDEAS[™] 5 COPYRIGHT © 2011 ALCATEL-LUCENT. ALL RIGHTS RESERVED. ALCATEL-LUCENT — INTERNAL PROPRIETARY — USE PURSUANT TO COMPANY INSTRUCTION

Analysis of Update Rate

- Mobility model
 - MT location is uniform with density $\boldsymbol{\rho}$
 - Direction of travel is uniformly distributed over $[0, 2\pi]$
 - In a closed region with perimeter length *L*, the average rate MTs with velocity *V* cross the perimeter is

$$R = \frac{\rho VL}{\pi}$$

- The average update rate per MT without ISR can be expressed by
 - $\hat{R} = \left(\frac{C_o}{C_a}\right) \frac{\rho V L_a}{\pi A o}$ (1) due to MT entering an overlay region $+ \frac{\mu}{e^{\mu T} - 1}$ (2) due to timer-triggered updates (period T) while in overlay $+ 2V \sqrt{\frac{\alpha N_h}{\pi A_o}}$ (3) due to MT exiting overlay coverage holes

·······Alcatel·Lucent 🥢

AT THE SPEED OF IDEAS™

Simulation of Update Rate

- Random waypoint on a torus
 - MT's journey consists of a sequence of flights with a pause between two consecutive flights.
 - In each flight, the duration and velocity are picked independently according to given density functions, and flight direction is uniformly distributed over $[0, 2\pi]$. The path of each flight follows a straight line.
 - The pause time is independently chosen according to a given density function.
 - When MT hits the boundary of a rectangular region, it is wrapped at the opposite side.

Average Update Rate per MT

Assumptions:

- Overlay size = 100 eNBs, V=10 km/hr, Cell perimeter length = 3.5 km, Periodic timer = 3 hrs
- Note: $\boldsymbol{\alpha}$ is the ratio of total area of coverage holes to overlay area

AT THE SPEED OF IDEAS™

What Happens with Paging?

- When the network receives a packet but does not have a connection for a given MT with ISR activated, it buffers the packets and pages **both** overlay and underlay.
- with ISR deactivated, the network pages overlay or underlay.

AT THE SPEED OF IDEAS[™] ⁹ COPYRIGHT © 2011 ALCATEL-LUCENT. ALL RIGHTS RESERVED.

Ghosting Effect for Overlay Paging with ISR

Upper and lower bounds on the relative increase in number of MTs registered with overlay due to ghosting is given by

$$\max\left(1-\alpha, \frac{VT}{A_o/\bar{H}}\right) \le \frac{N_s}{N_o} \le 1 + \frac{VT}{A_o/\bar{H}}.$$

Alcatel·Lucent

ISR is harmful

AT THE SPEED OF IDEAS™

COPYRIGHT © 2011 ALCATEL-LUCENT. ALL RIGHTS RESERVED ALCATEL-LUCENT - INTERNAL PROPRIETARY - USE PURSUANT TO COMPANY INSTRUCTION

Tradeoff between Paging and Updating

- Break-even is when Load of Updating-and-Paging with ISR = Load of Updating-and-Paging without ISR.
- Let $\lambda^*(V, N_h)$ be λ at break-even point.
- $-\lambda^*(V, N_h)$ is sensitive to patchiness but insensitive to velocity.

AT THE SPEED OF IDEAS™

Signaling Load per MT for a Given Overlay

- With ISR activated, the signaling load depends strongly on λ , while with ISR deactivated, the load is insensitive to λ .
- Using ISR is beneficial when λ is below the break-even point but harmful above it.

 $-\lambda^*(V) = \lambda(V)$ at break-even point.

- Choose a global $\tilde{\lambda} = \lambda^*(V)$ at high-velocity value as high-velocity MT has more impact on load.
- This results in **threshold-based ISR** that is *independent* of MT velocity:
 - Activate ISR when $\lambda \leq \tilde{\lambda}$
 - Deactivate ISR when $\lambda > \widetilde{\lambda}$

```
AT THE SPEED OF IDEAS™
```

Experiment Setup

Distribution of call arrival rates of MTs follows a generalized Pareto:

$$F(x;\xi,\sigma) = \begin{cases} 1 - (1 + \xi x/\sigma)^{-1/\xi}, & \xi \neq 0, \\ 1 - \exp(-x/\sigma), & \xi = 0, \end{cases}$$

where $\sigma = \Lambda$ (1- ξ), and Λ is aggregate call arrival rate per MT per hour.

Result

Assumptions:

- Load normalized to no-ISR case.
- $\widetilde{\lambda}$ = 1.7, Number of MTs = 500,000

AT THE SPEED OF IDEAS™

COPYRIGHT © 2011 ALCATEL-LUCENT. ALL RIGHTS RESERVED. ALCATEL-LUCENT - INTERNAL PROPRIETARY - USE PURSUANT TO COMPANY INSTRUCTION

Practical Setting of ISR

- Previous *open-loop* approach requires knowledge of overlay parameters (e.g., overlay size, number of holes, sizes and shapes of holes) to find the threshold $\tilde{\lambda}$ that minimizes signaling load, $M(\tilde{\lambda})$.
- In reality, the parameters of the overlay deployment are generally not known.

Measurement-based Approach

- An alternative *closed-loop* approach is to adopt a stochastic approximation algorithm (motivated by Kiefer-Wolfowitz algorithm) to iteratively optimize the threshold based on noisy observation $\hat{M}(\tilde{\lambda}, t_n, \tau)$ an empirical estimate of measured signaling load taking into account random call arrivals in time interval $(t_n, t_n + \tau)$ with a control variable $\tilde{\lambda}$.
- Let $y = F(\lambda)$ be the fraction of MTs with call arrival rate lower than λ and let $q(y) = F^{-1}(y)$. Starting at $y_0 = 0$, the algorithm iteratively evaluates:

Result

• Progress of the stochastic approximation algorithm.

• After convergence, a single iteration can be run each day during the busy-hour period.

Alcatel Lucent

Assumptions:

- System with 10,000 MTs with individual { λ } drawn from a generalized Pareto distribution with shape parameter ξ =0.7.
- δ =0.1, β =0.05, τ =30min

AT THE SPEED OF IDEAS™

COPYRIGHT © 2011 ALCATEL-LUCENT. ALL RIGHTS RESERVED. ALCATEL-LUCENT — INTERNAL PROPRIETARY — USE PURSUANT TO COMPANY INSTRUCTION

Conclusions

- The proliferation of multi-mode mobile terminals (MTs) can significantly stress signaling load in wireless networks.
- 3GPP has devised a mechanism to reduce signaling load called ISR, but no approach on how to set ISR is given or known.
- We analyze the tradeoff between updating and paging and quantify a single threshold value to decide on ISR activation.
- We develop a practical algorithm to activate or deactivate ISR for each MT without requiring knowledge of network deployment or terminal mobility.

AT THE SPEED OF IDEAS™

Thanks!

AT THE SPEED OF IDEAS[™]

. .

COPYRIGHT © 2011 ALCATEL-LUCENT. ALL RIGHTS RESERVED. ALCATEL-LUCENT — INTERNAL PROPRIETARY — USE PURSUANT TO COMPANY INSTRUCTION

20