

www.networks.imdea.org

Bounds on QoS-Constrained Energy Savings in Cellular Access Networks with Sleep Modes

Balaji Rengarajan, Gianluca Rizzo, and Marco Ajmone Marsan

ITC 2011

madrid institute for advanced studies

Introduction

- ICT must become energy efficient
 - They account for 2% to 10% of total power consumption

- In wireless access networks, greener is (much) cheaper
 - For mobile operators, energy is a large share of the OPEX
 - Base stations consume 60% to 80% of the total power

madrid institute for advanced studies

Wasteful Design

(**o**)

 $\left(\left(\mathbf{\varphi} \right) \right)$

 $((\mathbf{q}))$

 $((\mathbf{q}))$

How Can We Improve?

 $((\mathbf{q}))$

- Build better base stations
 - Energy-proportionality
- System level techniques
 - Sleep modes
 - Transparent to users

How much power can be saved with QoS-constrained sleep modes?

- Several sleep mode algorithms exist
 - Very different techniques, different performance
- Open issues:
 - What are the maximum achievable power savings in sleep modes with QoS constraints?
 - Should we improve base stations or adopt sleep modes?
- QoS Metric: per-bit delay perceived by a typical user, τ
 - Maintain below a threshold, au^0

System model

- Users: homogeneous planar Poisson point process
- Base stations layout: Manhattan, Hexagonal, or Poisson point process
- User associate to the closest base station
- Only best effort traffic
- Processor Sharing
- Transmit power is fixed

We evaluate the impact of load proportionality on power savings

• When on, power consumption is:

$$k_1 + k_2 U$$

- U=
$$\frac{\tau}{\tau_0}$$
 base station utilization

- k1 >> k2: "On-off" energy model (current BSs)
- k2 > k1: load proportional energy model
- Energy Proportionality: $\frac{k_2}{k_1+1}$

Computing Expected Per-bit Delay

 $\tau = E^0 \left[\frac{\text{Number of users sharing the serving base station}}{\text{Capacity to the serving base station}} \right]$

- Manhattan, hexagonal BS layouts
 - Regular cells
 - More users farther from BS than close by
- Poisson layout
 - Variable cell sizes
 - More users belong to larger cells

Finding the energy optimal BS density

- Given density of base stations and users, we can find per-bit delay seen by a typical user.
- On-Off model: Use binary search to find the minimum BS density satisfying threshold τ_0
- Load-proportional model: BS utilization is $\frac{\tau}{\tau_0}$

A bound on BS density

 A BS-layout independent bound on the minimum base station density

• A feasible BS layout with density at most 17% higher exists.

A holistic approach is essential to achieving maximum energy efficiency

High user densities: energy proportional hardware is enough
At low user densities, sleep modes perform better

A discrete set of base stations densities allows to achieve high energy savings

Conclusion

- We derived QoS-aware estimates of possible energy savings in wireless access networks with sleep modes
 - Large (theoretical) margins for energy savings
- Energy proportional base stations cannot substitute for sleep modes
 - System-level techniques and hardware improvements are complementary
- Extensions of this work:
 - Clustered user distributions
 - Mixed voice/best effort traffic

madrid institute for advanced studies

www.networks.imdea.org

OTHER SLIDES

madrid institute for advanced studies

9/13/2011

© Institute IMDEA Networks

The mean per-bit delay is a reliable estimate of the global QoS perceived by users

We can safely design the system using mean per bit delay

www.networks.imdea.org

A discrete set of base stations densities allows to achieve high energy savings

www.neiworks.imdea.org

21

With EP base stations, energy optimal configurations have higher bs densities and bs are less loaded

The mean per-bit delay is a reliable estimate of the global QoS perceived by users

We can safely design the system using mean per bit delay