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Large-scale wireless networks

- covering large areas, huge numbers of nodes

- centralized control is infeasible

- nodes operate autonomously, and share medium in distributed fashion

Nodes do not just use the network, they are the network
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Large-scale wireless networks

Randomized algorithms provide popular mechanism for distributed
medium-access control

CSMA (Carrier-Sense Multiple-Access) algorithms

- Each node attempts to activate after random back-off time

- A node activates only if no interfering node is active

- low implementation complexity, but highly complex behavior on
macroscopic level
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Interference graph

The network is described by an undirected graph

- The vertices represent the various nodes of the network

- The edges indicate which pairs of nodes interfere

[Boorstyn et al. (1980), Wang & Kar (2005), Durvy & Thiran (2006)]
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Model description
As opposed to most previous work that assumed saturated buffers, we
consider queueing dynamics

Packets arrive at node i according to a Poisson process with rate λi

Packet transmission times of node i are exponentially distributed with
mean 1/µi . Once a packet has been transmitted, it leaves the system

Denote by ρi = λi/µi the traffic intensity of node i

λi
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Backlog-based CSMA algorithms
Denote by Li (t) the number of packets at node i at time t

We consider random CSMA algorithms where

- node i attempts to activate at exponential rate fi (Li (t)), if inactive.
fi (·) is called the activation function of node i

- node i de-activates at exponential rate gi (Li (t)) = pi (Li (t))µi , if
active, with pi (Li (t)) the probability that node i releases the medium
if a packet transmission ends at time t.
gi (·) is called the de-activation function of node i

λi
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Markov process

Define Ω ⊆ {0, 1}M as the set of all feasible joint activity states, with M
the number of nodes in the network

Let σ(t) = (σ1(t), . . . , σM(t)) ∈ Ω represent the activity state of the
network, with σi (t) indicating whether node i is active at time t or not

Under these CSMA algorithms, (L(t), σ(t), t ≥ 0) is a continuous-time
Markov process, with L(t) = (L1(t), . . . , LM(t))
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Backlog-based CSMA algorithms

What is the network performance, depending on the functions fi (·) and
gi (·)?
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Backlog-based CSMA algorithms

What is the network performance, depending on the functions fi (·) and
gi (·)?

What is the stability region?

What are its delay characteristics?
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Stability

ρ ∈ conv(Ω), with ρ = (ρ1, . . . , ρM), is a necessary condition for stability

For suitable choices of fi (·) and gi (·) (e.g., gi (n) = 1/(1 + log(n + 1)) and
fi (n) = 1), any network is stable as long as ρ ∈ int(conv(Ω))
[Rajagopalan et al. (2009), Jiang et al. (2010), Ghaderi & Srikant (2010)]

However, simulation experiments demonstrate that these choices cause
excessive backlogs and delays!
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Full interference graph
Assume complete interference graph and gi (n) = µ and fi (n) = νn

The system can be described by a continuous-time Markov process with
state space {0, 1, 2, . . .} × {0, 1}

- First component represents the total number of packets in the
system, L(t) =

∑M
i=1 Li (t)

- Second component indicates whether one of the nodes is active

Denote λ =
∑M

i=1 λi and ρ =
∑M

i=1 ρi = λ/µ
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Full interference graph

Assume ρ < 1 and denote by L the total number of packets in the system
in steady state, i.e.

P {L = n} = lim
t→∞

P {L(t) = n}

Theorem

The generating function of L is given by

E{zL} =

(
1− ρ

1− ρz

)λ/ν+1

e(z−1)λ/ν

In particular,

E{L} =
ρ+ λ

ν

1− ρ
=
λ(µ+ ν)

ν(µ− λ)
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General activation functions

Assume gi (n) = µ

Theorem

For fi (·) ≡ f (·) a strictly increasing, unbounded and concave function,

E{L} ≥ ρ

1− ρ
+ Mf −1

(
1

M

λ

1− ρ

)
For fi (·) ≡ f (·) a strictly increasing, continuous and convex function,

E{L} ≤ ρ

1− ρ
+ Mf −1

(
1

M

λ

1− ρ

)

Note: when f (n) = νn the inequalities are in fact equalities
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General activation functions

The bounds turn out to be extremely tight

Simulation for the average number of packets in the system for
f (n) = log(n + 1) with M = 4

In heavy traffic, as ρ ↑ 1, L grows like M exp( ρ
M(1−ρ))
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General topologies

Assume g(n) = µ and assume the system to be stable

Using a heuristic argumentation we find

E{Li} ≈ f −1i (µφi (ρ)),

where φi (ρ) is the constant activity factor needed for a throughput ρ

When fi (·) increases in a more aggressive manner, the mean number of
packets at node i will be smaller
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General topologies

Assume M = 4 and ρi = ρ/2

For a ring network we find

E{L} ≈
4∑

i=1

f −1i

(
λ

1− ρ

)

For a linear network we find

E{L} ≈ f −11 (φ14(ρ)) + f −12 (φ23(ρ))

+f −13 (φ23(ρ)) + f −14 (φ14(ρ)),

with φ14(ρ) = λ
2(1−ρ) and

φ23(ρ) = (2−ρ)λ
4(1−ρ)2

Simulation for fi (n) = log(n + 1)
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Fluid limits

More aggressive activation functions can improve the delay performance

Existing stability results involve slowly varying activation functions, e.g.
f (n) = log(n + 1)

Depending on the topology, how aggressive are the activation functions
allowed to grow?

Examine the dynamics of the Markov process Z (t) = (L(t), σ(t)) using
fluid limits

A fluid limit may be interpreted as a first-order approximation of the
Markov process
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Fluid limits

Consider a sequence of processes ZN(t), where the initial states satisfy∑M
i=1 Li (0) = N and LNi (0)/N → qi ≥ 0 as N →∞

The process Z̄N(t) = ( 1
N L

N(Nt), σN(Nt)) is the fluid-scaled version of the
process ZN(t)

ξ(t) = limN→∞
1
N L

N(Nt) is called a fluid limit

We encounter different types of fluid limits depending on the mixing
properties of the activity process σN(t)

These properties depend on the topology and activation functions
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Trichotomy

Fast mixing - Deterministic fluid limits

- Transitions between the various activity states are not observed at fluid level

- Slowly varying activation functions

Slow mixing - Inhomogeneous Poisson fluid limits

- Transition times between the various activity states are driven by
time-inhomogeneous Poisson processes

- Intermediate activation functions

Torpid mixing - Pseudo-deterministic fluid limits

- Activity state seems to be frozen at fluid level

- Transitions only occur when a queue empties

- Aggressive activation functions
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Example of fast mixing

2-partite complete interference graph

Subsets have cardinality 1

f (n) = n and g(n) = 1
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Example of slow mixing

2-partite complete interference graph

Subsets have cardinality 2

f (n) = n and g(n) = 1
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Example of torpid mixing

2-partite complete interference graph

Subsets have cardinality 3

f (n) = n and g(n) = 1
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Example of slow mixing

2-partite complete interference graph

Subsets have cardinality 3

f (n) =
√
n and g(n) = 1
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Example of fast mixing

2-partite complete interference graph

Subsets have cardinality 3

f (n) = log(n + 1) and g(n) = 1
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Conclusion

Backlog-based CSMA algorithms have been shown to guarantee maximum
stability, if activity factors behave as logarithmic functions of the backlogs

We showed that more aggressive access schemes can improve the delay
performance

How fast are the activity factors allowed to grow, depending on the
topology, while retaining maximum stability?

As a first step we investigated fluid limits and identified three qualitative
regimes that can arise
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