
1

Traffic Engineering for Multiple Spanning Tree
Protocol in Large Data Centers

Ho Trong Viet, Yves Deville, Olivier Bonaventure, Pierre François
ICTEAM, Université catholique de Louvain (UCL), Belgium.

Belgian Constraints Group @UCLouvain

2

Introduction : Traffic Engineering
•  Ethernet switches implement IEEE 802. 1d Spanning Tree Protocol (STP):

reduces the network topology to a spanning tree

•  Need to find an efficient use of available resources à sustain the
increasing traffic demand without having overloaded links

àTraffic Engineering (TE) (NP-hard)
–  Configure link cost à avoid or lighten congestion

TE

Congestion

Change link cost

3

TE in Large Data Centers

•  Problem: optimization of the choice of multiple spanning trees by
802.1s in Ethernet
•  Input: k VLANs, k traffic demand matrices
•  Output: k spanning trees minimize the maximal utilization (load/

bandwidth) Umax

4

Introduction : Local Search
•  Local Search (LS) is a powerful method for solving combinatorial

optimization problems such as traffic engineering
•  LS has ability to find an intelligent path from a low quality solution to a high

quality one in a huge search space
•  Iterate a heuristic of exploration to the neighborhood solutions

•  COMET: Optimization Platform for LS

TE in Large Data Centers
Load Balancing Case

5

State of the art
•  IEEE 802.1s Multiple Spanning Tree Protocol
•  [Xiaoming He et al.] Traffic Engineering for Metro Ethernet Based on Multiple Spanning Trees:

network ≤ 25 nodes
•  [Wentao Chen et al.] Design of Multiple Spanning Trees for Traffic Engineering in Metro Ethernet:

US Network 12 nodes
•  [Aref Meddeb] Multiple Spanning Tree Generation and Mapping Algorithms for Carrier Class

Ethernets: 7-node network
•  [M. Padmaraj et al.], Metro Ethernet Traffic Engineering Based on Optimal Multiple Spanning Trees:

30-node network
•  [Ho et al.] Using Local Search for Traffic Engineering in Switched Ethernet Networks: 1 VLAN

(802.1d), solution for Portland and Fat Tree with 320 nodes

Result
•  Optimizing spanning trees instead of link weights à search space size ê
•  Incremental link loads computation à avoid the all pairs paths computation
•  Local search approach extended from [Ho et al.] using a Constraint-Based environment (Comet)

•  Good solution for Data Centers with 10K servers, 564 switches, 16 VLANs

6

Search Space

•  The search space is made of spanning trees, not link
costs

•  Link costs for each spanning tree are configured after
optimization phase

 à Allowed much broader exploration

•  For each spanning tree, any switch can be selected as the
Root (do not affect the link load computation)

 à Reduced the search space

7

Plan

q  Introduction
q  Problem description
q  Local Search Algorithm for Multiple Spanning

Tree Protocol problem – LSA4MSTP
q  Experimental Results
q  Conclusion

8

Problem description
Input

–  Network topology: G=(N,E)
–  N set of switches (nodes), E set of links (arcs)

–  k VLANs, k initial link cost matrices W1, W2, …, Wk
–  Bandwidth matrix BW
–  k traffic demand matrices TD1, TD2, …, TDk

Objective
•  Find k spanning trees for k VLANs minimizing the maximal link

utilization Umax
Umax = max {Utilization Ue | for all link e in E}

•  Deduce k associate configurations of link cost W*1, W*2, …, W*k

(straightforward)

9

Plan

q  Introduction
q  Problem description
q  Local Search Algorithm for Multiple Spanning

Tree Protocol problem – LSA4MSTP
q  Experimental Results
q  Conclusion

10

•  Root Selection
–  In each spanning tree (VLAN), any node can be chosen as root,

without impact on results
–  A root can be chosen arbitrarily
–  Our choice: configure the switch with highest capacity (ports x

bandwidth) as the root

•  k Initial Spanning Trees
–  Shortest path tree based on initial link cost matrices W1, W2, …,

Wk (simulate 802.1d standard)

LSA4MSTP: Root Selection & Initial Solution

11

LSA4MSTP: Heuristics to find a good neighbor
Select VLAN to do the edge replacement
•  Find the most congested oriented link (smax,tmax): Umax=U[smax,tmax]

•  Compute the load rate of each VLAN on (smax,tmax)
•  VLAN is selected based on its rate on (smax,tmax)

VLAN 1
VLAN 2
VLAN 3

12

Select VLAN to do the edge replacement
•  Find the most congested oriented link (smax,tmax): Umax=U[smax,tmax]

•  Compute the load rate of each VLAN on (smax,tmax)
•  VLAN is selected based on its rate on (smax,tmax)

LSA4MSTP: Heuristics to find a good neighbor

VLAN 1
VLAN 2
VLAN 3

Max congested

smax

tmax

Load rate on (smax,tmax)
VLAN 1: 20%
VLAN 2: 30%
VLAN 3: 50%

Select VLAN to do the edge replacement
•  Find the most congested oriented link (smax,tmax): Umax=U[smax,tmax]

•  Compute the load rate of each VLAN on (smax,tmax)
•  VLAN is selected based on its rate on (smax,tmax)

LSA4MSTP: Heuristics to find a good neighbor

VLAN 1
VLAN 2
VLAN 3

Max congested

smax

tmax

14

Probability to be selected
Pr[VLAN1] = 20/100 = 0.2
Pr[VLAN2] = 30/100 = 0.3
Pr[VLAN3] = 50/100 = 0.5

Select VLAN to do the edge replacement
•  Find the most congested oriented link (smax,tmax): Umax=U[smax,tmax]

•  Compute the load rate of each VLAN on (smax,tmax)
•  VLAN is selected based on its rate on (smax,tmax)

VLAN 1
VLAN 2
VLAN 3

smax

tmax

Selected VLAN

LSA4MSTP: Heuristics to find a good neighbor

15

•  From the selected VLAN
•  Choosing an edge to remove
•  Adding a new edge

LSA4MSTP: Heuristics to find a good neighbor

Remove an edge Add an another edge

16

•  Removing an edge
–  Most congested oriented link (smax,tmax): Umax=U[smax,tmax]
–  SR: set of candidate edges to be removed (all edges in TR)
–  Assign to each edge in SR a probability to be selected
–  Select (sO, tO) to be removed

LSA4MSTP : Heuristics to find a good neighbor

17

•  Adding an edge
–  TI: isolated subtree - unconnected to the root.

–  SA contains all the edges that join SP\TR and TI.
–  Select (sI, tI) to be added from k highest rest bandwidth edges in SA

which leads to min Umax

LSA4MSTP : Heuristics to find a good neighbor

18

•  Adding an edge
–  TI: isolated subtree - unconnected to the root.

–  SA contains all the edges that join SP\TR and TI.
–  Select (sI, tI) to be added from k highest rest bandwidth edges in SA

which leads to min Umax

LSA4MSTP : Heuristics to find a good neighbor

19

•  Adding an edge
–  TI: isolated subtree - unconnected to the root.

–  SA contains all the edges that join SP\TR and TI.
–  Select (sI, tI) to be added from k highest rest bandwidth edges in SA

which leads to min Umax

LSA4MSTP : Heuristics to find a good neighbor

20

•  Termination criteria
–  Time window: 15 minutes

•  Tabu List
–  Tabu: forbids the repetitive replacement of a couple of edges in

successive iterations.
–  Tabu list: inserts only the added edge at each search iteration –

freeze for next x iterations

LSA4MSTP: Metaheuristics

21

•  Incremental link load computation (20% speed up)
–  Load changes only on the links on the cycle C created by

removing (sO, tO) and adding (sI, tI)
è Avoid recomputing all pair paths

•  Use of LS (Graph & Tree) framework
–  Graph and trees are objects available in the LS algorithm

LSA4MSTP: Technical issues

22

Plan

q  Introduction
q  Problem description
q  Local Search Algorithm for Multiple Spanning

Tree Protocol problem – LSA4MSTP
q  Experimental Results
q  Conclusion

23

Experimental Results

We consider 2 topology types
•  Private Enterprise DC (3-Tier Cisco): few hundred à few thousand servers

•  In our tests, 4K servers, 20 servers/rack, 200 ToRs, 40 Aggregation SWs, 2 Core
SWs

•  Cloud DC (VL2): few thoudsand à more than 10K servers
•  Improvement of 3-Tier Cisco: Core à Intermedia,
•  In our tests, 10K servers, 20 servers/rack, 500 ToRs, 32 Aggregation SWs, 32

intermedia SWs

Private Enterprise Cloud

24

Internal TM Internet TM Uniform TM

•  16 VLANs for each topology, 2 approaches to generate VLAN
•  Geographic: each VLAN groups a set of neighboring racks
•  Random

•  Merge VLANs 2 by 2 à for each topology: 16, 8, 4, 2, 1 VLANs
•  Analyse of a private enterprise SNMP data with 53 nodes, we consider 3

traffic demand matrix types
•  Internal TM: all traffic stays within VLAN – discussions across racks
•  Internet TM: traffic within VLAN 80%, traffic across VLANs 20%
•  Uniform TM: uniform distribution between all pairs of SWs inside VLAN

Experimental Results

25

Experimental Results
Cloud data centers

•  Umax[LSA4MSTP]:
•  ~ 50% of Umax[802.1s] for 16 VLANs
•  ~ 60% of Umax[802.1s] for 8 VLANs
•  ~70 – 80% Umax[802.1s] for 4, 2, 1 VLAN

26

Experimental Results
Improvement of Umax over execution time

•  Time window 15’
•  Very good results are obtained quickly

•  Umax reduces to ~50% in the first 10s

27

Experimental Results
#used links across tiers for Cloud

•  Links Int-As always < 100 links
•  #used links AS-ToR grows quicky with #VLANs

•  LSA4MSTP uses more links than 802.1s
•  With 63 more links for 16 VLANs, LSA4MSTP reduces 50% Umax

28

Experimental Results
#used links across tiers for Cloud

•  Links Int-As always < 100 links
•  #used links AS-ToR grows quicky with #VLANs

•  LSA4MSTP uses more links than 802.1s
•  With 63 more links for 16 VLANs, LSA4MSTP reduces 50% Umax

29

Plan

q  Introduction
q  Problem description
q  Local Search Algorithm for Multiple Spanning

Tree Protocol problem – LSA4MSTP
q  Experimental Results
q  Conclusion

30

Conclusion

•  New TE technique based on local search

•  Extended from LSA4STP for single switched Ethernet network à adapting
heuristics for Large Data Centers deploying Multiple Spanning Tree Protocol
802.1s

•  Consider current modern topologies (up to 10K servers) with studied
traffic demand matrices in our experiments

•  Give good performance with large instances of network topology

•  LSA4STP: Grid, Cube, Expanded Tree, Fat Tree, PortLand
•  LSA4MSTP: 3-Tier Cisco, Cloud Data center architecture

•  Local search heuristic has been implemented in the Comet language

and the simulations show promising results.

•  Further work: extend framework to take in to account delay, sum
load and fault tolerant aspect

31

Thanks for your attention!

•  Question?

