Research Challenges for Modern Data-Center Networks

Jeff Mogul HP Labs Fellow jeff.mogul@hp.com Keynote 3: 23rd International Teletraffic Congress

San Francisco, CA 8 September 2011

©2011 Hewlett-Packard Development Company, L.P. The information contained herein is subject to change without notice

Compared to stuff like

- Energy Savings in Cellular Access Networks
- Content-centric Networks
- -Optical Burst Switching
- -Million-node Wireless Sensor Networks

Data-center networks are boring -right?

Except for • Scale

- Scale
- Performance

Except for

- Scale
- Performance

• Power

- Scale
- Performance
- Power
- Reliability

- Scale
- Performance
- Power
- Reliability
- Security

- Scale
- Performance
- Power
- Reliability
- Security
- Cost

- Scale
- Performance
- Power
- Reliability
- Security
- Cost
- Management

- Scale
- Performance
- Power
- Reliability
- Security
- Cost
- Management
- and some other stuff

Except for

- Scale
- Performance
- Power
- Reliability
- Security
- Cost
- Management
- and some other stuff

There really aren't that many interesting research problems to solve for datacenter networks

Except for

- Scale
- Performance
- Power
- Reliability
- Security
- Cost
- Management
- and some other stuff

There really aren't that many interesting research problems to solve for datacenter networks But there are enough to keep me talking for 45 minutes or so

If you're taking notes ...

All references to published papers are <u>hyperlinked</u>

- So, no need to write down the titles/authors of papers
- just download the PDF of my slides, and click

Some specific challenges

- What do applications actually need?
- Scaling to 100K nodes or more
- Isolation in multi-tenant/cloud data-centers
- What's the right physical layer?
- Reducing network-related energy
- Simplifying network management
- Fault detection and diagnosis
- Challenges of future applications

• What do applications actually need?

- Scaling to 100K nodes or more
- Isolation in multi-tenant/cloud data-centers
- What's the right physical layer?
- Reducing network-related energy
- Simplifying network management
- Fault detection and diagnosis
- Challenges of future applications

What does a data center do, anyway?

Legacy data centers:

- Lots of relatively isolated apps,
 - such as 3-tier Web applications or large databases
- Apps are typically tied to a specific set of servers
- Storage traffic often goes over a non-Ethernet network
- But these aren't of much interest for researchers

- New/future data centers:
 - Lots of interconnected (Web services) apps
 - Apps flex rapidly, and are not tied to any specific server
 - Storage traffic shares a "converged fabric" with data traffic
 - Scale matters: amortizing fixed costs over lots of uses

There's more than one kind of application

...and they have different needs.

Some examples

- Data analytics/Search
 - Needs high bandwidth, often all-to-all
 - also needs balanced bandwidth, or else you get stragglers
- High Performance Computing (HPC)
 - Needs really low latency (a few microseconds) + low jitter
- Web services/hosting
 - Needs lots of bandwidth to the Internet, + DDOS protection
 - Want to migrate VMs without having to change addresses

What do applications do with the network?

That is, what kinds of communication patterns will we see in data-center networks?

- Answer: we don't really know!
- It's hard to collect detailed traffic data at this scale
- People who have it don't like to share it
- Measurements from one DC might not apply to another

What we do know

Microsoft researchers have published some useful papers:

- VL2: A Scalable and Flexible DC Network (SIGCOMM '09)
 Traffic matrices are variable and unpredictable
 Most flows are short; most bytes are in the rare long flows
- <u>The Nature of Datacenter Traffic (имс '09</u>)
 - Several patterns: work-seeks-bandwidth and scatter-gather
 - Even elephant flows don't last very long

Reprinted from "<u>VL2: A Scalable and Flexible Data Center Network</u>," Albert Greenberg, James R. Hamilton, Navendu Jain, Srikanth Kandula, Changhoon Kim, Parantap Lahiri, David A. Maltz, Parveen Patel, Sudipta Sengupta, *Proc. SIGCOMM 2009*

Figure 2: The Work-Seeks-Bandwidth and Scatter-Gather patterns in datacenter traffic as seen in a matrix of $\log_e(Bytes)$ exchanged between server pairs in a representative 10s period. (See §4.1).

Reprinted from "<u>The Nature of Datacenter Traffic: Measurements & Analysis</u>", Srikanth Kandula, Sudipta Sengupta, Albert Greenberg, Parveen Patel, Ronnie Chaiken, *Proc. IMC 2009*

So, what do applications really need?

Some combination of:

- High bandwidth, internally and externally
- Balanced bandwidth
- Predictable bandwidth
- All-to-all or tree-like flow patterns
- Low latency and jitter
- Flat L2 networks at large scale - How large? It depends ...
- DDOS protection and firewalls

• What do applications actually need?

- Scaling to 100K nodes or more
- Isolation in multi-tenant/cloud data-centers
- What's the right physical layer?
- Reducing network-related energy
- Simplifying network management
- Fault detection and diagnosis
- Challenges of future applications

Scaling to really big networks

Some DC operators want L2 networks with 100K nodes or more (and lots of VMs per node)

Others are OK with smaller "availability zones"

This creates pressure on:

- Ethernet learning tables
- Multicast group tables
- Access control lists in switches
- Broadcast/multicast load and storms
- End-to-end latency
- Power, cooling, and network administration

\leftarrow This?

Or this? \rightarrow

Scaling an L2 network while using cheap switches

- Problem: small Ethernet learning tables:
 - -Either encapsulate or rewrite packets, to hide VM addresses from core switches
 - Encapsulate tenant packets: <u>NetLord</u> (SIGCOMM 2011)
 - Rewrite tenant packet headers: Diverter (WREN 2009)
 - -Do this in hypervisor or edge switch?
 - Creates a need to distribute ARP-like data efficiently
- Problem: small ACL tables:
 - -Not enough space to have one rule per tenant VM
 - NetLord's solution: expose Tenant-ID in encapsulation hdr

Scaling multicasts and broadcasts

Broadcasting and multicasting – the main limits to L2 scale?

- Per-node overhead scales with broadcast-domain size
- Broadcast-storm damage scales with domain size
- Switches have smallish IGMP tables
- Conventional wisdom: domain limit "a few hundred" nodes
 What causes broadcasts/multicasts in data-centers?
- ARP and DHCP; Ethernet flooding
 - Solution: don't do it: e.g., <u>SEATTLE</u> (SIGCOMM '08), <u>NetLord</u> (SIGCOMM '11)
- Application-level multicasts
 - Don't allow these (e.g., EC2); or optimize multicast distribution (1), in progress)

• What do applications actually need?

- Scaling to 100K nodes or more
- Isolation in multi-tenant/cloud data-centers
- What's the right physical layer?
- Reducing network-related energy
- Simplifying network management
- Fault detection and diagnosis
- Challenges of future applications

Isolation in multi-tenant/cloud data-centers

Functional isolation is simple; performance isolation is hard:

- What guarantees do tenants want?
- What can the network feasibly provide?
 - Considering: scale, cost, efficiency/offload, and security against cheating
- Several proposals for cloud tenant models:
 - <u>Distributed Rate Limiting</u> (SIGCOMM '07): global limit on sum of tenant's traffic
 - <u>SeaWall</u> (NSDI '11): limits on pair-wise inter-VM flows
 - <u>Topology Switching</u> (Hot-ICE '11): can spec. max # of link-sharers
- Massive scale makes this hard:
 - Not enough hardware rate limiters in switches
 - Economics forces resource multiplexing (conflicts with isolation/predictability)

• What do applications actually need?

- Scaling to 100K nodes or more
- Isolation in multi-tenant/cloud data-centers
- What's the right physical layer?
- Reducing network-related energy
- Simplifying network management
- Fault detection and diagnosis
- Challenges of future applications

Physical-layer challenges

- A few big switches, or lots of little switches?
 - Big switches: expensive, power-hungry, but easier to manage
 - Small switches: cheaper, cooler, but lots of wires and things to watch
- What's the wiring topology?
- What are the "wires?"
- How much do we want to do at L2?

Wiring topology challenges

You can get by with cheaper, cooler switches

- by creating multi-path topologies
- But then you need a lot of them, and a lot of wires -
- What's the best arrangement?

 Tree? <u>Clos/fat-tree</u>? HyperCube/<u>BCube</u>? <u>HyperX</u>? <u>Scale-free</u>?
- Things to worry about:
 - Wires are expensive, especially long ones
 - Wires consume power
 - Someone has to install them, and fix them if they are defective
 - How do you upgrade an already-wired data center?
 - How do you actually utilize the multiple paths?

Progress on wiring topologies

- Run the wires on backplanes:
 - Data Center Switch Architecture in the Age of Merchant Silicon (Hotl '09)
 - although this is sort of back to building large switches
- Fully-loaded cost comparison of various alternatives
 - <u>A Cost Comparison of Data Center Network Architectures</u> (CoNEXT '09)
 - Lots more work to do here
- Automatic optimization of wiring topologies
 - Taming the Flying Cable Monster (USENIX ATC '11)
 - Multiple NP-hard optimization problems ... more work here, too.
- Optimizing the choice among multiple paths
 - SPAIN (NSDI '10): finding the best path for a flow
 - <u>MPTCP</u> (SIGCOMM '11): using multiple paths for one TCP connection

Interesting kinds of wires

• Copper wire is cheap, but:

Takes lots of power, cannot carry 10Gb more than 10—15M
Ethernet is ubiquitous ... but InfiniBand still has better Gbps/\$

All-optical "wires"?

- <u>Assessment of Optical Switching in Data Center Networks (NFOEC '10)</u>
 - lots more work needed before this is practical
- MEMS: OK for circuit switching, too slow for packet switching
- Hybrids might work: <u>c-Through</u> or <u>Helios</u> (SIGCOMM '10)
- Wireless data center networks?
 - <u>Augmenting DC Nets with Multi-Gigabit Wireless Links</u> (SIGCOMM '11)
 - use wireless to bypass sparse hotspots; get away with a cheaper core

Reprinted from "<u>Augmenting Data Center Nets with Multi-Gigabit Wireless</u> <u>Links</u>", Daniel Halperin, Srikanth Kandula, Jitendra Padhye, Paramvir Bahl, and David Wetherall, *Proc. SIGCOMM 2011*

Do we really want TCP on the bottom?

Historically, flow control and congestion avoidance belonged in the transport layer:

- Reflects the "end-to-end" & "narrow waist" arguments
- Keeps the MAC layer and switches simple

Data Center Bridging (DCB, aka DCE aka CEE)

- -Puts flow control (PFC) + cong. control (QCN) in L2 HW
- "Required" by storage convergence, especially FCoE
- -Is this really a good idea? or are we better off with iSCSI?
- -<u>DCTCP</u> (SIGCOMM '10) solves similar problems, but in L4

• What do applications actually need?

- Scaling to 100K nodes or more
- Isolation in multi-tenant/cloud data-centers
- What's the right physical layer?
- Reducing network-related energy
- Simplifying network management
- Fault detection and diagnosis
- Challenges of future applications

Reducing energy consumption for datacenter networking?

How important is this?

- 5-15% is enough to worry about
- and it hasn't been at all "proportional"

Approaches:

- Reducing worst-case power:
 - Use internal optics; 🅢 Avoid using TCAMs
- Improving proportionality:
 - <u>Idle-traffic sleeping</u>: not a good idea for latency-sensitive apps?
 - Elastic Tree (NSDI '10): re-route traffic, so switches can sleep 🐲
 - Networks of Tiny Switches (NoTS): lots of really low-power switches 🅢

• What do applications actually need?

- Scaling to 100K nodes or more
- Isolation in multi-tenant/cloud data-centers
- What's the right physical layer?
- Reducing network-related energy
- Simplifying network management
- Fault detection and diagnosis
- Challenges of future applications

How do you manage a 100K-node network?

Stuff to worry about:

- Failures and repairs, routing, ACLs, DDoS, placing and moving VMs, billing tenants; services like DNS
- Change control; avoiding misconfiguration
- Keep it cheap: today, 1 admin per ~20 switches
 - Probably, the cost is worse than linear in the number of switchesThis is for managing changes; managing failures is easier

We need to manage the network, not the pieces

- OpenFlow helps ... a little
- An un-sexy area for research, but we need it!

What about traffic flow scheduling?

Flow scheduling: explicitly choose where flows go, because:

- You can't afford full bisection bandwidth everywhere
- or, Your "full bandwidth" topology needs perfect routing
- and, You would rather not constrain VM/sever placement due to network bandwidth limits
- and, random (ECMP) is suboptimal because of elephants
 Recent automated approaches based on SDNs:
- <u>Hedera</u> (NSDI '10): detect elephants at switches & re-route based on a predictive model
- Mahout (INFOCOM '11): detect elephants sooner, at end-hosts Ø

• What do applications actually need?

- Scaling to 100K nodes or more
- Isolation in multi-tenant/cloud data-centers
- What's the right physical layer?
- Reducing network-related energy
- Simplifying network management
- Fault detection and diagnosis
- Challenges of future applications

Things will go wrong

Accurate and detailed failure data is useful for:

- Responding to failures in real time
- Detecting failure trends
- Designing fault-tolerant networks and components
 But such data for DC networks has been hard to obtain
- Data-center operators don't often share
- Logs usually need a lot of cleanup heuristics
- "Faults" are one thing; failures with impact are another
- <u>VL2</u>: faults high in hierarchy are rare but high-impact
- Understanding Network Failures in DCs (SIGCOMM '11)

• What do applications actually need?

- Scaling to 100K nodes or more
- Isolation in multi-tenant/cloud data-centers
- What's the right physical layer?
- Reducing network-related energy
- Simplifying network management
- Fault detection and diagnosis
- Challenges of future applications

The next set of challenges

- Super-low latency
 - <u>RAMClouds</u> (OSR 12/09): all data in DRAM, 5-10 μ sec RPC latency
- Security, privacy, and anti-malware all at the same time
- Idiot-proof network management
- Disaggregating + recomposing computing and storage
 Blur distinction between "CPU-memory interconnect" and "network"
- Packet-switching meets all-optical networks
- Applications with VMs in multiple data centers
- Useful benchmarks/synthetic workloads for testing
 - Necessary for shared progress in quantitative field; don't hide bogus tradeoffs
 - Per-packet flows; OpenFlow controller loads; multicast loads; etc.

A few words about HP Labs

- HP has O(320,000) employees, worldwide
- <u>HP Labs</u> has O(450) researchers, worldwide
 - Eight broad themes: Cloud and Security, Information Analytics, Intelligent Infrastructure, Mobile and Immersive Experience, Networking and Communications, Printing and Content Delivery, Services and Sustainability.
- The Networking and Communications Lab (NCL)
 - 30 researchers in Palo Alto, Beijing, and Princeton
 - Major projects on Enterprise/Data-Center networks, Programmable Networks, Large-Scale Sensor Networks
 - We plan to hire both summer interns and full-time researchers in 2012

Questions?

Backup slides

