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Switch
o Which packet should 
be sent next to output N?

o Goals?
- High Throughput
- Fairness
- Low Delays

o Classical Answer: 
- Maximum Weighted Matching

Much Too Complex!
o Simpler Answer: 

- Adaptive Random Requests
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Switch

o Input 1 : Select random delay with
mean    exp{- X1j} for every j

o If minimum delay is for j, input 1 
checks if output j is busy

- If not, it sends a packet to j
- If yes, it repeats

o Same for the other inputs 

Adaptive Random Requests:

o Basic Idea: Favor larger backlogs
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Switch

o Results:  

Adaptive Random Requests:

 Essentially 100% throughput

 Delays can be controlled if we accept
a small throughput reduction

Works with variable packet lengths

 Fairness? Next slide.
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Switch

o Fairness:  
Adaptive Random Requests:

• Requires congestion control

• Input ij reduces ij if xij increases

• Choose ij to maximize

uij(ij) – xijij

o Result:  
• Essentially maximizes uij(ij)
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Ad Hoc Network
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Ad Hoc Network
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Admission Control:

 maximizes 
uA() – 8

 maximizes 
uB() – 9
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Ad Hoc Network
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Result:
Essentially maximizes the 

sum of flow utilities

Note: Integrates
- congestion control
- routing
- MAC scheduling
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Ad Hoc Network

Network

Queue Lengths

Time

λ = 0.98*(convex combination of maximal independent sets)

†

†

0.2*{1, 3} + 0.3*{1, 4, 6} + 0.3*{3, 5} + 0*{2, 4} + 0.2*{2, 5}
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Ad Hoc Network

Multipath routing allowed

Unicast S2 -> D2
Anycast S1 to any D1
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Resource Allocation
• Many users compete for 
resources

•CPU, Memory in Cloud
•Energy
•Wireless Channels

• For scalability, the 
protocols must be 
distributed

• The protocols should be 
efficient and strategy-
proof

• Optimal allocation is NP-
hard and requires full 
knowledge
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Resource Allocation
• Replace

MAX iui(xi)
by

MAX iui(xi) + H(p)
H = entropy of allocation

• Magic:
From NP-hard, the problem
becomes 

• Distributed
• Easy

The solution is 
O(T/)-optimal

T = mixing time ….
Bounds on T based on topology of 
resource conflicts.
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Resource Allocation

USER i:
o x maximizes

ui(x) – xq
o R = request rate

≈ exp{ q } 

RESOURCE ALLOCATION:
o Grant requested resources 
if they are all available
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Resource Allocation

USER i:
o Charge xq
Intuition:
o Greed is expensive
RESULT:
o Under reasonable 
assumptions ….

Scheme is (1/n3)-NASH 
equilibrium; n = # users.

(Price is almost VCG.)

What about strategic users?
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Processing Networks
Task: 1 from queue 1; 
Task B: 1 from all queues; 
Task C: 1 from queue 3
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Processing Networks
Task: 1 from queue 1; 
Task B: 1 from all queues; 
Task C: 1 from queue 3

MWM

T = 3-

Maximum Weighted Matching is not stable.
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Processing Networks
Task: 1 from queue 1; 
Task B: 1 from all queues; 
Task C: 1 from queue 3

T = 3-

DWM:  Use MWM based on Virtual Queues

Deficit Maximum Weighted Matching is stable.
[Proof:  Lyapunov argument.]
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Processing Networks

Parts arrive 
at 1 & 2 with rate λ1
and at 5 with rate λ2

Task 2 consumes one 
part from 2 and one 
from 3; ...

Tasks 1-2, 1-3, 3-4 
conflict

Algorithm stabilizes the 
queues and achieves 
the max. utility
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Mathematical Ideas

For distributed allocations there are three ideas:

Random access protocols maximize the entropy subject to 
average allocation rates

The dual gradient algorithm to solve this problem calculates 
the optimal access rates

The implementable algorithm is a stochastic approximation
version of the dual gradient algorithm

For processing networks, there is one idea:

The virtual queues are stable, by Lyapunov. 

These four ideas are in Libin Jiang’s thesis. See monograph.
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Maximum Entropy
Consider:
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Maximum Entropy
Consider:

Lagrangian:

Question:  What are the rj?  
Answer:  rj ≈ αXj (if λ ∈ Λ)
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Maximum Entropy
Consider:

If α(n) = α:
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Maximum Entropy
Consider:

If α(n) = α:
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• Solution exists if λ ∈ Λ

• Moreover, 

• Also,

Consider:

Theorem

Maximum Entropy
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Conclusions

Random allocations with adaptive requests rates are -optimal
in utility

The request rates increase with the backlog

Congestion control imposes a price based on backlog in the 
ingress node

This price make the scheme almost strategy-proof in a large 
system

Processing networks are scheduled based on virtual queues

These queues can become negative
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