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agenda:

�review of Szemerédi’s Regularity Lemma

�Peer-to-peer streaming system

�Szemerédi-type clustering of p2p-system



Szemerédi’s Regularity Lemma

(SzRL)

� a fundamental result in graph theory

� Szemerédi, E.:’Regular partitions of graphs’, 1978 



an  ‘ε-regular pair’ (A,B) is a graph:
� A and B are disjoint node sets 

� link density (d(A,B)) between pair is almost uniform
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SzRL

for every ε > 0, and for every natural number m

� ∃∃∃∃ N=N(ε,m) and M=M(ε,m), natural numbers

such that:

� any graph, G, with at least N nodes can be partitioned into k classes 
of almost equal sizes: (V1, V2, …, Vk)

� m≤ k ≤ M and all but at most εk2 pairs (Vi ,Vs) are ε-regular

(then (V1, V2, …, Vk) is called an ε-regular partition of G)



note:

� a large random bipartite graph is ‘quite’ regular

� link is drawn with prob. p, and not drawn with prob. 1-p 

� link density is close to p

� regularity ≈ uniformity (of links)

p



SzRL ≈>

a large enough graph can be well approximated by 

bounded number of pseudo-random bipartite graphs

�G => Sz. graph 

� space of all graphs is totally bounded or precompact

G =>

V1
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Vk

V3
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some remarks on SzRL

� most effective for large and dense graphs

� sparse version (Scott 2010)?

� ‘must’ in extremal graph theory

� interesting new results:
� O(n) time algorithm to find reg. partitions (E. Fischer et al, 2010)

� Sz. graph can be found in constant time! (E. Fischer et al, 2010, 
T. Tao, 2009)

� Theorem: a graph property, P, is effectively testable � P can be 
verified from corresponding Sz. graphs (N. Alon, et al 2005)

� Sz. graph tolerates substantial noise, spectral methods, M. Bolla 
2005



although SzRL does not guarantee reg. 

partitioning for any ‘real life’ graph: 

�because of terrific upper-bounds (M) like:

�regular partition can still be meaningful

�a reasonable model in many cases:
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� Sz. graph as a model 

� fit real life graph with such model in max likelihood 

sense

� try to find partitioning where pairs look as random as 

possible => as regular as it can get(?)

� try to cluster nodes in a way that pairs are like random bipartite 

graphs:

p≈1

p≈0 p≈0.3



we adopted the last approach from:

� Nepusz-Bazsó-Négyessy-Tusnády, “Reconstructing 

cortial networks…” Springer 2008. 

� network of brain areas with neural connections as links

� with uncertain links

� Sz. clustering => predictions about such uncertain links!



our experimental peer-to-peer streaming system, 

tests in PlanetLab

�48 nodes organizing a Chord-network

‘finger’



one node, the ‘seed’, streams chunks of the file to its 

antifinger neighbours -> new neighbours…

a case of some two chunks:



a chunk is downloaded, neighbours are notified, one of 

them requests the chunk, and a peer accepts request 

and uploads the chunk further – a push scheme

node

downloads chunk

notify

request



after thousands of chunks were streamed:

‘who downloaded from whom’-graph



we would like to find peers downloading-uploading 

patterns

• similar peers in the same class

• similarity in some Sz. clustering sense (?)

• without any aprior assumptions what the classes 

should be



in directed case we want to find two partitions (‘in’ and ‘out’

clusters)

• in clusters:                                    , 

• and out clusters                                 ,

• consider links from           to                
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define a directed and weighted graph:

• for link

• weight:

• with         = number of chunks node i gets 

from j during a long session 
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define a random graph model, GW

• with link probability:

• with independent links 

• with the same nodes set as the original graph, 
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with respect to in- and out-clusters define the 

weight density matrix:
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two random graphs: GW and GP

• with link probabilities: 
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find partitions (Ω, Υ)

• in such a way that the expected ‘log-likelihood’ is 

maximal: 

• where prob. of a graph             :
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???, KinKout =Υ=Ω

• from AIC, Akaike information criterion:

• minimze:

• where K is number of parameters: 

• =>

• Min AIC => 

442),(2 * ++×+−= VKoutKinKinKoutlAIC

22 ++×= VKoutKinK

KKinKoutlAIC 2),(2 * +−=

KinKout =Υ=Ω ,



clustering algorithm:

• use EM (expectation-maximisation)

• FOR:

• start from random partitions 

• A: calculate P-matrix

• for each node: calculate exp. log-likelihood considering that the 
node belongs to a given pair of in- and out-cluster; find max 
over all such cluster pairs; (P is fixed)

• redistribute nodes in clusters, replace node to cluster pair that 
gives the max of expected log-likelihood

• Go To A and iterate until the clusters saturate

• calculate AIC

– continue FOR, take clustering corresponding to min AIC
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we end up with:

• Sz-graph: 

3== KoutKin



=> the same in more details



some apparent pattern were found

• cluster pair ‘(1,1)’:

in-group V1 part

out-group U1 part

rest

V1 ∩ U1



histogram of the weight distribution for pair (1,1)

very small weights, mean 0.07



another pair (1,3)

with high weights, mean 0.22



pair (3,1)

almost zero weights



pair (3,2)

client-server type



Pair (2,1)

with large intersection group

high link weights



pair (2,1)

most peer-to-peer like

Many peers get most of chunks within 

this pair:



profiles of weights for (2,1)



comments:

• more interesting results for larger networks?

• use in metabolic networks

• MC-algorithm would be a better choice

• seems to have some potential  



Thank You!


