

A wealth of relations...

Degree law: $\sum_{j=1}^{N} d_j = 2L$

Number of *k*-hop walks between node *i* and *j*: $(A^k)_{ij}$

Any **real symmetric matrix** *S* can be written as $S = X \Lambda X^T$, where *X* is the orthog. matrix with real eigenvectors in the columns and $\Lambda = diag(\lambda_1, ..., \lambda_N)$, where λ_j is the *j*-th real eigenvalue. Eigenvalues can be ordered as $\lambda_N \leq \lambda_{N-1} \leq \cdots \leq \lambda_2 \leq \lambda_1$

Spectrum of *A*: 1) all eigenvalues lie in the interval ($-d_{max}, d_{max}$]

2)
$$\sum_{j=1}^{N} \lambda_{j} = 0$$
 $\sum_{j=1}^{N} \lambda_{j}^{2} = 2L$ $\sum_{j=1}^{N} \lambda_{j}^{k} = Trace(A^{k}) = \sum_{j=1}^{N} (A^{k})_{jj}$

Spectrum of Q: 1) any eigenvalue μ_k is non-negative and smallest $\mu_N = 0$.

2) complexity (number of spanning trees) is $\xi(G) = \frac{1}{N} \prod_{k=1}^{N-1} \mu_k$

3) the second smallest eigenvalue (algebraic connectivity μ_{N-1}) is related to how strongly a graph is connected

TUDelft

Simple SIS model (4)

- Markov theory requires that the infinitesimal generator is a matrix whose elements are NOT random variables
- However, this is not the case in our simple model:

$$q_{1j}(t) = \beta \sum_{k=1}^{N} a_{jk} \mathbf{1}_{\{X_k(t)=1\}}$$

- By conditioning to each possible combination of infected states, we finally arrive to the exact Markov continuous SIS model
- *Drawback*: this exact model has 2^N states, where *N* is the number of nodes in the network.

15

TUDelft

- What is the accuracy of the *N*-intertwined model?
 - due to single approximation of a mean-field type
- Why is this a difficult to determine:
 - exact Markov chain cannot be compute for N > 20
 - · simulations have own "accuracy limits"
 - mathematical derivation (contact networks)
 - assume asymptotic analyses ($N \rightarrow$ infinity)
 - absorbing state is reached with almost zero probability
 - only very few results exist (for specific graphs)

25

TUDelft

Summary (1)

- Epidemic theory can model many processes: information spread, real viruses, storage, emotions in social nets, ...
- Real epidemics: phase transition at τ_c = 1/ λ_1
- The topology plays an important role in spreading
- Networks can be designed to protect individual nodes via its curing strength δ (virus software, fire-wall, etc...). Protection, however, does cost money...
- Epidemic threshold engineering:
 - Degree-preserving *assortative* rewiring increases λ_1 , while degree-preserving *disassortative* rewiring decreases λ_1 .

TUDelft

- Removing links/nodes to maximally decrease λ_1 is NP-hard.

