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Motivation for virus spread in networks 

•  Computer viruses 
•  security threat to Internet 
•  annoyance 
•  very costly 

•  Code Red worm: several billion $$ in damage 

•  Why do we care? 
•  Understanding the spread of a virus is the first step 

in preventing it 
•  How fast do we need to disinfect nodes so that the 

virus dies quickly? Which nodes? 
 

Applications of virus spread models 
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•  Computer virus and worms modelling 

•  Epidemic algorithms 

•  Error propagation in networks 

•  Any self-replicating object on a dynamic 
network 

•  Emotions as infectious diseases in social 
networks 
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History* 
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* “Epidemic modelling – an introduction” – D. J. Daley and J. Gani 

First epidemic model by Bernoulli (1760) 

Homogeneous mixing model (biology) 

Epidemic on a graph (Kephart and White) 
Power-law graphs (Pastor-Satorras and 
Vespignani) 

State of the art of epidemic modeling 
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•  Timing parameters modelling.   
- “Modelling the Effects of Timing Parameters on Virus 
Propagation”  (Y. Wang and C. Wang) 

 
•  Topology influence on epidemic.  

 - “The Effect on Network Topology on the Spread of  
 Epidemic” (Ganesh, Massoulie, Towsley)  
- “Threshold for Virus Spread on Networks” (Draief, Ganesh, 
Massoulie) 

 
•  Percolation and generating function approach. 

 - “The spread of epidemic disease on networks” (Newman) 
 
•  Contact Processes (mathematical theory) 

 - Branch of continuous-time Markov theory (book by Liggett) 
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•  States in which a node can be:  
 - susceptible (S) 
 - infected (I) 
 - incubating 
 - alert 
 - removed (either cured or death)  

•  Time description of the model: 
- continuous-time 
-  discrete-time 

 
•  Focus here is a simple model: 

- a SIS model in continuous time applicable to 
 any network  

  

Spreading process 
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A few graph metrics... 
•  Number of nodes N and links L in a graph G 
•  Degree di of a node i: number of directly linked neighbors 

•  degree distribution of all your first hop neighbors, all second hop neighbors, 
etc... 

•  Hopcount (number of links) of a shortest path between two nodes 
•  Diameter: largest possible hopcount (distance) 
•  k-th level set: number of nodes at hop k in the shortest path tree rooted at 

a node (also called the expansion of G) 

•  Connectivity and number of components (clusters) 
•  strongly connected components 
•  number of cliques (= complete subgraphs Km with m < N) 
•  edge/vertex connectivity: minimum number of links/node whose removal 

disconnects G 

•  Betweenness of a link/node: number of shortest paths between all pair 
of nodes in G that traverses the link/node 

•  ... and many more... 
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Algebraic graph theory 
Any graph G can be represented by an adjacency matrix A and an incidence 

matrix B, and a Laplacian Q 
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A wealth of relations... 
Degree law: ∑

=

=
N

j
j Ld

1
2

Number of k-hop walks between node i and j:   (Ak)ij 

L
N

j
j 2

1

2 =∑
=

λ ∑∑
==

==
N

j
jj

kk
N

j

k
j AATrace

11
)()(λ

Spectrum of A:   1) all eigenvalues lie in the interval (–dmax, dmax]   

0
1

=∑
=

N

j
jλ2) 

Spectrum of Q:  1) any eigenvalue µk is non-negative and smallest µN = 0. 
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3) the second smallest eigenvalue (algebraic connectivity µN-1) 
    is related to how strongly a graph is connected 

Any real symmetric matrix S can be written as  S = X Λ XT , where  X is the orthog. matrix  
with real eigenvectors in the columns and Λ = diag(λ1,...,λN), where λj is the j-th real  
eigenvalue. Eigenvalues can be ordered as  121 λλλλ ≤≤≤≤ − NN
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Simple SIS model (1) 

•  Homogeneous birth (infection) rate β on all edges 
between infected and susceptible nodes 

•  Homogeneous death (curing) rate δ for infected nodes 

Healthy 

β  
 β  

δ  

τ = β /δ : effective spreading rate


Infected 

0 
3 

2 

1 

Infected 
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Simple SIS model (2) 

•  Each node j can be in either of 
the two states: 
•  “0”: healthy 
•  “1”: infected 

•  Markov continuous time: 
•  infection rate β

•  curing rate δ


•  Mathematically: 
•  Xj is the state of node j 
•  infinitesimal generator 
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Simple SIS model (3) 
•  Nodes are interconnected in 

graph: 
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Simple SIS model (4) 

•  Markov theory requires that the infinitesimal generator 
is a matrix whose elements are NOT random variables 

•  However, this is not the case in our simple model: 
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q1 j t( ) = ! a jk1 Xk t( )=1{ }
k=1

N

"

•  By conditioning to each possible combination of 
infected states, we finally arrive to the exact Markov 
continuous SIS model 

•  Drawback: this exact model has 2N states, where N is 
the number of nodes in the network.  

0000 
0 

0001 
1 

0010 
2 

0100 
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1000 
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12 
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15 

1110 
14 

2N states! 

Exact SIS model 
N = 4 nodes 

Absorbing state 



9


Simple SIS model (5): mean field 
•  The infinitesimal generator 
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•  Being able now to apply ordinary Markov theory, we arrive at our 

  N-intertwined model for virus spread 
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vk t( ) = Pr Xk t( ) =1[ ]where 

N-intertwined virus spread model 

•  Non-linear matrix equation: 
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dV t( )
dt

= !A.V t( ) " diag vi t( )( ) !A.V t( ) + #u( )
where the vector uT =[1 1 ... 1] and VT = [v1 v2 ... vN] 

•  Results: 
•  Probability of infection vk for each node k separately 
•  Number of infected nodes in the steady state 
•  Phase transition phenomena for any network (largest eigenvalue  

 of the adjacency matrix A) 
•  Analytic computations feasible: 

•  expansions of vk as a function of the effective infection rate 
  around the epidemic threshold and around infinity  

P. Van Mieghem, J. Omic, R. E. Kooij, “Virus Spread in Networks”, 
IEEE/ACM Transaction on Networking, Vol. 17, No. 1, pp. 1-14, (2009). 
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Simulations 
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500 simulations 
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Kephart-White model 
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Assume perfect homogeneity & symmetry: a graph of degree r 
dv
dt
= (1! v)!rv!"v

steady-state 

v =1! 1
r! ! =

"
#

where 

threshold 

! ! ! c =
1
r then v ! 0

J. O. Kephart and S. R. White, “Directed-graph epidemiological models of computer  
viruses,” Proc. IEEE Comput. Soc. Symp. Research in Security  
and Privacy, May 1991, pp. 343–359. 
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Comparison with simulation 
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What is so interesting about epidemics? 

22 

 
•  Final epidemic state  

•  Rate of propagation  

•  Epidemic threshold 

β : infection rate per link 

δ : curing rate per node 

τ= β/ δ  : effective spreading 

              rate 
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N
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Application example: distributed storage 

•  each network node reserves memory space for other 
nodes 

•  each node spreads own files with rate β  
•  each node deletes files from neighbors with rate δ  

23 

 

! = "
#

> ! c = 1
$1(A)

Then your file is stored at node j in the network with 
probability vj > 0  

Mean-field approximation 

1 0 

q1;j 

δ
1 0 

δ

E[q1;j] 

•  2N linear equations 
•  Steady-state 

•  absorbing (healthy) state 
•  reached after unrealistically  

long time 
•  difficult to analyze 

•  N non-linear equations 
•  Meta-stable state: 

•  phase-transition 
•  epidemic threshold 
•  realistic 

•  analytically tractable 
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Open question 

•  What is the accuracy of the N-intertwined model? 
•  due to single approximation of a mean-field type 

•  Why is this a difficult to determine: 
•  exact Markov chain cannot be compute for N > 20 
•  simulations have own "accuracy limits" 
•  mathematical derivation (contact networks)  

•  assume asymptotic analyses (N  infinity) 
•  absorbing state is reached with almost zero 

probability 
•  only very few results exist (for specific graphs) 

25 
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Heterogeneous virus spread 
•  The N-intertwined model is extended to a hetergeneous 

setting: 

27 

where the curing rate vector CT = [δ1 δ2 ... δN] 

 

dV t( )
dt

= Adiag ! i( )V t( ) " diag vi t( )( ) Adiag ! i( )V t( ) + C( )

•  Results: 
•  Extended multi-dim. threshold for virus spread 
•  Generalized Laplacian that extends the classical Laplacian of a 

 graph: 
 
•  Strong convexity vk with respect to δk, concave with respect to others  

 δj (j different from k).  
•  Choose C vector in network protection via game theory 

 

Q qk( ) = diag qk( ) ! A

- J. Omic, P. Van Mieghem, and A. Orda, “Game Theory and Computer Viruses”, IEEE Infocom09. 
- P. Van Mieghem and J. Omic, “In-homogeneous Virus Spread in Networks”, 
   TUDelft report (see my website) 

Extension of the N-intertwined model 

•  SAIS instead of SIS: 
•  From 2 states (Infected and Susceptible) to a 3-

states (Infected, Susceptible, Alert) 
•  "Epidemic Spread in Human Networks", F. Darabi Sahneh and C. 

Scoglio, 50th IEEE Conf. Decision and Contol, Orlando, Florida (2011) 

•  SIR instead of SIS: 
•  "R" state for "removed" 
•  "An individual-based approach to SIR epidemics in contact networks", 

M. Youssef and C. Scoglio, Journal of Theoretical Biology 283, pp. 
136-144, (2011). 

 
  

28 



15


 

g 

%
 c

ou
pl

ed
 

100 

0 

 

gc !
2

"f# (0)$1(A)

Coupled oscillators (Kuramoto model) 
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θk


 

˙ ! k = "k + g akj sin ! j #!k( )
j=1

N

$

natural frequency 
coupling strength 

Interaction equals sums of sinus of phase 
difference of each neighbor: 

J. G. Restrepo, E. Ott, and B. R. Hunt. Onset of synchronization in large  
networks of coupled oscillators, Phys. Rev. E, vol. 71, 036151, 2005   
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Transformation  
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s = 1
!

Viral Conductance: definition 

32 

! = y!(s)ds
0

"1

"

!1 =
1
" c

R. E. Kooij, P. Schumm,  C. Scoglio and M. Youssef, "A new metric for 
robustness of networks with respect to virus spread", IFIP Networking 2009 
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Viral Conductance: properties 

33 

M. Youssef, R. E. Kooij and C. Scoglio, "Viral conductance: Quantifying the 
robustness of networks with respect to spread of epidemics", Journal of 
computational science, to appear 2011  

! = y!(s)ds
0

"1

"
Bounds: 1

2
dmin !! ! 1

2
"1

Viral Robustness metrics: ! c,!( )

Some analytic evaluations: 

! regular =
d
2

! Km,n
= mn ! mn

m + n
+
n !m( )
m + n

log
1+ n

m( )m
1+ m

n( )n

K2,4

What are the graphs with maximum and minimum ψ ? 

Preferential Attachment nets with 
E[D]=<k>=  4, 6, 8, and 10 



18


Watts-Strogatz nets with <k>=4 and  0 1p≤ ≤

Introduction & Definitions 

The N-intertwined model for virus spread 

Extensions 

Viral Conductance 

Modifying the epidemic threshold 

Summary 

Outline 



19


Affecting the epidemic threshold 

•  Degree-preserving rewiring 
•  Changing the assortativity of the graph 
•  Van Mieghem, P., H. Wang, X. Ge, S. Tang and F. A. Kuipers, 2010, 

"Influence of Assortativity and Degree-preserving Rewiring on the Spectra of 
Networks", The European Physical Journal B, vol. 76, No. 4, pp. 643-652. 

•  Removing links/nodes (optimal way is NP-complete) 
•  Van Mieghem, P., D. Stevanovic, F. A. Kuipers, C. Li, R. van de Bovenkamp, 

D. Liu and H. Wang, 2011,
"Decreasing the spectral radius of a graph by link removals", Physical Review 
E, Vol. 84, No. 1, July, p. 016101. 

•  Quarantining: Removing inter-module links 
•  Omic, J., J. Martin Hernandez and P. Van Mieghem, 2010, "

Network protection against worms and cascading failures using modularity 
partitioning", 22nd International Teletraffic Congress (ITC 22), September 
7-9, Amsterdam, Netherlands. 
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Summary (1) 
• Epidemic theory can model many processes: information 

spread, real viruses, storage, emotions in social nets, ...  
• Real epidemics: phase transition at τc = 1/λ1  
• The topology plays an important role in spreading 
• Networks can be designed to protect individual nodes via its 

curing strength δ (virus software, fire-wall, etc...). Protection, 
however, does cost money... 

• Epidemic threshold engineering: 

• Degree-preserving assortative rewiring increases λ1, while 
degree-preserving disassortative rewiring decreases λ1. 

• Removing links/nodes to maximally decrease λ1 is NP-
hard. 
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Summary (2) 

•  Agenda for future research: 
•  accuracy of N-intertwined model, i.e. of the mean-

field approximation 
•  coupling of the virus spread process and the 

underlying topology 
•  most general extensions of the N-intertwined model 

(to m > 2 states per node) 
•  Multiple, simultaneous viruses on a network 

40 
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Books 

Articles:   http://www.nas.ewi.tudelft.nl 

 
IWSOS 2012 in Delft: March 15-16  
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