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Motivation for virus spread in networks

» Computer viruses
* security threat to Internet
¢ annoyance

* very costly
» Code Red worm: several billion $$ in damage

» Why do we care?
» Understanding the spread of a virus is the first step
in preventing it

» How fast do we need to disinfect nodes so that the
virus dies quickly? Which nodes?
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Applications of virus spread models

Computer virus and worms modelling
Epidemic algorithms
Error propagation in networks

» Any self-replicating object on a dynamic
network

Emotions as infectious diseases in social
networks
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History*

First epidemic model by Bernoulli (1760)
Homogeneous mixing model (biology)

Epidemic on a graph (Kephart and White)

Power-law graphs (Pastor-Satorras and
Vespignani)
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* “Epidemic modelling — an introduction” — D. J. Daley and J. Gani
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State of the art of epidemic modeling

* Timing parameters modelling.
- “Modelling the Effects of Timing Parameters on Virus
Propagation” (Y. Wang and C. Wang)

» Topology influence on epidemic.
- “The Effect on Network Topology on the Spread of
Epidemic” (Ganesh, Massoulie, Towsley)
- “Threshold for Virus Spread on Networks” (Draief, Ganesh,
Massoulie)

* Percolation and generating function approach.
- “The spread of epidemic disease on networks” (Newman)

» Contact Processes (mathematical theory)
- Branch of continuous-time Markov theory (book by Liggett)
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Spreading process

« States in which a node can be:

- susceptible (S)

- infected (1)

- incubating

- alert

- removed (either cured or death)
» Time description of the model:

- continuous-time

- discrete-time

* Focus here is a simple model:
- a SIS model in continuous time applicable to
any network
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A few graph metrics...

e Number of nodes N and links L in a graph G
» Degree d;of a node i: number of directly linked neighbors
» degree distribution of all your first hop neighbors, all second hop neighbors,
etc...
« Hopcount (number of links) of a shortest path between two nodes
» Diameter: largest possible hopcount (distance)
* k-th level set: number of nodes at hop k in the shortest path tree rooted at
a node (also called the expansion of G)
* Connectivity and number of components (clusters)
« strongly connected components
» number of cliques (= complete subgraphs K, with m < N)
* edge/vertex connectivity: minimum number of links/node whose removal
disconnects G
+ Betweenness of a link/node: number of shortest paths between all pair
of nodes in G that traverses the link/node
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Algebraic graph theory
Any graph G can be represented by an adjacency matrix A and an incidence
matrix B, and a Laplacian Q
N=6 0.1 1 0 0 1]
1 6.1 0 1 1
1 e 1 0 0f
Av=lo 0 10 1 o]~
01 0 1\(1\1
0] 110010
0 0 ) )
s |0 0 0 Q=BB" =A-4
M lo o 00 0 ,
A=diag(d, d, ... d)
0 0 0 -1
L [0 0 1 I [ e—
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A wealth of relations...
N
Degree law: d, =2L
Number of k-hop walks between node i and j:  (A¥);

Any real symmetric matrix .S can be written as S X AXT, where Xis the orthog. matrix
with real eigenvectors in the columns and A . is the j-th real
eigenvalue. Eigenvalues can be ordered as

Spectrum of 4: 1) all eigenvalues lie in the interval (—d,,,, d..]
N N N N
k k k
2)2/1:0 A =2L A =Trace(A") =) (4,
Spectrum of Q: 1) any eigenvalue w, is non-negative and smallest uy = 0.
2) complexity (number of spanning trees) is &(G =y H W,

3) the second smallest eigenvalue (algebraic connectivity py.,)

is related to how stronili a «iraih is connected
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Simple SIS model (1)

« Homogeneous birth (infection) rate g on all edges
between infected and susceptible nodes

« Homogeneous death (curing) rate ¢ for infected nodes

T = /0 : effective spreading rate
Healthy

Infected a Infected
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Simple SIS model (2)

» Each node j can be in either of B
the two states:
« “0”: healthy 0 0
e “1”: infected

* Markov continuous time:
« infection rate f
e curing rate d

» Mathematically:

* X;is the state of node j
. |nf|n|te5|mal generator Q,(1)= { VR J:{ %, ‘111}
q2] _qu 5 —
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Simple SIS model (3)

* Nodes are interconnected in
ORRS
=, 4;
o ’

where the infection rate is due all infected neighbors

of node j:
91 j ﬁza j {x
and where the adJacency matrix of the graph is
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Simple SIS model (4)

» Markov theory requires that the infinitesimal generator
is @ matrix whose elements are NOT random variables

» However, this is not the case in our simple model:
N
a,(t)= ﬁzajkl{xk(,)=1}
k=1

» By conditioning to each possible combination of
infected states, we finally arrive to the exact Markov
continuous SIS model

» Drawback: this exact model has 2V states, where N is
the number of nodes in the network.
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Exact SIS model Absorbing state
N = 4 nodes

2N states!
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Simple SIS model (5): mean field

» The infinitesimal generator

N
0,(1) :{_Z” L_I'jJ q,;(1)= ﬁzajkl{xk(z)=1}

k=1

is replaced by its mean (the only approximation!)
N

o101 #ludl el 0] -pZa, P ix0-1)
- k=1

* Being able now to apply ordinary Markov theory, we arrive at our
N-intertwined model for virus spread

dv <

_lz(l_vl)ﬂzalkvk_(svl

dt e

%=(1_Vz)ﬁza2kvk_6vz where v, (1) =Pr[X,(r)=1]

.k=1

" i e
—X =(1-v,)BD.ayv,—Ov s
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N-intertwined virus spread model

» Non-linear matrix equation:
d‘;—ft) = AV (1) diag(v,(1))(BAY (1) + &)

where the vector u™ =[1 1 ... 1] and VT = [v; V, ... V}]

* Results:

+ Probability of infection v, for each node k separately

* Number of infected nodes in the steady state

* Phase transition phenomena for any network (largest eigenvalue
of the adjacency matrix A)

* Analytic computations feasible:
» expansions of v, as a function of the effective infection rate

around the epidemic threshold and around infinity

P. Van Mieghem, J. Omic, R. E. Kooij, “Virus Spread in Networks”, ,‘
IEEE/ACM Transaction on Networking, Vol. 17, No. 1, pp. 1-14, (2009). TU Delft




Simulations
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Kephart-White model

Assume perfect homogeneity & symmetry: a graph of degree r

dv &
—L=(- Vl)ﬁEalka -0y,
dt pt

dV N /
—Z=(1- vz)ﬁza“vk -ov,
k=1

dt

dv u
TtN = (1=v)B D ayy, - vy

k=1

J. O. Kephart and S. R. White, "Directed-graph epidemiological mod
viruses,” Proc. IEEE Comput. Soc. Symp. Research in Security

and Privacy, May 1991, pp. 343-359.

dv
- -5
” (1-v)prv-2o6v
l steady-state
1
v=1-— " where ‘L’=é
rt o
l threshold
T=2T.=— then v=0
r

e(I;«of computer
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Comparison with simulation
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What is so interesting about epidemics?
B  infecton rate per lnk RN
d : curing rate per node E
1=/ 8 : effective spreading . 08 E
rate 2 E
a ]
B 06 3
3 ]
k= 7
s ;
* Final epidemic state £ °* Regulargraphs |
3 with degree d e
= o d=2 3
. i —m-d=35 ]
Rate of propagation 02 T E
« Epidemic threshold E
1 0.0 D P N I B B =
T,=—— 0.0 3 1.0 15 2.0 25 3.0
2'I(A) Effective infection rate T
2L 4
E|D|=—<A(A)<d
[Pl=7y = AA) <, TUDelft
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Application example: distributed storage

» each network node reserves memory space for other
nodes

» each node spreads own files with rate g
« each node deletes files from neighbors with rate 6

T=E>T:;
1 57T AW

Then your file is stored at node j in the network with
probability v, > 0
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Mean-field approximation

qi;

I
« 2Vlinear equations | » N non-linear equations
+ Steady-state ! » Meta-stable state:
+ absorbing (healthy) state |  phase-transition

I

» reached after unrealistically  epidemic threshold
long time ! + realistic
« difficult to analyze | « analytically tractable
2
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Open question

« What is the accuracy of the N-intertwined model?
 due to single approximation of a mean-field type
» Why is this a difficult to determine:
 exact Markov chain cannot be compute for N > 20
 simulations have own "accuracy limits"
» mathematical derivation (contact networks)
» assume asymptotic analyses (N - infinity)

« absorbing state is reached with almost zero
probability

« only very few results exist (for specific graphs)

e
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Heterogeneous virus spread

» The N-intertwined model is extended to a hetergeneous
setting:

det) = Adiag(B,)V (1)~ diag(v,(1))(Adiag(B)V (1) + C)

where the curing rate vector C" = [§, 6, ... 6]

* Results:
» Extended multi-dim. threshold for virus spread
» Generalized Laplacian that extends the classical Laplacian of a

raph:
P Q(Qk):diag(Qk)_A
» Strong convexity v, with respect to §,, concave with respect to others
g, (J different from k).
» Choose C vector in network protection via game theory

- J. Omic, P. Van Mieghem, and A. Orda, “Game Theory and Computer Viruses”, JEEE Infocom09.
- P. Van Mieghem and J. Omic, “In-homogeneous Virus Spread in Networks”,

TUDelft report (see my website) TU Delft

Extension of the N-intertwined model

e SAIS instead of SIS:

» From 2 states (Infected and Susceptible) to a 3-

states (Infected, Susceptible, Alert)

¢ "Epidemic Spread in Human Networks", F. Darabi Sahneh and C.
Scoglio, 50t IEEE Conf. Decision and Contol, Orlando, Florida (2011)

» SIR instead of SIS:

« "R" state for "removed"

« "An individual-based approach to SIR epidemics in contact networks",
M. Youssef and C. Scoglio, Journal of Theoretical Biology 283, pp.
136-144, (2011).
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Coupled oscillators (Kuramoto model)

Interaction equals sums of sinus of phase
difference of each neighbor:

N
6, =, + gZakj sin(Gj - Gk)
j=1

coupling strength
natural frequency

2
7, (0)A,(A)

% coupled

8.

J. G. Restrepo, E. Ott, and B. R. Hunt. Onset of synchronization in large 4
networks of coupled oscillators, Phys. Rev. E, vol. 71, 036151, 2005 TU Delft
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Viral Conductance: definition
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fraction y(s) of infected nodes

0.2

0.0

0 2 4 6 8 10 12
s=1/t

R. E. Kooij, P. Schumm, C. Scoglio and M. Youssef, "A new metric for
robustness of networks with respect to virus spread”, IFIP Networking 2009 TU D elf.t

16



3
Viral Conductance: properties v =|y.(s)ds
0
Bounds: %dmm SWS%A
Viral Robustness metrics:  (7,.¥)
What are the graphs with maximum and minimum y ?

Some analytic evaluations:

_d K,
ll/regular - 5

N oL +(n—m)log(1+\/%)m
m+n m+n 1+\/%"

M. Youssef, R. E. Kooij and C. Scoglio, "Viral conductance: Quantifying the (‘
robustness of networks with respect to spread of epidemics"”, Journal of TU D elft
computational science, to appear 2011

Vi, =
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Affecting the epidemic threshold

» Degree-preserving rewiring

» Changing the assortativity of the graph

* Van Mieghem, P., H. Wang, X. Ge, S. Tang and F. A. Kuipers, 2010,
"Influence of Assortativity and Degree-preserving Rewiring on the Spectra of
Networks", The European Physical Journal B, vol. 76, No. 4, pp. 643-652.

» Removing links/nodes (optimal way is NP-complete)

* Van Mieghem, P., D. Stevanovic, F. A. Kuipers, C. Li, R. van de Bovenkamp,
D. Liu and H. Wang, 2011,
"Decreasing the spectral radius of a graph by link removals", Physical Review
E, Vol. 84, No. 1, July, p. 016101.

 Quarantining: Removing inter-module links

¢ Omic, J., J. Martin Hernandez and P. Van Mieghem, 2010, "
Network protection against worms and cascading failures using modularity
partitioning", 22nd International Teletraffic Congress (ITC 22), September
7-9, Amsterdam, Netherlands.
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Summary (1)

 Epidemic theory can model many processes: information
spread, real viruses, storage, emotions in social nets, ...

* Real epidemics: phase transition at T, = 1/A;
* The topology plays an important role in spreading

* Networks can be designed to protect individual nodes via its
curing strength 6 (virus software, fire-wall, etc...). Protection,
however, does cost money...

+ Epidemic threshold engineering:

* Degree-preserving assortative rewiring increases A, while
degree-preserving disassortative rewiring decreases A;.

* Removing links/nodes to maximally decrease A, is NP-

hard.
R
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Summary (2)

» Agenda for future research:

 accuracy of N-intertwined model, i.e. of the mean-
field approximation

« coupling of the virus spread process and the
underlying topology

» most general extensions of the N-intertwined model
(to m > 2 states per node)

» Multiple, simultaneous viruses on a network
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