
A Graph Partitioning Game for Distributed Simulation of
Networks

Aditya Kurve, Christopher
Griffin, David Miller and

George Kesidis

The Pennsylvania State University

Sept 9, 2011

Introduction Background Problem Setup Iterative Refinement Steps Software Simulator Platform Future Work Summary

Outline

1 Introduction

2 Background

3 Problem Setup

4 Iterative Refinement Steps

5 Software Simulator Platform

6 Future Work

7 Summary

— A Graph Partitioning Game for Distributed Simulation of Networks 2/40

Introduction Background Problem Setup Iterative Refinement Steps Software Simulator Platform Future Work Summary

Outline

1 Introduction

2 Background

3 Problem Setup

4 Iterative Refinement Steps

5 Software Simulator Platform

6 Future Work

7 Summary

— A Graph Partitioning Game for Distributed Simulation of Networks 3/40

Introduction Background Problem Setup Iterative Refinement Steps Software Simulator Platform Future Work Summary

Definitions and Terminology

• Network Model: This is the simulation model of the network under study. The
nodes represent routers, autonomous systems, buffers, clients, servers... etc.

• Machines: Refers to the hosts or processors or computers that are part of the
simulator hardware.

• Logical Process

◦ Logical Process (LP) : Fundamental unit of execution which runs in
parallel and shares a machine with other LPs.

◦ Every LP has a set of variable that define its state.
◦ Controls these local variables and communicates with other LPs via

messages.
◦ Model each node in simulated network model as one LP (commonly

used method).

• What makes this problem different from the well-known graph partitioning

problem?

1 Graph properties (Node and edge weights) are not known a priori.
2 Graph properties change as simulation progresses.

— A Graph Partitioning Game for Distributed Simulation of Networks 4/40

Introduction Background Problem Setup Iterative Refinement Steps Software Simulator Platform Future Work Summary

Desired Features for the Partitioning Algorithm

• Involves all machines (exploit parallelism of machines).

• Uses distributed approach for partitioning (with minimal global information i.e.,
mainly local information exchanged among machines).

• Should converge to an equilibrium solution that is optimal in some sense if the
simulation task is static.

• Iteratively improves partition with the dynamics of the graph of LPs (avoid
complete refresh each time).

— A Graph Partitioning Game for Distributed Simulation of Networks 5/40

Introduction Background Problem Setup Iterative Refinement Steps Software Simulator Platform Future Work Summary

Outline

1 Introduction

2 Background

3 Problem Setup

4 Iterative Refinement Steps

5 Software Simulator Platform

6 Future Work

7 Summary

— A Graph Partitioning Game for Distributed Simulation of Networks 6/40

Introduction Background Problem Setup Iterative Refinement Steps Software Simulator Platform Future Work Summary

Distributed Network Simulation

• Represent each node in a simulated network by a logical process (LP) giving a
graphical model of LPs.

• Two types of synchronization between LPs operating in parallel:

• Conservative Synchronization: LPs follow time causality strictly.

• Each link ensures that messages are sent in the order of their time stamps.

• Optimistic Synchronization: LP processes events ahead of time without any
kind of assurance.

• In case it receives an event time stamped lower, it roll backs in time.

• Balancing Load among machines.

— A Graph Partitioning Game for Distributed Simulation of Networks 7/40

Introduction Background Problem Setup Iterative Refinement Steps Software Simulator Platform Future Work Summary

Centralized Graph Partitioning Problem

• Given a graph G = (V ,E) where V is the set of nodes and E is the set of
edges, suppose the nodes and the edges are weighted and let wi represent the
weight of the i th node and let Cij represent the weight of edge (i , j).

• The K -way graph partitioning problem aims to find K subsets of V ,

V1,V2, ..,VK such that Vi ∩ Vj = ∅ ∀ i , j and
⋃K

i=1 = V ,
∑

j∈Vi
wj =

∑
k wk

K
∀ j

and the sum of the weights of edges whose incident vertices belong to different
subsets is minimized. NP-complete.

• Some heuristics:

◦ Spectral bisection methods [Pothen et al. 1990]:
◦ Geometric Methods for special graphs.
◦ Multilevel Partitioning [Karypis 1996]:

• Coarsen the graph → partition → uncoarsen with refinement.
• Use Kernighan-Lin method for refinement.

• Mostly centralized and do not give incrementally improvement steps: May not
be suitable for dynamic graphs.

— A Graph Partitioning Game for Distributed Simulation of Networks 8/40

Introduction Background Problem Setup Iterative Refinement Steps Software Simulator Platform Future Work Summary

Our local strategies for iterative improvement

• Machines own nodes (LPs).

• Node by node exchange for improving upon existing partition.

• We’ll describe two criteria for node transfer:

1 Framework 1: Start with local cost function.
• Design local cost for each node i as Ci .
• Prove existence of Nash Equilibrium in pure strategies.
• Prove convergence for synchronized iterative improvement by finding an

energy function C0 decreasing with the iterative improvements.

2 Framework 2: Start with global cost function.
• Define a global cost function C̃0.
• Derive a local cost C̃i at each node i from the global cost function C̃0.
• All the local minima of C̃0 are the Nash equilibrium points and C̃0 is the

energy function of the game.

• Note that C̃i 6= Ci .

• Both have comparable communication overhead needed for exchange of local
information which is scalable since it is at machine-level and not at node-level.

• We compare simulation time for the two approaches.

— A Graph Partitioning Game for Distributed Simulation of Networks 9/40

Introduction Background Problem Setup Iterative Refinement Steps Software Simulator Platform Future Work Summary

Game Theoretic Approach

• Selfish Load Balancing:

◦ Existing “Algorithmic Game Theory” approaches form a game where
tasks (LPs) choose their machines.

◦ Objective: To minimize the maximum load across machines.
◦ Typically, communication costs (correlated with the threat of rollback)

are not considered.

• Our Approach:

◦ Factor inter-machine communication cost, so more general graph
partitioning instead of load balancing.

◦ We use different objective (cost) function for each node.
◦ Local cost that decreases in a Lyapunov/energy/potential function.
◦ Local cost can be calculated using local parameters (at machine level).

— A Graph Partitioning Game for Distributed Simulation of Networks 10/40

Introduction Background Problem Setup Iterative Refinement Steps Software Simulator Platform Future Work Summary

Outline

1 Introduction

2 Background

3 Problem Setup

4 Iterative Refinement Steps

5 Software Simulator Platform

6 Future Work

7 Summary

— A Graph Partitioning Game for Distributed Simulation of Networks 11/40

Introduction Background Problem Setup Iterative Refinement Steps Software Simulator Platform Future Work Summary

Problem Setup

• A connected graph G = (V ,E) and K machines.

• bi represent the computational load of i th node.

• cij denote the cost of communicating over the edge (i , j).

• G is to be partitioned between K machines.

• wk be the normalized capacity/speed of the k th machines so that
∑

k wk = 1.

• Formulate game with machines as players [CAMAD11].

• Game with nodes as players: Each node chooses a machines based on a cost
function.

— A Graph Partitioning Game for Distributed Simulation of Networks 12/40

Introduction Background Problem Setup Iterative Refinement Steps Software Simulator Platform Future Work Summary

What cost function should a node use?

• N nodes and K machines. Let ri ∈ {1, 2, ...K} be the machines chosen by the
i th node.

— A Graph Partitioning Game for Distributed Simulation of Networks 13/40

Introduction Background Problem Setup Iterative Refinement Steps Software Simulator Platform Future Work Summary

What cost function should a node use?

• N nodes and K machines. Let ri ∈ {1, 2, ...K} be the machines chosen by the
i th node.

— A Graph Partitioning Game for Distributed Simulation of Networks 14/40

Introduction Background Problem Setup Iterative Refinement Steps Software Simulator Platform Future Work Summary

What cost function should a node use?

• N nodes and K machines. Let ri ∈ {1, 2, ...K} be the machines chosen by the
i th node.

— A Graph Partitioning Game for Distributed Simulation of Networks 15/40

Introduction Background Problem Setup Iterative Refinement Steps Software Simulator Platform Future Work Summary

What cost function should a node use?

• N nodes and K machines. Let ri ∈ {1, 2, ...K} be the machines chosen by the
i th node.

— A Graph Partitioning Game for Distributed Simulation of Networks 16/40

Introduction Background Problem Setup Iterative Refinement Steps Software Simulator Platform Future Work Summary

What cost function should a node use?

• N nodes and K machines. Let ri ∈ {1, 2, ...K} be the machines chosen by the
i th node.

— A Graph Partitioning Game for Distributed Simulation of Networks 17/40

Introduction Background Problem Setup Iterative Refinement Steps Software Simulator Platform Future Work Summary

What cost function should a node use?

• N nodes and K machines. Let ri ∈ {1, 2, ...K} be the machines chosen by the
i th node.

• µ is the relative weight given to the inter-machine communication compared to
computation. For remotely connected machines, it might be large.

— A Graph Partitioning Game for Distributed Simulation of Networks 18/40

Introduction Background Problem Setup Iterative Refinement Steps Software Simulator Platform Future Work Summary

Nash equilibrium for the game

• A strategy profile r = (r∗1 , r
∗
2 , ..., r

∗
N) is a Nash equilibrium iff

Ci (r
∗
i , r
∗
−i) ≤ Ci (ri , r

∗
−i) ∀ri ∈ {1, 2, ...,K} ∀i .

• Theorem

For the game described above, a Nash equilibrium exists in pure strategies.

• The solution to the optimization problem

min
r

C0(r) :=
∑
i

(
bi
wri

∑
j :rj=ri
j 6=i

bj +
µ

2

∑
j :rj 6=ri

cij

)
.

is also a Nash equilibrium for the game.

• C0 is the sum of the costs of all the nodes interpreted as “social welfare”
function.

— A Graph Partitioning Game for Distributed Simulation of Networks 19/40

Introduction Background Problem Setup Iterative Refinement Steps Software Simulator Platform Future Work Summary

Proof Sketch

• We prove that when the node changes machines to improve its cost, the value
of C0(r) decreases.

• Hence our assumption that it is solution to optimization problem is wrong.

C0(r) =C0(r|i = l) + C0(r|i 6= l , ri = k1) + C0(r|i 6= l , ri = k2)

+ C0(r|i 6= l , ri 6= k1, ri 6= k2)

• Suppose there exists a better assignment r∗l 6= r̂l for a node l , i.e., the l th node
can decrease its cost by moving from r̂l machines to r∗l machines. Then the
new assignment vector is r∗ = (r∗1 , r

∗
2 , ..., r

∗
N) and Cl(r∗)− Cl (̂r) < 0.

C0(r∗)− C0(̂r) =C0(r∗|i = l)− C0(̂r|i = l)+

+ C0(r∗|i 6= l , r∗i 6= r̂l , r
∗
i 6= r∗l)− C0(̂r|i 6= l , r̂i 6= r̂l , r̂i 6= r∗l)

+ C0(r∗|i 6= l , r∗i = r̂l)−Ψ(̂r|i 6= l , r̂i = r̂l)

+ C0(r∗|i 6= l , r∗i = r∗l)−Ψ(̂r|i 6= l , r̂i = r∗l)

— A Graph Partitioning Game for Distributed Simulation of Networks 20/40

Introduction Background Problem Setup Iterative Refinement Steps Software Simulator Platform Future Work Summary

Outline

1 Introduction

2 Background

3 Problem Setup

4 Iterative Refinement Steps

5 Software Simulator Platform

6 Future Work

7 Summary

— A Graph Partitioning Game for Distributed Simulation of Networks 21/40

Introduction Background Problem Setup Iterative Refinement Steps Software Simulator Platform Future Work Summary

Initial Partitioning

• Initial node to host assignment with connected partitions.

◦ Each machine identifies a unique node called focal node.
◦ Random hop-by-hop expansion from the focal node.
◦ At this time nodes and edge weights are not known.

• Finding focal nodes

◦ Idea: Focal nodes should be as far apart as possible (geodesic
distance).

◦ For a random graph, find focal nodes with mean minimum distance
between any two pairs of focal nodes being N |V |

K
the mean number of

hops that cover |V |K nodes, then the partitions will be more or less
equal.

◦ So if F = {f1, f2, ..., fK} is the set of focal nodes, then we ideally want

F = arg max
H⊆V s.t. |H|=K

min
h,l∈H:l 6=h

dG (h, l),

where dG is the geodesic distance between the two nodes.

— A Graph Partitioning Game for Distributed Simulation of Networks 22/40

Introduction Background Problem Setup Iterative Refinement Steps Software Simulator Platform Future Work Summary

Local and Synchronous Iterative Partition Refinements

• Considering dynamic graph of LPs, iterative improvements to correct the load
imbalances at regular time intervals instead of a complete refresh of the
partition.

• Each machine takes turns to decide the “most dissatisfied” node in its partition
and transfers its ownership to a new machine.

• Dissatisfaction of the i th node defined as

=(i) = Ci (ri)−min
k

Ci (k)

• The most dissatisfied node with a machine is the one with maximum value of =.

• = = 0 for the most dissatisfied node, then the machine forsakes its turn.

• When all the machines have most dissatisfied nodes with = = 0 then the
algorithm has converged.

— A Graph Partitioning Game for Distributed Simulation of Networks 23/40

Introduction Background Problem Setup Iterative Refinement Steps Software Simulator Platform Future Work Summary

Inter-machine communication overhead for calculating
=(i)

• To calculate mink Ci (k) we need to know the sum of weights of nodes at other
machines

∑
j :rj=k
j 6=i

bj =
∑

j :rj=k bj .

• Do not need to know the allocation for each node, i.e., no communication
overhead at node-level.

• Note that the amount of packets exchanged to synchronize this parameter
defining aggregate “state” scales linearly with the number of machines and is
constant with respect to the number of nodes.

• Synchronization cost is independent of the size of simulated network model
graph.

• Every iterative step followed with synchronization between machines.

— A Graph Partitioning Game for Distributed Simulation of Networks 24/40

Introduction Background Problem Setup Iterative Refinement Steps Software Simulator Platform Future Work Summary

Convergence of Algorithm

• Suppose the l th node is transferred from its current allocated machines rl to a
new machines r∗l . Call the new assignment vector r∗. Then obviously,

Cl(r∗)− Cl(r) < 0.

• We can show from the theorem of existence of Nash equilibrium,

C0(r∗)− C0(r) = 2
(
Cl(r∗)− Cl(r)

)
< 0

• Hence for every iterative step the potential function C0(r) decreases.

• Bounded nature of solution to the combinatorial optimization problem, and so
achievable lower bound exists.

— A Graph Partitioning Game for Distributed Simulation of Networks 25/40

Introduction Background Problem Setup Iterative Refinement Steps Software Simulator Platform Future Work Summary

Defining centralized cost: An alternative cost
framework

• We now give an alternative cost framework.

• Centralized Partitioning Cost:

min C̃0 =
K∑

k=0

(∑
j∈V xkjbj

wk
−
∑
j

bj

)2

+
µ

2

∑
i,j

cijxki (1− xkj)

subject to
∑
k

xkj = 1 ∀ j and xkj ∈ {0, 1} ∀ k, j .

• May not be convex depending on the graph topology.

— A Graph Partitioning Game for Distributed Simulation of Networks 26/40

Introduction Background Problem Setup Iterative Refinement Steps Software Simulator Platform Future Work Summary

Improving cost: one node at a time

• Suppose a node i is moved from machine m to machine n.

• Let C̃0
new

be the new value of cost function.

• We can show that

C̃0 − C̃0
new

=
(b2

i

w 2
m

+
2bi
w 2

m

∑
j :rj=m
j 6=i

bj −
2bi
wm

∑
j

bj
)
−
(b2

i

w 2
n

+
2bi
w 2

n

∑
j :rj=n
j 6=i

bj −
2bi
wn

∑
j

bj
)

• So we can define a new cost function for each node as:

C̃i (ri , r−i) =
b2
i

w 2
ri

+
2bi
w 2

ri

∑
j :rj=ri
j 6=i

bj −
2bi
wri

∑
j

bj

• Nash equilibrium exists and is stable: All the local minima of C̃0 are Nash
equilibria for the game with this node cost function and are stable.

— A Graph Partitioning Game for Distributed Simulation of Networks 27/40

Introduction Background Problem Setup Iterative Refinement Steps Software Simulator Platform Future Work Summary

Comparing the iterative refinement at equilibria with
the two cost frameworks
• We used NetLogo (multi-agent simulation software) to create random graph of

230 nodes representing graph of LPs to be divided into 5 partitions.

• We randomly generated node and edge weights each with a mean 5.

• The normalized machine speed (wk) were 0.1, 0.2, 0.3, 0.3, 0.1 and µ = 8.

• The degree of each node varied from 3 to 6 randomly.

• Convergence when no more improvement in C0 (or C̃0).

— A Graph Partitioning Game for Distributed Simulation of Networks 28/40

Introduction Background Problem Setup Iterative Refinement Steps Software Simulator Platform Future Work Summary

Observations: Comparison of two cost frameworks

• For all trials, C̃0 does better under Ci refinement and so does C0.

• Hence the two cost frameworks are inherently different.

• Also when iterating:

◦ using Ci , C̃0 may not monotonically decrease.
◦ using C̃i , C0 may not monotonically decrease.

• Hence iterative improvement using Ci gives better steady state values not just
for C0 but also for C̃0.

— A Graph Partitioning Game for Distributed Simulation of Networks 29/40

Introduction Background Problem Setup Iterative Refinement Steps Software Simulator Platform Future Work Summary

Outline

1 Introduction

2 Background

3 Problem Setup

4 Iterative Refinement Steps

5 Software Simulator Platform

6 Future Work

7 Summary

— A Graph Partitioning Game for Distributed Simulation of Networks 30/40

Introduction Background Problem Setup Iterative Refinement Steps Software Simulator Platform Future Work Summary

Software Platform to Mimic Distributed Simulator

• The motivating factors:

1 To abstract the simulation model across different scenarios as an
event generation model defined by initial event list and the
cause-effect relationships between different events.

2 To abstract the hardware so as to test with different numbers and
speeds of machines.

3 To make the process independent of any parallel simulator software,
thus saving the time needed for understanding finer details of any
parallel simulator software tool.

4 To focus our attention on the simulation time and the synchronization
overhead that depend largely on the event generation and processing
model only.

• Develop the software network simulator based on NetLogo.

— A Graph Partitioning Game for Distributed Simulation of Networks 31/40

Introduction Background Problem Setup Iterative Refinement Steps Software Simulator Platform Future Work Summary

Software Platform to Mimic Distributed Simulator

• The simulation of a communication scenario can be described in terms of an

event generation model using some parameters:

1 Machine Specs: Number of machines, speeds, latency of inter
machine communications.

2 Event generation model: Categories of events, how one event spawns
another event.

3 Event Processing Model: Time needed to process each event, local
variables affected.

4 Initial Event List: Events initialized before start of simsulation.

— A Graph Partitioning Game for Distributed Simulation of Networks 32/40

Introduction Background Problem Setup Iterative Refinement Steps Software Simulator Platform Future Work Summary

Event Generation Model

• Optimistic synchronization method: Non causality and roll back. Local and
global time.

• Each node represented by an LP.

• Decide the exact scenario: say limited scope flooding.

• The metric to measure performance will be the wall-clock time required to
complete the simulation.

• Simulation is complete when the event lists of all the nodes are empty.

• Random graph of 230 LPs is divided among 5 machines. Random node degree
of mean 3.

• Normalized speed of machines: 0.1, 0.2, 0.3, 0.3, 0.1.

• Random initial event list with random time stamp for each initial event
between 1 and 10.

• Node weight will be equal to the size of the event list where each event is
weighed by the execution time of its associated function.

• The weight of bidirectional edge (i , j) will be equal to the number of events in
the event list of (j) that spawn events in (i) plus the converse way.

— A Graph Partitioning Game for Distributed Simulation of Networks 33/40

Introduction Background Problem Setup Iterative Refinement Steps Software Simulator Platform Future Work Summary

Simulation time and frequency of refinement

Iterative improvements using first cost framework perform better.

— A Graph Partitioning Game for Distributed Simulation of Networks 34/40

Introduction Background Problem Setup Iterative Refinement Steps Software Simulator Platform Future Work Summary

Load distribution across machines with and without
refinement

— A Graph Partitioning Game for Distributed Simulation of Networks 35/40

Introduction Background Problem Setup Iterative Refinement Steps Software Simulator Platform Future Work Summary

Outline

1 Introduction

2 Background

3 Problem Setup

4 Iterative Refinement Steps

5 Software Simulator Platform

6 Future Work

7 Summary

— A Graph Partitioning Game for Distributed Simulation of Networks 36/40

Introduction Background Problem Setup Iterative Refinement Steps Software Simulator Platform Future Work Summary

Overcoming Poor Local Minima

• Inherent non convexity of the cost function might lead to Nash equilibria that
correspond to suboptimal partitions.

• Consider iterative cluster-by-cluster transfer instead of node-by-node transfer.

• Increase the breadth of the search space by also considering sets of nodes
eligible for exchange.

• Consider a connected cluster as a single aggregate node.

• Search space for the optimal strategy now scales exponentially with the number
of nodes.

• Choose intelligently the clusters, use the contraction algorithm [Karger 1993].

— A Graph Partitioning Game for Distributed Simulation of Networks 37/40

Introduction Background Problem Setup Iterative Refinement Steps Software Simulator Platform Future Work Summary

Overcoming Poor Local Minima

• Distributed Simulated Annealing

◦ Simulated annealing [Kirkpatrick 1983] is a classical method of
dealing with local minima in discrete optimization problems.

◦ One can make moves with non-zero probability that increase the cost
function.

◦ Allows it get out of local minimum solutions and hence there is good
probability of finding better solutions.

◦ Studies for graph partitioning have shown to improve cost by
approximately 5%.

◦ Our case different: Given the distributed nature of our algorithm and
the node-by-node transfer based on a certain game formulation.

• Cooperative Game and Pareto Optimality

◦ When machines cooperate with each other: A “Pareto optimal”
solution.

◦ A “semi-cooperative” game: machines exchange nodes; we can find
“pairwise stability” in such a case.

— A Graph Partitioning Game for Distributed Simulation of Networks 38/40

Introduction Background Problem Setup Iterative Refinement Steps Software Simulator Platform Future Work Summary

Outline

1 Introduction

2 Background

3 Problem Setup

4 Iterative Refinement Steps

5 Software Simulator Platform

6 Future Work

7 Summary

— A Graph Partitioning Game for Distributed Simulation of Networks 39/40

Introduction Background Problem Setup Iterative Refinement Steps Software Simulator Platform Future Work Summary

Summary

• We proposed a decentralized load balancing algorithm that iteratively improves
the partition based on a game of nodes as players.

• We compare two cost frameworks with different global objectives that
approximate the actual simulation time.

• Two corresponding local objectives at node level are defined resulting in
decreasing their corresponding global objectives (Lyapunov).

• Local approach is scalable because only partition-level aggregate information is
exchanged (rather than node/LP-level).

• We evaluated the two partitioning schemes on a software based simulator
model of an optimistic parallel discrete event based simulator.

— A Graph Partitioning Game for Distributed Simulation of Networks 40/40

	
	Introduction
	Background
	Problem Setup
	Iterative Refinement Steps
	Software Simulator Platform
	Future Work
	Summary

