ITC 23, San Francisco, CA, Sept. 2011

Teletraffic Models for Quality of Experience Assessment

Markus Fiedler, Blekinge Institute of Technology Dept. of Computing, Karlskrona, Sweden

Disclaimers

- Conceptual set of slides
 - To be extended
 - To be modified
 - Storyline to remain
- Please download the final version from <u>http://www.bth.se/com/ccs</u>
 - Password: itc23sfca

Quality of Experience (QoE)

[http://frombogotawithlove.com/wp-content/uploads/2009/10/Bored-Computer-User.jpg]

Customer Satisfaction Survey from an ISP

- Your satisfaction using our High Speed Internet Service
 Overall satisfaction {1...10}
- Will you use again our service?
 {Yes/No}
- Your satisfaction regarding specific aspects of our High Speed Internet Service
 - Ease of use {1...10}
 Range of products offered {1...10}
 Quality of connection {1...10}
 Price for value {1...10}
 Quality of customer care (where applicable) {1...10}

At a hotel in Vienna, Austria, March 2010 (WLAN access)

6/100

QoE

- Promoted by industry (since ~2001)
 - Economical aspect: user churn
 - E2E-QoS + user-centric parameters
- Both qualitative and quantitative views
 - But so far mostly from a subjective perspective
 - Recent trends to objective QoE measurements
 - User performance
 - Psychophysical measurements
 - Use of quantitative relationships between QoE and QoS

QoE according to a vendor

- White Paper [Nokia, 2005]:
 - ...how a <u>user</u> perceives the <u>usability</u> of a service when in use – how satisfied he or she is with a service
 - End-to-end network QoS
 - Factors such as network coverage, service offers, level of support, etc.
 - Subjective factors such as user expectations, requirements, particular experience
- Key Performance Indicators (KPI) related to
 - Reliability
 - Comfort

QoE in ITU-T Rec. P.10/G.100 Am. 2

- The overall <u>acceptability</u> of an application or service, as perceived <u>subjectively</u> by the end user.
 - NOTE 1 Quality of experience includes the complete end-to-end system effects (client, terminal, network, services infrastructure, etc.).
 - NOTE 2 Overall acceptability may be influenced by user expectations and context.

QoE in ITU-T Rec. G.1080

Figure 5-1/G.1080 - QoE Dimension

Source: ITU-T Rec. G.1080

QoE in ETSI STF 354

- [Brooks & Hestnes, 2010], [ETSI STF 354]: QoE is a measure of <u>user performance</u> based on <u>objective</u> and <u>subjective psychological measures</u> of using a service or product.
 - NOTE 1: It takes into account technical parameters (e.g., QoS) and usage context variables (e.g., communication task), and <u>measures the process and outcomes of usage</u> (e.g., user effectiveness, efficiency, satisfaction, and enjoyment)
 - NOTE 2: The appropriate psychological measures will be dependent on the <u>communication context</u>. Objective psychological measures do not rely on the opinion of the user (e.g., task completion time... task accuracy...) Subjective psychological measures are based on the opinion of the user.

QoE according to Dagstuhl Seminar

 [Dagstuhl Seminar 09192] "From QoS to QoE", May 2009:

The <u>degree of delight</u> of the <u>user</u> of a service, influenced by content, network, device, application, user expectations and goals, and context of use.

Quality of Service (QoS)

- TelCo/standardisation point of view
 - ITU-T Rec. E.800 (1994): QoS = the collective effect of service performance which determine the degree of satisfaction of a user of the service
- Internet/network point of view
 - Property of the network and its components: "Better-than-besteffort" packet forwarding
 - Parameters: cf. ITU-T Rec. Y.1541
- Performance researcher point of view
 - Results from queuing analysis
- Matching needed: QoE <>>> (network-)QoS
 ww.bth.se

Why teletraffic models for QoE?

- Growing interest in QoE
 - Topic around 10 years old
 - User reactions to delivery problems
 - Economic value of QoE
 - Ecologic value of QoE
- Successful QoE control
 - Depends on models
 - Importance of parameters

Aims

- Building bridges: Re-discover teletraffic models and results, and make them useful for contemporary QoE research
- Not too many models at this point ...
 ... but hopefully some starting points and ideas for future research

Building bridges ...

Why should we?

A technician's perspective

– "Come on, we design, build and manage the networks as good as feasible, keep the user out of that game."

- A user's perspective [HP, 2000]
 "If it's slow, I won't give my credit card number."
- Researchers' perspectives?
 - Depends on their "schools"

A personal retrospective ...

Teletraffic analysis for

- POTS
- ATM
- IP (IntServ, DiffServ), MPLS
- Wireless
- P2P
- Future Internet
 - {Information|Content} Centric Networking
 - Virtualisation
- Etc.

Quality notions GoS QoS Y2K Performance Scalability QoE time

... on changes in teletraffic analysis

- Telephony
 - Well-established and valid "classical" models
 - Still used in analysis of mobile systems
- B-ISDN
 - Extension of classical models, e.g. Markov-modulation
- Measurements
 - Scaling: self-similar behaviour, (multi-)fractals, etc.
 - Long-range dependence
- Schism: valid models versus analytical tractability
- Experimentation

Challenges for teletraffic analysis

- Realistic models
- Tractable analysis
- Taking care of correlations
- Parameter matchings
- Interpretation of parameters
- Scaling phenomena
- Etc.

On models

- Model
 - Representation of an object or a system
- Teletraffic model
 - Representation of (parts of) a telecommunication systems
- Key: Behaviour of a system captured in interpretable parameters

• Goal: Predict and control QoE ww.bth.se

20/100

Dreamhack Winter 2007 – Shaping / QoS measurements

Qo* value chain

- 1. QoS = Quality of Service
- 2. QoD = Quality of Delivery
- 3. QoP = Quality of Presentation
- 4. QoE = Quality of Experience

Examples

1. Web download via TCP

2. Streaming

- a. YouTube via TCP
- b. Live via UDP

www.bth.se

Video streaming with user feedback

RO: 0, RP: 80, CL: 18. PL: 0 RO: 23. RP: 215. CL: 35. RP: 92. CL: 12. R0: 6. RP: 74. CL: 4. RP: 94. CL: 9. CL: 5. 63. CL: 4. CL: 10. 186. 123. CL: 4. 90. CL: 6. CL: 12. 79. CL: 6. 160. CL: 8. - 0. RD: 3. RP: 74. CL: 6.

OS and PDV (via HSDPA)

QoE is ...

- ... more than rating video and audio quality
 - Most attention from scientists, standardisation, etc.
 - Quality of Presentation <-> Quality of Delivery
- ... more than translated QoS
 - Identification of key parameters necessary
 - Re-consideration of typical parameter sets such as {loss, delay, jitter, bandwidth}
 - Macroscopic disturbances matter
 - Loss bursts
 - Delay peaks, zero throughput times

QoE has always been around...

- Call blocking probability in POTS
 - The performance measure (Go
- TCP reactions and fairness
 Decrease in throughput = longer waiting times
- Flow-based networking
 - More transparency = less freezes / waiting
- Any kind of shared network resource
 - Fewer disturbances = less freezes / waiting

www.hth.se

QoE-related models

- Typically QoE = $f(p_1, p_2, ...)$
 - Fundamental relationships
 - Typically steady-state
 - Provide thresholds and discrimination of states for teletraffic models
- Teletraffic models provide added value
 - Stochastic processes (states, transitions)
 - Dynamic behaviour expressed in QoE-relevant parameters and related statistics

– Allows for transient and steady-state analysis ww.bth.se

30/100

Fundamental QoE-QoS relationships

- Dependencies on network conditions typically addressed by parameter vectors [QoS_i, ..., QoE]
 - Results from questionnaires, observations, measurements
 - Several impact factors: $QoE = f(QoS_1, QoS_2, ...)$
- We focus on **one impact factor at a time**
- Description by **partial** differential equations
- Consider fundamental relationships of the type $\frac{\partial QoE}{\partial QoS_i} = g(QoE, QoS_i)$
- Maximise/minimise QoE to interval [1, 5] afterwards

www.hth.se

Fundamental QoE-QoS relationships

- Investigated set:
 - Linear
 - Logarithmic
 - Exponential
 - Power

 $QoE \propto QoS_i$ $QoE \propto \log(QoS_i)$ $\log(QoE) \propto QoS_i$ $\log(QoE) \propto \log(QoS_i)$

- Properties
 - Seen from regressions on linear vs. logarithmic scales
 - Reasoning behind each relationship
- Most examples from [Shaikh et al., 2010]

Linear relationship

 $\partial QoE \propto \partial QoS_i$

QoS axis

QoE axis

- Linear scale ← Linear scale
- Additive change ← Additive change
- QoE gradient independent of QoE and QoS
- Linear regression often the first choice
- Local approximation
- Example:
 - Download time perception as function of loss

 $QoE \approx 4.3 - 31PLR \ (\Re^2 > 0.99)$

Logarithmic relationship $\partial QoE \propto \frac{\partial QoS_i}{OoS_i}$

QoE axis

- Linear scale \leftarrow
- Additive change

QoS axis

- Logarithmic scale
- Multiplicative change \leftarrow

34/100

- QoE gradient proportional to reciprocal QoS
- Weber-Fechner Law (1834):
 - Just noticeable differences, multiplication on stimuli side
- Utility functions (implicit proportional fairness)
- Example:
 - Download time perception as function of bandwidth

Exponential relationship $\frac{\partial QoE}{QoE} \propto \partial QoS_i$

QoE axis

- Logarithmic scale ← Linear scale
- Multiplicative change ← Additive change
- QoE gradient proportional to actual QoE
 - Nuclear decay
 - Human memory
 - IQX hypothesis [Hossfeld et al., 2007; Fiedler et al., 2010a]
- Examples
 - Image quality perception as function of blur, blockiness, ... (QoP)

QoS axis

Download time perception as function of response time (QoD)

$QoE \approx 4.8 \exp(-0.15 RT/s) \ (\Re^2 > 0.99)$

Power-type relationship

 $\frac{\partial QoE}{QoE} \propto \frac{\partial QoS_i}{QoS_i}$

QoE axis

- Logarithmic scale
- Multiplicative change
- Long tails on both axes
- Examples
 - Session volume as function of bandwidth
 - Video perception as function of jitter

BLEKINGE INSTITUTE OF TECHNOLOGY

QoS axis

 \leftarrow

 \leftarrow

- Logarithmic scale
- Multiplicative change
Different types of QoE and QoS parameters

- Success rating *QoE*
 - The higher, the better
 - Mean Opinion Score (1..5)
- Failure rating $\overline{Q}oE$
 - The higher, the worse
 - Cancellation rate
 - Churn rate
- Watch the signs!

- The higher, the better
- Throughput
- Success measure QoS_s
 - Availability (e.g. 99.99 %)
 - Packet success ratio
- Failure measure $\overline{Q}oS_{\rm f}$
 - The higher, the worse
 - Packet loss ratio
 - Delay jitter
 - Reordering

37/100

www.hth.se

Skype: MOS = *f*(packet loss ratio)

G.1030/download: MOS = *f*(session time)

Web: Cancel-rate = *f*(delivery bandwidth)

Bones of contention

- Unavailability
- Initial delay
- Artifacts
- Freezes
- Preemption
- Repetitions
- Etc.

- Video
- Audio
- Web
- Gaming
- SAAS
- Authentication
- Etc.

www.bth.se

BLEKINGE INSTITUTE OF TECHNOLOGY

41/100

Explicit user ratings

- Dynamic process
 - Memory effect
 - Forget factor
- Context-dependent
- Content-dependent
- Gossip
- Modelling of the users equally important

Implicit user ratings

- (Objective parameters)
- Degree of task completion
- Time of task completion
- Sojourn times
 - "Happy users surf more"
- Churn

Performance parameters of interest

- Availability
- Loss
- Throughput
- Throughput variability
- Delay
- Delay variation
- Reordering

- Video
- Audio
- Web
- Gaming
- SAAS
- Authentication
- Etc.

Links between QoP, QoD and QoS

- Unavailability
- Initial delay
- Artifacts
- Freezes
- Preemption
- Repetitions
- Etc.

- Availability
- Loss
- Throughput
- Throughput variability
- Delay
- Delay variation
- Reordering

www.bth.se

Statistics of particular interest

- Averages
- Standard deviations
 - CoV
 - Scaling behaviours
- Correlations
- Tails
 - How frequent?
 - How long?

QoD ⇒ QoP issues (1)

- Bit rate
 - Lack of support of the service (streaming)
 - Capacity sharing
 - Unacceptable download times
- Loss
 - Artifacts
 - Freezes
 - May turn into delay

QoD ⇒ QoP issues (2)

- Delay/Jitter
 - Latency
 - Freezes
 - May turn into loss ("too late")
- Reordering
 - Due to multipath transmission
 - Reverberation effects
 - May lead to loss

QoD ⇒ QoP issues (3)

- The role of the transport protocol
 - TCP turns loss (and virtually any other kind of QoS problem) into additional delay
 - TCP reacts to virtually any kind of QoS problem
- Outreach of problems
 - Download duration \Leftrightarrow <u>average</u> throughput
 - Shorter time scales may require more sensitive figures
 - Average throughput can be OK even over a jerky channel

QoD ⇒ QoP issues (4)

- Typical sources of QoE problems: Capacity mismatch between request and service
 - Matter of time scale
 - "Short" capacity deficits may go unnoticed
- Looking for alternative channels
 - Seamless caught between a rock and a hard place?
 - Multipath more capacity at the price of reordering and/or additional delay at the receiver side

Teletraffic models

Attributes of teletraffic models

- States
 - Good (-for-user-perception) states
 - Bad (-for-user-perception) states
- Transitions
 - Time scales
 - Dynamic behaviour
 - (Quasi-stationarity within a state)
- Stationarity

www.hth.se

Classical cases (1)

M/G/m/0 system ⇒ Erlang-B formula blocking

- Blocking probability
- User view given through PASTA
 (Poisson Arrivals See Time Averages)

QoE-critical, "bad" state

Classical cases (2)

• M/M/1/K system

Loss probability

QoE-critical, "bad" state

loss

– If buffer levels are an issue: $Pr{X > x^*}$

Example 1: Mobile video live streaming

Mobile video live streaming

- If pre-loading à la YouTube is not possible...
- Freezes (and jumps) occur when the one-way E2E delay exceeds the playout buffer capacity
 Typical delay budget: 0.5...4 s
- Modeling of buffer over-/underflow probablility
 Tail behaviour becomes of interest

Drive tests – setup

- Swedish countryside outside Karlskrona
- UPS-driven DPMI = Distributed Passive Measurement Infrastructure time on wheels

Drive tests – a look inside the car

Delay (stationary car)

- IAT Quantiles:
 - 90 %: 26 ms
 - 99 %: 50 ms
 - 99.9 %: 205 ms

Inter-Arrival Time at receiver [s]

Indications of a potentially long tail

CDF

Recap: QoE and QoS (via HSDPA)

Simplest model for mobile streaming

- RP/IRP/ $K(\rightarrow \infty)$ system:
 - Simplest Gilbert-Elliott model: channel modulates (interrupts, IRP) constant flow (RP)

- Marginal distribution: Pr{S = off}
- (Cond.) Buffer content cdf $Pr\{X > x (\land S = off)\}$
- Dynamic behaviour: $\lambda_{off \rightarrow on}$, $\lambda_{on \rightarrow off}$

[Fiedler & Krieger 2000]

More advanced models

- D/IDP/1/K: includes packet process
- RP/GMRP/K (fluid),
- D/GMDP/K (packet): general modulation
 - More states
 - Not necessarily exponential /geometric modulation

Example 2: Network virtualisation [Fiedler, 2011a]

Network virtualisation

- Transparency
 - Which time scales are affected by resource sharing?
 - Euro-NF SJRP FedNet
- Overbooking
 - A problem comparable to ATM
 - Squeeze additional customers into the system(s)
 - Two-side SLA: Full versus limited availability
 - 80 % capacity still provides (very) good user perception, given that we can avoid heavy disturbances

Resource Allocation Per User

- We are not talking of systems with unlimited capacity \odot

Full vs. Limited Availability

4

- Assume capacity for 10 exclusive users, $\gamma = 80 \%$
- Full availability (100 %) desired degree: 1δ

• Limited availability ($\geq 80 \%$) – desired degree: **1** – ε

5

6

8

9

• Non-availability (< 80 %)

3

1 2 3 4 5 6 7 8 9 10 11 12 13

10

User Model

- On-off
 - peak resource request r
 - activity level α
 - not necessarily exp./geom. distributed phases

- independent of each other

Gain borderline (one extra user)

www.bth.se

THNISKA HOUSE

$QOE = f(\gamma)? \qquad QoE = 1.15 + 3.34 \lg(R/Mbps)$ $\rho = \frac{QoE(R) - QoE^{\star}}{1 - QoE^{\star}}$

R/Mbps	γ	QoE	$\Delta QoE(\gamma)$	ρ
10	1.0	4.49		
9	0.9	4.34	0.15	4~%
8	0.8	4.17	0.32	9~%
7	0.7	3.97	0.52	15%
5	0.5	3.48	1.01	29%
3.6	0.36	3.01	1.48	42%
3	0.3	2.74	1.74	50%

Web: MOS = *f*(throughput)

Basic shapes

Provisioning-delivery hysteresis for web

Simple model for network virtualisation

- NMMRP/RP/0 system:
 - E.g. A-M-S-type of system

- Full availability, full capacity share r. $Pr{S \le N^*}$
- Limited availability, share C/S < r. $Pr\{N^* < S \le N'\}$
- No availability (share too small): $Pr{S > N'}$

75/100

Other candidate models

- ND/D/n models for non-overbooked systems
- Processor Sharing models
 - M/G/1-PS etc.
 - Generalised Processor Sharing
 - Important to consider tail behavior

Example 3: Service chains

[Lorentzen et al., 2010]

Authentication service chain

- User at the end of a service chain
 - Delays sum up and become QoE factors
 - Which is the "weakest" link?

User models for QoE

Opinion scores for login, with regressions.

Complimentary study

Main study

User models for QoE

	Туре	R ²	Regression	
Web study	Exponential	0.99	$y = 4.836 e^{-0.150x}$	
	Logarithmic	0.988	<i>y</i> = -1.426 ln(<i>x</i>) + 4.469	
	Power	0.912	$y = 5.339 x^{-0.638}$	
	Linear	0.966	y = -0.318x + 4.158	
Main study	Exponential	0.618	$y = 4.702 e^{-0.097x}$	
	Logarithmic	0.691	<i>y</i> = -1.31 ln(<i>x</i>) + 4.895	
	Power	0.643	$y = 5.407 x^{-0.488}$	
	Linear	0.966	<i>y</i> = -0.2482 <i>x</i> + 4.462	
Complimentary	Exponential	0.807	<i>y</i> = 4.836 e ^{-0.107} <i>x</i>	
study	Logarithmic	0.72	<i>y</i> = -1.687 ln(<i>x</i>) + 5.576	
	Power	0.791	$y = 11.065 x^{-0.860}$	
	Linear	0.705	y = -0.206x + 3.921	

New user models for QoE

- User model for QoE considering network part and internal part: reveals critical factors
 - Exponential user model: $QoE \approx 4.7e^{-0.1T_{\rm R}/s}$

- Internal part (process):
$$\sum_{k=1}^{3} T_{Ik} \approx 1.8 \text{ s}$$
 ($T_R = T_N + T_I$)

- Resulting user model: $QoE \approx 4.7e^{-0.18}e^{-0.1T_N/s}$ $\approx 3.9e^{-0.1T_N/s}$ $T_N = \sum_{k=1}^4 T_{Nk}$

Challenge: find teletraffic models for T_{Nk}
www.bth.se

User perception profile

Frequency of OSs (from RTs) per throughput

Example 4: Seamless communications

Automatic network selection for making users Always Best Connected [Fiedler et al., 2011b]

Measurements

Median of download time = *f*(file size)

A closer look...

Median of throughput = *f*(file size)

... and again a closer look ...

Quasi-stat. throughput R_{∞} and RTTs

Operator	R_{∞}	C _V	RTT _{0.5}
A	950 kbps	4 %	125 ms
В	530 kbps	5 %	130 ms
С	311 kbps	13 %	336 ms
D	916 kbps	16 %	315 ms

- All operators advertise "up to 7.2 Mbps"
- Operators A & B / C & D share networks
- RTT does not correlate well with R_{∞} and download times

Regression formulae

Take maximum of the download time estimations:

• S
$$\hat{T}_{\rm S} = {\rm const.}$$

• M $\hat{T}_{\rm M} = 8 \left(\frac{X / B}{R_{\infty} / {\rm bps}} \right)^{a_T}$

 $a_T = 0.5 (A, B) \dots 0.625 (C)$

overestimates by 1..2 s

• L
$$\hat{T}_{\rm L} = 8 \frac{X / B}{R_{\infty} / bps}$$

www.bth.se

QoE formulae

Basis: ITU.T Rec. G.1030 (time scale 6 s)

 $QoE = max\{min\{4.38 - 0.9 \ lb(T/s), 5\}, 1\}$

 $QoE_{S} = \min\{4.38 - 0.9 \ lb(\hat{T}^{s}/s), 5\}$ $QoE_{M} = \max\{\min\{1.68 + 0.9a_{T}(lb(R_{\infty}/bps) - lb(X/B), 5\}, 1\}$ $QoE_{L} = \max\{\min\{1.68 + 0.9(lb(R_{\infty}/bps) - lb(X/B), 5\}, 1\}$

Role of teletraffic models

- Predict performance, in particular
 - $-R_{\infty}$ for downloads and streaming (average)
 - Variation of R
- TCP models: Impact of
 - Loss
 - Delay, RTT
 - Jitter, zero throughput times

Key: Relate outcomes to user perception

Conclusions

"Classical" QoE \Leftrightarrow teletraffic models

- QoE considerations provide discrimination of good / bad states in teletraffic models
 - Cf. examples 1 and 2
 - States "at the edge" might change from good to bad or vice versa
 - Memory effects captured through Hidden Markov Models [Hossfeld et al., 2011]

"Classical" QoE ⇔ teletraffic models

- QoE models need output from teletraffic models
 - Cf. examples 3 and 4
 - QoS results turn into QoE results
 - Response times
 - Throughput

Building bridges ...

- Lots of potential left for both teletraffic and QoE folks
 - Identify points of (real) user concern, related key parameters and thresholds
 - Build simple, yet telling models that capture the main issue(s) of concern
 - Many problems have been addressed before, but become relevant all over again ⇒ check the literature
 - Analyse, optimise, and contribute to improved stakeholder satisfaction

References

[Brooks & Hestnes, 2010] P. Brooks and B. Hestnes. User measures of Quality of Experience: Why being objective and quantitative is important. IEEE Network, 24(2):8–13, March/April 2010.

[Dagstuhl Seminar 09192] http://www.dagstuhl.de/09192

[ETSI STF 354] <u>http://portal.etsi.org/stfs/STF_HomePages/STF354/STF354.asp</u>

[Euro-NF] <u>http://www.euronf.org</u>

- [Fiedler, 2011a] M. Fiedler. On resource sharing and careful overbooking for network virtualization. Int. Journal of Computer Networks and Distributed Systems (IJCNDS), 6(3):232 248, 2011.
- [Fiedler, 2011b] M. Fiedler. Enabling seamless videoconferencing the PERIMETER approach. ETSI QoS QoE User Experience Workshop, Sophia-Antipolis, France, Sept. 2010.
- [Fiedler et al., 2010a] M. Fiedler, T. Hossfeld, and P. Tran-Gia. A generic quantitative relationship between Quality of Experience and Quality of Service. IEEE Network, 24(2):36–41, March/April 2010.

References

- [Fiedler et al., 2010b] M. Fiedler, P. Arlos, T.A. Gonsalves, A. Bhardwaj, and H. Nottehed. Time is perception is money – web response times in mobile networks with application to Quality of Experience. In Proc. PERFORM 2010 (Springer LCNS 6821), Vienna, Austria, Oct. 2010.
- [Fiedler & Hossfeld, 2010] M. Fiedler and T. Hossfeld. Quality of Experience-related differential equations and provisioning-delivery hysteresis. In Proc. 21st Specialist Seminar on Multimedia Applications – Traffic, Performance and QoE, Miyazaki. Japan, March 2010.
- [Fiedler & Krieger, 2000] M. Fiedler and U.R. Krieger. The impact of variable channel capacity on the quality of advanced data services in PCS networks. In Proc. 12th ITC Specialists Seminar on Mobile Systems and Mobility, Lillehammer, Norway, March 2000, pp 51–60.
- [Hossfeld et al., 2007] T. Hoßfeld, P. Tran-Gia, and M. Fiedler. Quantification of Quality of Experience for edge-based application. In Proc. ITC 20, Ottawa, Canada, June 2007.
- [Hossfeld et al., 2011] T. Hoßfeld et al. The memory effect and its implications on web QoE modeling. In Proc. ITC 23, San Francisco, CA, Sept. 2011.

References

- [HP, 2000] A. Bouch, A. Kuchinsky, and N. Bhatti. Quality is in the eye of the beholder: Meeting user's requirements for Internet quality of service. Technical Report HPL-2000-4, HP Laboratories Palo Alto, January 2000.
- [Khirman & Henriksen, 2002] S. Khirman and P. Henriksen, Relationship between Qualityof-Service and Quality-of-Experience for public Internet service". In Proc. 3rd Passive Active Measurement Workshop, Fort Collins, CO, March 2002.
- [Lorentzen et al., 2010] C. Lorentzen, M. Fiedler, H. Johnson, J. Shaikh, and I. Jørstad. On user perception of web login a study on QoE in the context of security. Proc. ATNAC 2010, Auckland, New Zealand, Nov. 2010.
- [Nokia, 2005] Nokia White Paper: Quality of Experience (QoE) of mobile services: Can it be measured and improved? Nokia, 2005.
- [Shaikh et al., 2010] J. Shaikh, M. Fiedler, and D. Collange. Quality of Experience from user and network perspectives. Annals of Telecommunications, Vol. 65(1—2): 47—57, Jan./Feb. 2010, pp 47—57, DOI 10.1007/s12243-009-0142-x.

Thank you ③ Q & A

markus.fiedler@bth.se

