
Szemerédi-type clustering of peer-to-peer streaming
system

Vesa Pehkonen and Hannu Reittu
VTT Technical Research Center of Finland

P.O. Box 1000, 02044 VTT
Finland

{Vesa.Pehkonen,Hannu.Reittu}@vtt.fi

Abstract—In this work we made a preliminary clustering
analysis of an experimental peer-to-peer system, tested in a
small scale experiments within PlanetLab. The application was an
Internet-TV like streaming system based on Chord architecture.
Our clustering is inspired by the Szemerédi’s Regularity Lemma
(SzRL). Such approach was already demonstrated in biology and
appeared to be a powerful tool. Szemerédi’s result suggests that
the nodes of a large enough graph can be partitioned in few
clusters in such a way that link distribution between most of
the pairs look like random. Our main goal is to study what
can this type of clustering tell us about p2p systems using our
experimental system as source of data. We searched clusterings of
Szemerédi-type by using max likelihood as guidance. Our graph
is directed and weighted. The link direction indicates a client-
server relation and the value is the proportion of all chunks
obtained from such a link during the whole experiment. We
think that the preliminary results are interesting. Most of the
cluster pairs have very distinguished patterns of link distribution,
indicating that such a novel approach has potential in classifying
peers effectively. The values of weights between clusters and their
distribution show some apparent patterns. We end up with 9
cluster pairs.

Contributions: practical implementations of streaming system
by V.P. and analysis by H.R.

I. INTRODUCTION

File sharing using the peer-to-peer techniques has shown
to be very effective and popular among Internet users. Such
systems like Bit-Torrent [1] and eDonkey are well known.
These systems are typically used to obtain a file in small
chunks that can be obtained in any order. A variant of this
is streaming of the file, which means that the chunks are
used on line by the application in a fixed order and without
substantial delays, thus constraining the chunk downloading
process to follow more or less a fixed order of chunks. The
simplest form of streaming looks like watching a TV-channel.
A peer that joins the network starts to obtain the file not from
the beginning, but rather from the position available at that
moment, and then proceeds in obtaining a stream of chunks
and forwards an analogous stream, if requested, to other peers.
Some such clients like the CoolStreaming, PPLive, SopCast,
TVants and UUSee, (see Refs. in [2]) have already become
popular for transmitting TV-channels through Internet.

For studying such streaming p2p systems we made an

experimental client called ’PAN-STREAM’ that was modified
from our earlier experimental ’PAN-NET’ client for fully
distributed Bit-Torrent type file sharing, [3]. It is based on
the Chord architecture, see Figure 1., and the corresponding
experiments were run in PlanetLab environment, with around
50 peers. Chord has a ring topology with shortcuts called
the fingers. As a first step we made a client that has basic
functionalities, without trying to make it highly optimal. The
results of first experiments were reported in [4]. We used a pull
scheme, where the downloading peer can chose from whom
it gets the next chunk. Then we made a bit more realistic
scenario of a push model and made longer run of experiment.
These new measurements are the data used in this work.

Application Seed/Leech
Streaming layer

TCP ∣ UDP
IP

In the above table our protocol stack is shown. An appli-
cation over peer-to-peer streaming layer is a simple command
line or graphical user interface application whose main pur-
pose is just to test functionalities of the system. There are
two different types of peers: a seed and a leech. The seed
reads the stream from file and sends it to the other nodes.
The leeches download the stream from the seed and the other
leeches. The streaming layer provides connections to the other
nodes. Furthermore it provides to download and upload stream.
The nodes communicate through TCP/IP. In normal case when
a node leaves the network it is noticed, but if the node leaves
badly it takes a few minutes before it is noticed. The latter case
is not considered in this implementation. Furthermore there is
no need for error checking of data transfer and the data packets
are received in sending order. The UDP transfer is used only
when a new node joins to the ring. The new node sends the
FIND SUCCESSOR REQ message to the seed node. In this
scenario the UDP transfer is used to avoid charging the seed
node, because creating a TCP connection is a relatively heavy
process.

There is one seed node that initiates the Chord network.
When a leech node joins to the ring, it first connects to the seed
to find a successor node and finger nodes. Then the node stays

23978-0-9836283-1-6 c© 2011 ITC

This paper was peer reviewed by subject matter experts for publication in the Proceedings of Cnet 2011

Fig. 1. Chord network. Links or ’fingers’ of one node, N8, are written. Only
’successor’ links are shown.

waiting for the notify messages from other nodes. The nodes
download chunks from their inverse fingers. A peer sends a
message to all its antifinger neighbors informing them, which
chunk it needs next. The uploading peer accepts those requests
it can serve due to possible bandwidth restrictions. Each node
has a chunk buffer that saves the newest downloaded chunks.
The chunks are downloaded in numeral order. The peer that
starts downloading a chunk informs its other neighbors that
it does not need this chunk any more. Thus our experimental
setting is unstructured and uses a push scheme for obtaining
new chunks [2]. Unstructured means that we do not have a
fixed delivery tree of chunks, rather it can change from chunk
to chunk.

Our p2p network was designed as transparent and simple
as possible to enable all kind of experiments and monitoring.
It was not meant to be a practical client for some real
applications.

A relevant question is how to classify peers in such systems
based on their role in uploading and downloading. Ideally
the system should be very homogeneous, a true peer-to-peer
system, where every peer contributes to the systems resources
equally. This would correspond to the case of just one cluster,
the cluster of ’good peers’. However, this does not happen
always. In an open system, say, there can be so called ’free-
riders’ that just download. A poor design can also result
in such features. For systems performance, it can be useful
to control and monitor peer classes. Thus, there is a task
to classify or ’cluster’ the peers based on their behavior.
For BitTorrent a clustering was found usefull and peers with
similar uploading capacities formed the clusters, [5]. However,
this clustering analysis was based on prior hypothesis, such
clusters were assumed based on the BT-algorithm. We would
also like to see peers with similar behavior with respect to
downloading and uploading characteristics in the same cluster,
without any such prior hypothesis. We also do not assume that
clusters are densely connected subgraph, as is customary.

Recently a clustering method inspired by the so called
Szemerédi’s Regularity Lemma (SzRL) in graph theory (for re-

view see:[6]), was suggested and demonstrated in biology,[7].
It is a intriguing question to find out what is the significance
of such clusters for p2p streaming? That is why we like to
use same kind of approach adapted to directed and weighted
graphs of our p2p streaming experiment. The arrows point
from peer to uploader and the weight of a link is the ratio
of chunks downloaded from a particular peer to the total
number of chunks downloaded and both counted in the whole
experiment duration.

Let us formulate SzRL for simple and undirected graphs.
By 𝐺(𝐸, 𝑉), we denote a graph without loops or multiple
links and with node set 𝑉 and link set 𝐸. Let 𝑋,𝑌 ⊆ 𝑉 be
two disjoint subsets of vertices of 𝐺. The edge density of this
pair of subsets is:

𝑑(𝑋,𝑌) =
𝑒(𝑋,𝑌)

∣𝑋∣ ∣𝑌 ∣ ,

where 𝑒(𝑋,𝑌) is number of links in 𝐺 with an endpoint in
𝑋 and an endpoint in 𝑌 . By ∣∙∣, we denoted the cardinality
of a set. Further, a pair of vertex disjoint sets 𝐴,𝐵 ⊆ 𝑉 is
called 𝜖-regular if for every 𝑋 ⊆ 𝐴 and 𝑌 ⊆ 𝐵, such that
∣𝑋∣ > 𝜖 ∣𝐴∣ and ∣𝑌 ∣ > 𝜖 ∣𝐵∣ we have

∣𝑑(𝑋,𝑌)− 𝑑(𝐴,𝐵)∣ < 𝜖

A partition of vertex set 𝑉 , into 𝑘 + 1 sets,
{𝑉0, 𝑉1, 𝑉2, ⋅ ⋅ ⋅ , 𝑉𝑘}, where all except 𝑉0, have equal
cardinalities, is called 𝜖-regular, iff all except at most 𝜖𝑘2

pairs are 𝜖-regular.
Now we can formulate SzRL, [8]:
Szemerédi’s Regularity Lemma: For every positive real

𝜖 and for any positive integer 𝑚, there are positive integers
𝑁(𝜖,𝑚) and 𝑀(𝜖,𝑚), such that any graph 𝐺(𝐸, 𝑉), with
𝑛 = ∣𝑉 ∣ ≥ 𝑁 there is a 𝜖-regular partition of 𝑉 into 𝑘 + 1
classes and 𝑚 ≤ 𝑘 ≤ 𝑀 .

SzRL states, roughly speaking, that nodes of any large
enough graph can be partitioned into 𝑘 almost equal sized
clusters, 1 ≤ 𝑘 ≤ 𝑛 (𝑛 is number of nodes) in such a way
that almost all pairs of clusters look like random bipartite
graphs with link probability equal to link density. The link
density between clusters is the number of links joining the
clusters, divided by product of cardinalities of corresponding
clusters. This result is significant for large and dense graphs,
when the link density is close to 1. However, a similar
result is extendable also for sparse graphs with link density
approaching 0 as 𝑛 → ∞, and even for real matrices, [9]. in
weighted case, the link density is simply replaced by weight
density and in sparse case, the 𝜖 at the right-hand side of
regularity definition is multiplied be the link density of the
entire graph.

It should be noted, that SzRL is true for all graphs starting
from some lower bound for size, depending on accuracy, 𝜖.
However, the worst case scenario is such that this lower bound
is enormous. Ideed for a given 𝜖, the lower bound for graph

24 Proceedings of the 2011 International Workshop on Modeling, Analysis, and Control of Complex Networks

size is like a tower of powers of 2:

22
..
.2

,

where the tower has height that is upper bounded by 1/𝜖5.
Such a large numbers are too big to be considered in any
applications! This has an important indication for an algo-
rithmic version of the SzRL, introduced by Alon et al, [10].
Although the time complexity is only polynomial 𝑂(𝑛2.376),
corresponding to the time for multiplying two 𝑛 × 𝑛 binary
matrices, it requires this enormous size (𝑛) of graph to be
able to ’find’ a regular partition. Fortunately, a considerable
improvement was found in the recent work [11], where the
running time is only linear in the graph size. Perhaps even
more importantly, this randomized algorithm works in more
realistic fashion, since it finds a regular partition for any graph
or concludes that such partition does not exists. The algorithm
works correctly with high probability.

Our graph is quite small and the SzRL is not literally
applicable. However, the structure that is introduced by these
results could be relevant as pointed out by [7]. Thus, we can
not refer to SzRL as a guarantee of success, rather it just
inspires to find such a regular like pseudo-random structures.
This could be seen as a ’compression’ of the graph: the clusters
represent the structure while links between the clusters look
like random and it is in these relations where the ’complexity’
lies. This results in a kind of ’network of clusters’ or ’reduced
graph’, where nodes are clusters and links between them have
weights equal to link-densities between the clusters. Finding
optimal clustering is in principle a very demanding task,
because not only the clusters matter but everything is based on
adjusting relations between clusters. Thus it is much heavier
than usual clustering methods, that define clusters, say, as some
well connected ’communities’. However, if succesfull such
method can give very valuable information about the system.
We use the max likelihood as a guidance, we try to extract
a partitionining, where the pairs are as much as possible like
random bipartite subgraphs. So, the task is not to fit the SzRL,
but rather to find a similar structure in our graph. That is why
we do not have parameters like 𝜖 or requirement that partitions
should have equal sized classes. we simply try to do as well as
possible, with criterion defined in next sections. Further, we try
to analyze signicance of found structures and their potential for
analyzing such systems. The regularity concept is by itself too
vague and does not give us the exact picture of the relevance
of SzRL-based clustering.

What we found were 9 cluster pairs and most of them
look quite different from each other. Thus, on this qualitative
level the method is successful since it can pinpoint different
behavior patterns in our system. we think that a clear benefit
of the method is that there is no prior assumptions what
should the clusters look like and what kind of relations should
they have between each other. In this sense, the method has
potential of finding some unexpected features of the system.

II. MODEL DESCRIPTION

Our task is to cluster nodes of a p2p system with 𝑛 = 48
nodes. The experiment run for a time that corresponds to
streaming of approximately 4000 chunks, and all except the
seed get almost the same number of chunks during this period.
The total (integral) number of chunks obtained by peer 𝑖 is
denoted as 𝑛𝑖. By 𝑛𝑖,𝑗 we denote the integral number of
chunks peer number 𝑖 downloaded from peer number 𝑗. Then
we define weighted graph by defining the weights for all pairs
(𝑖, 𝑗), 𝑖 ∕= 𝑗:

𝑤𝑖,𝑗 =
𝑛𝑖,𝑗

𝑛𝑖

.

Thus 0 ≤ 𝑤𝑖,𝑗 ≤ 1. With this weighted and directed graph we
associate a directed random graph 𝒢𝑤 with independent links
having probabilities

𝑃 ((𝑖, 𝑗) ∈ 𝐸𝑤) = 𝑤𝑖,𝑗 ,

which together with the link independence assumption defines
the probability space. The reason why we defined 𝒢𝑤 is tech-
nical. We assume that if the original graph has a Sz. structure,
then 𝒢𝑤 should have similar structure as well. A benefit is
that for 𝒢𝑤 we can use max likelihood fitting methods that
allow computations. This results in some approximate scheme
that is difficult to evaluate exactly. However, our guidance is
mainly the result that we get, if the clusters are meaningful,
the method is positively working. To define the Sz. structure
framework we need two partitions 𝒰 = {𝑈1, 𝑈2, ⋅ ⋅ ⋅ , 𝑈𝐾𝑜𝑢𝑡}
and 𝒱 = {𝑉1, 𝑉2, ⋅ ⋅ ⋅ , 𝑉𝐾𝑖𝑛} of node set 𝑉 : 𝑉 = 𝑈1 + 𝑈2 +
⋅ ⋅ ⋅+ 𝑈𝐾𝑜𝑢𝑡 and 𝑉 = 𝑉1 + 𝑉2 + ⋅ ⋅ ⋅+ 𝑉𝐾𝑖𝑛, see in [7]. 𝒰 is
called out-group, and 𝒱 in-group.

The Sz. structure in this case means that we have ’regularity’
in link weight densities when we consider links going from an
out-group to an in-group, taking into account all such pairs. As
was said, this means that the link weight distribution for such
pairs should be random-like with some concentration around
the mean value. That is why we define the 𝐾𝑜𝑢𝑡×𝐾𝑖𝑛 matrix
of weight density 𝑃 as:

(𝑃)𝑖,𝑗 = 𝑝𝑖,𝑗 =

∑
𝛼∈𝑈𝑖,𝛽∈𝑉𝑗

𝑤𝛼,𝛽

∣ 𝑈𝑖 ∣∣ 𝑉𝑗 ∣ .

We define yet another directed random graph, corresponding
to 𝑃 , 𝒢𝑃 , with independent links and with link probability:

𝑃 ((𝑖, 𝑗) ∈ 𝐸𝑃) = 𝑝𝑢𝑖,𝑣𝑗
,

where 𝑢𝑖 is defined from relation: 𝑖 ∈ 𝑈𝑢𝑖
and, similarly 𝑣𝑗 :

𝑗 ∈ 𝑉𝑣𝑗
. This latter graph is a kind of compressed version

of the first one. 𝒢𝑃 should be selected in such a way that it
gives a Sz. type structure in a best possible way. This is a
combinatorial optimization problem with huge search space,
since the number of possible partitioning is big, even in our
case.

We use a heuristic approach based on maximal expected log
likelihood where we can use a greedy expectation maximiza-
tion (EM) algorithm. The quality of approximation is then

Proceedings of the 2011 International Workshop on Modeling, Analysis, and Control of Complex Networks 25

evaluated by using Akaike information criteria (AIC), with
minimal value giving the best choice of parameters. Thus our
approach is quite similar to that in [7] where a binary directed
graph was considered. The main emphasis of [7] was in
predicting unknown connections based on a partially observed
network. It seems that such a method can be very successful in
this type of tasks. We are just interested in clusters themselves
and link patterns between them. Thus the task is to structure
the p2p network. However, due to computational difficulties
the method is probably restricted to moderate size graps like
ours. On the other hand, for a very large graph, the algorithmic
version of SzRL, [10] could be used, as was already done
in [12] in the digital image segmentation. Such an algorithm
that finds clusters indicated by SzRL runs in polynomial time
with respect to the number of nodes. Probably even better
algorithm would be the one sugessted in [11], that can be used
even for small graphs. Unfortunately, we noticed this paper
only after this paper was almost finished. However, we are
looking forward applying such algorithm to find and compare
Sz. clusterings in our case.

The goal function, expected log likelihood, that we want to
maximize is

𝑙(𝑃) = 𝐸𝒢𝑤
log𝑃 (𝐺 ∈ 𝒢𝑃), (1)

that is, by definition:

𝑙(𝑃) =
∑

1≤𝑖,𝑗≤𝑛

(
𝑤𝑖,𝑗 log 𝑝𝑢𝑖,𝑣𝑗

+ (1− 𝑤𝑖,𝑗) log(1− 𝑝𝑢𝑖,𝑣𝑗
)
)
.

(2)
The AIC index is defined as

𝐴𝐼𝐶 = −2max
𝑃

𝑙(𝑃) + 2𝐾,

where 𝐾 is the number of parameters of the model. in our
case 𝐾 = 𝐾𝑖𝑛 × 𝐾𝑜𝑢𝑡 + 2𝑛 + 2, the first term defines the
dimension of probability matrix 𝑃 , the second corresponds
to two functions that define two partitions and number 2
corresponds to 𝐾𝑖𝑛 and 𝐾𝑜𝑢𝑡. That is why we have:

𝐴𝐼𝐶 = −2max
𝑃

𝑙(𝑃) + 2𝐾𝑖𝑛×𝐾𝑜𝑢𝑡+ 4𝑛+ 4. (3)

III. CLUSTERING ANALYSIS

We used a greedy EM-algorithm similar to that used in [7].
For fixed 𝐾𝑜𝑢𝑡 and 𝐾𝑖𝑛, the algorithm starts from random
clusters. Then the 𝑃 -matrix is calculated. Then for each peer
the algorithm finds clusters in such a way that the expected
log-likelihood function 𝑙(𝑃) is maximal. This is the greedy
step of algorithm and the maximisazion of likelihood is done
only by changing position of peers in the clusters one-by-one.
This is necessary since the proper maximation of likelihood
in just one step is practically impossible. However, for EM-
algorithms it is known that even this kind of incremental
optimisazion finds at least a local maximum [13]. Then the
algorithm was run several hundred times to capture the global
maximum log-likelihoods. The experiments were done using
all combinations of (𝐾𝑖𝑛,𝐾𝑜𝑢𝑡) in the range of both in

Fig. 2. 48 nodes representing peers in our PlanetLab experiment and directed
links pointing from downloading peer to uploading one

(2, 3, ⋅ ⋅ ⋅ , 10), and AIC parameters were calculated. The case
of no clusters was considered also. This would be an Erdös-
type random graph with link probability equal to the link
density of the entire network. However, in our case we must
take into account that some links are ’impossible’ because only
antifingers are used. That is why we used a restricted random
graph where all such possible links were considered with equal
probability, and the AIC was calculated for such a model.
It turned out that the optimum was 𝐾𝑖𝑛 = 3,𝐾𝑜𝑢𝑡 = 3,
although the minimum was not very sharp. Some close values
could be also considered as plausible ones, but we prefer a
symmetric case with 𝐾𝑖𝑛 = 𝐾𝑜𝑢𝑡 = 3. For larger graphs one
could use spectral methods to define the range of possible
cluster numbers, [7], and thus reducing the computations
needed.

Figure 2 shows the original graph to be clustered. This
picture is of cource very confusing, and the need for some
kind of preprocessing is quite obvious.

In Figure 3, the histogram of non-zero link weights of the
whole system is shown. It has a broad peak around mean
value. There is also a peak for very small weights. This
could be interpreted as a noise. When the system starts, the
fingers can change their targets, and meanwhile few chunks
are downloaded from these antifingers.

As a result of our Sz. clustering, we get a reduced graph
where the nodes are in- and out-groups, see Figure 4. Link
weights are average link weights between those clusters. Heav-
ily connected pairs are the ones that are important. However,
since the corresponding in- and out groups overlap, it is
difficult to see in details what are these important pairs like.

26 Proceedings of the 2011 International Workshop on Modeling, Analysis, and Control of Complex Networks

0.2 0.4 0.6 0.8 1.0

10

20

30

40

50

60

Fig. 3. Histogram of all non-zero weights in the peer-to-peer network. Mean
value is 0.152061

1

2 3

1

23

Pajek

Fig. 4. Relations betwee 3 out - and 3 in groups or the ’reduced graph’ of
the original graph. The line thickness is proportional to mean weight between
pairs.

That is why we draw characteristic examples of those pairs.
We used the following visualization scheme for all graphs. For
each pair we get 4 groups, a kind of ’bow-tie’. First are nodes
that have only outgoing links, second those that have only
incoming links, third those that have both and finally those
that are outside the pair is a link-less circle. In these terms
we found very different patterns, which is of cource what we
were after.

The sizes of clusters were not equal but there were not
very small clusters either. The non-zero weight distribution
between 9 pairs seems to show indeed qualitatively different
distributions, with different mean values. Thus, although our
experiment was small scale and the streaming algorithm quite
basic, the clustering method seems to be promising. In the
following Figures, we show some subgraphs that also support
this view.

In Figure 5 is shown the pair (1, 1), which has very weak
links, as can be seen already from the reduced graph in Figure

Pajek

Fig. 5. The first cluster pair (1, 1). The link weights are low. The smallest
group with 4 red nodes is the one where both in and out links exist, the yellow
group has only outgoing links and finally, green nodes have only incoming
links. Blue nodes are outside these two clusters. This is almost like: ’the
yellow nodes download a little from the green nodes’.

0.05 0.10 0.15 0.20 0.25 0.30

5

10

15

20

Fig. 6. Histogram of the distribution of non-zero weights for the (1, 1)
cluster pair. Mean value is 0.0722, with small link weights prevailing.

4.
The histogram of weight distributions of pair (1, 1) is

shown in Figure 6. Qualitatively it is similar to exponential
distribution, with very low mean.

In Figure 7 we show an example of important pair (1, 3),
with high level of weights. In this case all 3 parts of bow-tie
are similar in size, forming a kind of regular triangle.

In Figure 8 we show the histogram of weights for pair (1, 3),
a slight peak is apparent around the mean value.

For pair (1, 3) we draw weights for all peers involved, see
Figure 9. Each line corresponds to a peer in this cluster pair.
The lines gives the link weights of the corresponding peer in
this cluster pair listed in decreasing order. The values are read
at integer 𝑥-coordinates and are joined with lines for clarity.
The lines are not very flat, as should be. However, due to
limited size of network this could well be the best one can

Proceedings of the 2011 International Workshop on Modeling, Analysis, and Control of Complex Networks 27

Pajek

Fig. 7. Another cluster pair (1, 3), with high weights. Here all tree groups
are similar in size.

0.2 0.4 0.6 0.8

2

4

6

8

10

12

Fig. 8. Histogram of distribution of non-zero weights for (1, 3) cluster pair,
with mean 0.22319.

hope. In any case this pair has some high weight levels, that
was correctly detected by Sz. clustering.

The importance of cluster pair (1, 3), is seen in the plot of
Figure 10, where total weights of peers within these clusters
are shown, each dot represn the value of its total weight,
counted in this cluster pair. It shows that all peers get a
substantial part, typically more than 50% of all chunks, in
relations within these clusters.

Next example, the pair (3, 1) are clusters that have very low
link weights between them, see Figure 11.

Its distribution of weights is almost a constant small value,
shown in Fig. 12.

Yet another quite important pair is (3, 2), see Fig. 13, which
is like ’client-server’, where on party downloads a lot from the
other one.

1 2 3 4 5 6

0.2

0.4

0.6

0.8

Fig. 9. Link weights for (1, 3) cluster pair. Each line represents link weight
for each peer .

0 5 10 15

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Fig. 10. Integral link weights for cluster pair (1, 3), high values are indicators
of importance of this substructure. A substantial portion of chunks are copied
within it.

Pajek

Fig. 11. This pair (3, 1) of clusters is with only modest link weights, these
clusters are almost independent of each other. It is an example of a cluster
pair with almost zero weight density.

28 Proceedings of the 2011 International Workshop on Modeling, Analysis, and Control of Complex Networks

0.05 0.10 0.15 0.20 0.25 0.30

5

10

15

20

Fig. 12. Histogram of distribution of non-zero weights for (3, 1) cluster pair.
It is almost just one small weight value

Pajek

Fig. 13. This pair (3, 2) is with high link values. It is mostly of ’client-server’
type, one group is downoalding from the other.

The downloading profiles of all peers in pair (3, 2) are
shown in Fig. 14.

An interesting pair is (2, 1), with ’peer-to-peer’-like heavy
weight clusters, see Fig. 15. This means that there is much
reciprocity in links, many peers both upload and download a
lot within this pair.

The histogram of weights in pair is shown in Fig. 16. It has
a broad peak around the mean value 0.148....

In this case we get quite flat link weights for peers in (2, 1),
see Fig. 17.

The integral weights of pair (2, 1) are shown in Fig 18,
indicating that this pair is important for streaming, because
most of the chunks of peers involved are obtained within this
pair.

IV. CONCLUSION

This preliminary analysis gives us some hope that Sze-
merédi-type clustering approach could give some significant
information about a p2p system and reveal some statistical

1 2 3 4 5

0.2

0.4

0.6

0.8

1.0

Fig. 14. Link weights for pair (3, 2). Each line represent link weights for
one peer, the values are read from integer coordinates. Link weights are large
and quite uniform with flat profile.

Pajek

Fig. 15. Subgraph of clusters (2, 1). Notably there is a set of peers that are
both uploading and downloading much.We can say that the subgroup of green
nodes is a ’good’ group in sense that there is good level of balance between
uploading and downloading.

0.1 0.2 0.3 0.4 0.5

5

10

15

Fig. 16. Histogram of distribution of non-zero weights for (2, 1) cluster pair.

Proceedings of the 2011 International Workshop on Modeling, Analysis, and Control of Complex Networks 29

2 4 6 8 10

0.1

0.2

0.3

0.4

0.5

Fig. 17. Distribution of weights on links for clusters (2, 1). Each line
represents link weights for each peer in cluster 2 pointing to cluster 1. Most
lines are quite flat indicating uniformity.

0 5 10 15 20

0.6

0.7

0.8

0.9

1.0

Fig. 18. Integral weights of peers within clusters (2, 1). Each point gives
the proportion of chunks obtained within this subgraph. High level of these
magnitudes indicate that this is an important subgraph in the peer-to-peer
network.

properties of peers’ behavior, otherwise almost invisible. This
happened although our system was very small, only with 48
nodes. For larger systems one could expect sharper results,
in the sense that weight distributions for cluster pairs would
be more concentrated around the means, thus making the
pairs ’more regular’. The clustering was found as a result of
combinatorial optimization, which means a huge search space
in contrast to traditional clusterings that are easier to find.
As a result the Sz. clustering can also give some untrivial
information about the system that is difficult to reveal without
such a systematic approach.

Our system was quite small, yet it was large enough to
prevent the use of direct exhaustive methods to find clusters.
Instead we used a greedy algorithm and run it several times
to find the global optimum. In more thorough study one
should use approaches like Monte Carlo simulations, [7],

to find reliably the global optimum. For larger p2p systems
algorithmic version of SzRL could be more plausible solution.
Further challenges would be finding a distributed algorithm
that can find the Sz. type clusterings. In ’usual’ clustering
where clusters are associated with dense subgraphs methods
based on random walks were suggested, [14]. An interesting
suggestion was that the regular partitioning can be explicitly
found by generating random neighborhoods of graph, [15].
This could be a direction to find a distributed Sz. clustering
algorithm.

Acknowledgments This work was supported by TEKES as
a part of the Future Internet program of TIVIT. We would
like to thank prof. Ilkka Norros for reading the manuscript.
We also thank anonymous referees for valuable comments.

REFERENCES

[1] Cohen, B.: BitTorrent specification (2006) http://www.bittorrent.org.
[2] Bonald, T., Massoulie’, L., Mathieu, F., Perino, D., Twigg, A.: Epidemic

live streaming: Optimal performance trade-offs. In: Proc. SIGMET-
RICS’08, Annapolis, Maryland, USA (2008)

[3] Norros, I., Pehkonen, V., Reittu, H., Binzenhofer, A., Tutschku, K.:
Relying on randomness - PlanetLab experiments with distributed file-
sharing protocols. In: Next Generation Internet Networks 3rd EuroNGI
Conference, Trondheim, Norway (2007)

[4] Norros, I., Pehkonen, V., Reittu, H.: Peer-to-peer streaming experiments
based on chord overlay. In: Euro-NF International Workshop on
Traffic and Congestion Control for the Future InternetNext Generation
Internet,EuroNF-TCCFI, Volos, Greece (2011)

[5] Legout, A., Liogas, N., Kohler, E.: Clustering and sharing in BitTorrent
systems. In: Proc. SIGMETRICS’07, California USA. (2007)

[6] Komlós, J., Simonovits, M.: Szemerédi’s regularity lemma and its
applications in graph theory, in: D. Miklós and V.T. Sós and T. Szonyi,
editors, Combinatorics, Paul Erdos is Eighty. János Bolyai Mathematical
Society (1996) Budapest, pp.295-352.

[7] Nepusz, T., Négyessy, L., Tusnády, G., Bazsó, F.: Reconstructing cortial
networks: case of directed graphs with high level of reciprocity in: B.
Bollobás and R. Kozma and D. Miklós, editors, Handbook of Large-
Scale Random Networks, volume 18 of Bolyai Society of Mathematical
Studies. Springer (2008) pp. 325-368.

[8] Szemerédi, E.: Regular partitions of graphs. In: CNRS, Paris, pp. 399-
401 (1978)

[9] Scott, A.: Szemerédi’s regularity lemma for matrices and sparce graphs.
(Combinatorics, Probability and Computing) to appear.

[10] Alon, N., Duke, R., Lefmann, H., Rödl, V., Yuster, R.: The algorithmic
aspects of the regularity lemma. Journal of Algorithms 16 (1994)

[11] Fischer, E., Matsliah, A., Shapira, A.: Approximate hypergraph parti-
tioning and applications. (SIAM Journal on Computing (SICOMP) (to
appear))

[12] A.Sperotto, Pelillo, M.: Szemerédi’s regularity lemma and its application
to pairwise clustering and segmentation. In: Proc. EMMCVPR, LNCS
4679, Ezhou, China (2007)

[13] Neal, R., Hinton, G.: A view of the EM algorithm that justifies
incremental, sparse, and other variants . In: Learning in Graphical
Models (M.I. Jordan, ed.), MIT Press (1998)

[14] Latapy, M., Pons, P.: Computing communities in large networks using
random walks. J. Graph Algorithm Appl. 10 (2006)

[15] Tao, T.: Szemeredis regularity lemma via random
partitions (2011) http://terrytao.wordpress.com/2009/04/26/
szemeredis-regularity-lemma-via-random-partitions/.

30 Proceedings of the 2011 International Workshop on Modeling, Analysis, and Control of Complex Networks

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

