
A Graph Partitioning Game for

Distributed Simulation of Networks
A. Kurve2, C. Griffin3 and G. Kesidis1,2

1CS&E Dept, 2EE Dept and 3ARL, The Pennsylvania State University, University Park, PA, 16802

{ack205, cxg286, gik2}@psu.edu

Abstract—Distributed simulation of large and complex net-
works requires equitable partitioning of the network model. We
propose an iterative partitioning scheme for distributed network
simulation that is based on a game theoretic model of simulated
network nodes acting as players. We first model the cost function
for the nodes and prove that a Nash equilibrium exists for
the non-cooperative game in pure strategies. We then propose
an iterative algorithm based on our model and prove that it
converges to one of the many Nash equilibria. We show with the
help of simulations that such a design of cost function moves the
system towards optimum partition of the network model as the
algorithm converges.

keywords: parallel network simulation, game theory, graph

partitioning, Nash equilibrium.

I. INTRODUCTION

Simulation of large communication networks of indepen-

dent nodes on distributed processors relies on efficient load

balancing techniques to overcome loss of efficiency due to

synchronization between the processors. The performance of

the combined multi-processor system is directly related to the

load on the maximally loaded processor, which prevents the

system from running any faster. Hence the goal of a load

balancing algorithm could be to minimize the load on the

maximally loaded processor [14]. This has to be done taking

into consideration the performance cost of communicating be-

tween the processors. For example, if two routers in a network

model under simulation are supposed to generate heavy traffic

between them, then the logical processes in the simulation task

representing the two routers need to communicate with each

other frequently. Hence, it makes sense to have the two logical

processes running on the same processor. The performance

cost of communication between processors can be large if the

processors are remotely connected by, say, Ethernet. In other

words, simulation software must suitably divide its logical

processes between processors and at the same time minimize

the interdependency of threads running on different processors

to prevent the extra computational burden caused by rollbacks

and deadlock resolution.

The computational burden of each logical process along

with the interdependency can be represented by a graph.

The nodes in the graph represent logical processes and node

weights represent their estimated computation cost. The edges

in the graph represent the inter-dependency and the edge

weight the amount of communication between the logical

This work was funded in part by NSF Trustworthy Computing grant
0831068.

processes. It would also make sense to allocate all logical

processes associated with a node (router) in a network model

under simulation to the same processor. Hence instead of

partitioning the graph of logical processes, we can partition

the network model itself. To dynamically calculate the node

and the edge weights we can use an event generation list to

check for future events in line for simulation [1]. We can also

use the data generated using pre-simulation runs to estimate

the node and the edge weights [12]. Using this information

we can calculate the approximate load generated by all the

logical processes associated with a node and also the inter

node communication traffic.

The classical graph partitioning problem which is known to

be NP-complete [6] can be heuristically solved using one of

the many techniques such as those discussed in [7]. Most of

the proposed techniques are fully centralized. Moreover, due to

the dynamic event-driven nature of the node and edge weights,

graphs in our proposed problem are highly dynamic. The dy-

namic and unpredictable nature of nodes in the network model

suggest the need for a self correcting and distributed graph

partitioning algorithm. Game theoretic tools provide insights

into the design of distributed algorithms with competition. In

this paper, a game theoretic formulation of the classical load

balancing problem is studied and this formulation is extended

to include the inter-processor communication constraints. We

prove that a Nash equilibrium exists in pure strategies under

a specific network partition cost function. We then design

an iterative graph partitioning algorithm where each partition

takes turns to give up its “most dissatisfied” node. The “most

dissatisfied” node is the one which would be able to decrease

its cost the most by switching processors. We show that this

algorithm converges to a Nash equilibrium. We also propose

a coarse initial partition first proposed in [10] that acts as a

starting point for the iterative algorithm. We argue that initial

partitioning need not be precise owing to the fact that the

network model parameters i.e., node and edge weights, are

difficult to estimate a priori and also change with time. Hence

we rely on distributed iterative partition refinement steps based

on our game theoretic model to improve the partition and track

the changes in the network model under simulation.

II. LITERATURE SURVEY

The resource intensive nature of simulation of large net-

works has prompted researchers to look for solution either in

scaled down topologies or distributed simulation on parallel

9978-0-9836283-1-6 c© 2011 ITC

This paper was peer reviewed by subject matter experts for publication in the Proceedings of Cnet 2011

processors. Papers on scaled down network topologies such

as [18] aim to find better techniques to omit the intricate

details of a large network while at the same time retaining the

accuracy of the simulation. The partitioning problem, which

naturally accompanies any multiprocessor implementation, has

been looked at from different perspectives: algorithm design

[8] , benchmarking [21] and implementation [3]. [11] studies

partitioning algorithms for distributed virtual environments

(DVEs) using a divide and conquer technique. The divide

and conquer technique divides the avatars into regions of

influence and the initial partitioning is performed on these

regions (group of avatars). [21] focuses mainly on the char-

acterization of factors that affect the simulation time called

“benchmarking”. The benchmarking technique customizes the

partition model to a specific network model. A major issue

in network model partitioning for simulations is the lack of

knowledge about the computational load generated by nodes

and the inter node traffic during compilation of the network

model. Hence, assuming unit computational load for each

node (node weight) and unit inter node communication (edge

weight), a simple and attractive solution can be obtained [17].

Dealing with highly dynamic networks adds complexity as it

implies fast changing node and edge weights. In this case an

optimal partitioning fails to remain so at later time instances.

Regularly performing a total refresh of the network is not

a computationally viable option. [16] - [20] investigate the

problem of dynamic load balancing or graph partitioning.

[3] focuses on the implementation details of partitioning and

measuring parameters needed for efficient partitioning. [17]

proposes initial partitioning based on equal node and edge

weights and the partitioning is refined repeatedly via a load

balancing cycle and a communication refinement cycle. [16]

uses the fact that simulations consist of multiple runs with

same parameter settings and uses MeTiS software [8] for initial

partitioning.

An extensive game theoretic study of the load balancing

problem has been done in [4]. Chapter 20 of [15] titled “Selfish

Load Balancing” gives a nice overview of results in this area.

In this paper, we look at a similar formulation of the problem,

but we also consider the inter-processor communication cost.

Hence we can claim that our study has a more generalized

objective than load balancing. We also use insights gained

from our theoretical results to design an iterative partitioning

scheme to deal with dynamically changing load. The work

presented in [12] is by far the closest to the work presented

in this paper with some major differences. [12] proposed an

iterative method based on the “gain” of each node, however,

the gain only minimizes the cost of the cut in the graph. More-

over, the “forceful” convergence occurs by allowing the nodes

to migrate only once. In our work convergence is spontaneous

and a natural outcome with a guaranteed partition refinement.

We support our claims with a theoretical study of the problem.

Game theoretic study for the clustering problem has been done

in works such as [2] where evolutionary game theory has

been applied to the similarity based clustering problem. The

equilibrium in terms of the hypothesis of individual players

pertaining to cluster memberships is reached by unsupervised

method of learning from mistakes in a large population of

players. Our method instead uses the classical notion of game

theory and Nash equilibrium under strict competition.

III. PROBLEM SETUP AND OUTLINE

Consider a graph G = (V,E) representing the network

model to be simulated. First, we first must estimate the compu-

tational load generated by each node and the communication

load between the logical processes associated with each node

to assign node weights and edge weights, respectively, of the

graph. Second, we wish to find a distributed technique to

equitably load-balance among the processors that also takes

into consideration the inter-processor communication cost. We

assume that the simulation program consists of a mechanism

that estimates the node weights (bi) and the edge weights (cij)

from the list of future events. We focus on the second part

which deals with finding an optimum partition. The graph

G is partitioned between K processors. Let bi represent the

computational load of the ith node. Let cij denote the cost

of communicating over the edge (i, j) which represents the

average traffic between node i and node j.

Most techniques proposed in the area of network simu-

lation on distributed processors use one of the many graph

partitioning heuristics based on multilevel partitioning [7].

The multilevel partitioning algorithm was initially developed

for centralized implementation and later modified to exploit

the parallelism of a collection of processors. The centralized

scheme requires a dedicated task which can run either on

one of the K processors or on a separate dedicated host

machine. As such, there is a need for exploring a graph parti-

tioning heuristic that naturally exploits the parallelism of the

processors with minimal centralized assistance to coordinate

the algorithm. We wish to distribute among the participating

hosts as much as possible the load of tracking our partition

as the graph characteristics changes. We assume a connected

network model graph, otherwise we can easily convert a

disconnected graph into a connected one by adding edges of

weight zero between the disconnected subgraphs. Hence the

initial partitioning [10] consists of finding focal nodes and

then expanding partitions hop-by-hop (similar to a flooding

algorithm). The initial partition is sub-optimal and so is refined

using the iterative refinement schemes.

Consider a centralized formulation of the graph partitioning

problem. Let xki = 1 if node i belongs to processor k;

otherwise xki = 0. We require
∑

k xki = 1 ∀i = 1, 2, ..., |V |.
Let wk be the normalized capacity of the kth processor so that∑

k wk = 1. The centralized ‘K’-way partitioning problem

aims to solve the following integer program.

min C0 =
K∑

k=0

⎛
⎝∑

j∈V xkjbj

wk

−
∑
j

bj

⎞
⎠

2

+
μ

2

∑
i,j

cijxki(1− xkj) (1)

subject to
∑
k

xkj = 1 ∀ j and xkj ∈ {0, 1} ∀ k, j.

Here μ denotes the relative weight given to the inter-host

communication cost. This is a quadratic integer programming

10 Proceedings of the 2011 International Workshop on Modeling, Analysis, and Control of Complex Networks

problem the convexity of which depends on the network graph.

In most cases it will not be a convex problem. We can think of

decomposing this problem into a set of K subproblems each of

which is solved by a single partition. However, the constraints∑
k xkj = 1 ∀ j make such a decomposition difficult to

realize.

IV. A MODIFIED PARTITIONING GAME

A natural way of formulating a game for graph partitioning

would consist of partitions/processors as players and each

partition bidding for the nodes that help to maximize its

utility/payoff or minimize its cost. This can be formulated

as a combinatorial auction game. Combinatorial auctions [5]

have been studied widely, however we are not aware of

any work that uses them for graph partitioning. Treating the

nodes as players who may choose from among partitions

(processor) to minimize their own costs is an alternative

approach to formulating the partitioning problem as a game.

This approach avoids the decomposition problem associated

with the constraints
∑

k xkj = 1 ∀ j. We try to find a suitable

cost function that guarantees a Nash equilibrium for the game

and gives us an optimum partition in some sense at the Nash

equilibrium.

A. Node Cost Function

Suppose there are N nodes and K partitions. Let ri ∈
{1, 2, ...K} be the partition chosen by the ith node. Let the

the normalized capacity or speed of the ith processor be:

wi =
si∑K

j=1
sj

,

where si is the speed of ith processor. Let us assign the

following cost function to the ith node.

Ci(ri, r−i) =
bi

wri

∑
j:rj=ri
j �=i

bj +
μ

2

∑
j:rj �=ri

cij , (2)

where the computational cost of a node intuitively depends on

two factors: the existing load on the assigned processor:∑
j:rj=ri,j �=i

bj

and the computational load that the node will bring to the

processor (bi). Suppose that the computational load generated

by the node is zero (bi = 0), then the computational part of the

cost should be zero. Hence multiplication by bi makes sense.

The second term in the sum represents the weight of edges that

connect the ith node with nodes in other partitions, which will

incentivize the node to choose a partition with which it is well

connected.

B. Nash Equilibrium for the modified game

A strategy profile r = (r∗
1
, r∗

2
, ..., r∗N) is a Nash equilibrium

iff

Ci(r
∗
i , r

∗
−i) ≤ Ci(ri, r

∗
−i) ∀ri ∈ {1, 2, ...,K} ∀i. (3)

Theorem 1: For the game described above, a Nash Equilib-

rium exists in pure strategies.

Proof: To construct a proof of Theorem 1, consider the

following combinatorial optimization problem:

min
r

Ψ(r) :=
∑
i

(
bi

wri

∑
j:rj=ri
j �=i

bj +
μ

2

∑
j:rj �=ri

cij

)
.

Hence, Ψ(r) is the sum of the cost of all nodes for a

particular assignment. We can interpret it as the social welfare

function. We can find an assignment r̂ = (r̂1, r̂2, ..., r̂N) which

minimizes the objective. We prove, by contradiction, that r̂ is

also the Nash equilibrium for our game.

Suppose node l is moved from processor k1 to processor

k2, then we can divide the objective function as follows:

Ψ(r) =

(
bl

wrl

∑
j:rj=rl
j �=l

bj +
μ

2

∑
j:rj �=rl

clj

)

+
∑
i:i �=l
ri=k1

(
bi

wri

∑
j:rj=ri
j �=i

bj +
μ

2

∑
j:rj �=ri

cij

)

+
∑
i:i �=l
ri=k2

(
bi

wri

∑
j:rj=ri
j �=i

bj +
μ

2

∑
j:rj �=ri

cij

)

+
∑

i:i �=l,ri �=k1

ri �=k2

(
bi

wri

∑
j:rj=ri
j �=i

bj +
μ

2

∑
j:rj �=ri

cij

)

Hence

Ψ(r) = Ψ(r|i = l) + Ψ(r|i �= l, ri = k1)+

Ψ(r|i �= l, ri = k2) + Ψ(r|i �= l, ri �= k1, ri �= k2)

The first term is the cost of node l, the second term is sum of

the costs of the nodes that are assigned to the same processor

as l, the third term is the sum of the costs of the nodes that

belong to the prospective processor of l and the fourth term is

the sum of the costs of the processors that belong to neither

the current processor of node l nor the prospective processor

of node l.

Suppose there exists a better assignment r∗l �= r̂l for a node

l, i.e., the lth node can decrease its cost by moving from r̂l
processor to r∗l processor. Then the new assignment vector is

r∗ = (r∗
1
, r∗

2
, ..., r∗N) and Cl(r

∗)− Cl(r̂) < 0:

Ψ(r∗)−Ψ(r̂) =

Ψ(r∗|i = l)−Ψ(r̂|i = l)+

Ψ(r∗|i �= l, r∗i = r̂l)−Ψ(r̂|i �= l, r̂i = r̂l)+

Ψ(r∗|i �= l, r∗i = r∗l)−Ψ(r̂|i �= l, r̂i = r∗l)+

Ψ(r∗|i �= l, r∗i �= r̂l, r
∗
i �= r∗l)−

Ψ(r̂|i �= l, r̂i = r̂l, r̂i �= r∗l)

Claim 1: Ψ(r∗|i = l)−Ψ(r̂|i = l) < 0
Proof: The proof of this claim is trivial. We know that,

Ψ(r∗|i = l)−Ψ(r̂|i = l) = Cl(r
∗)− Cl(r̂),

Proceedings of the 2011 International Workshop on Modeling, Analysis, and Control of Complex Networks 11

and we know from our assumption that

Cl(r
∗)− Cl(r̂) < 0.

Claim 2:

Ψ(r∗|i �= l, r∗i �= r̂l, r
∗
i �= r∗l)−

Ψ(r̂|i �= l, r̂i = r̂l, r̂i �= r∗l) = 0

Proof: This term represents the sum of the change in

the cost values of nodes which belong to neither of the two

processors involved in the transfer of node l. Hence there is

no change in their individual cost function.

Claim 3:

Ψ(r∗|i �= l, r∗i = r̂l)−Ψ(r̂|i �= l, r̂i = r̂l)+

Ψ(r∗|i �= l, r∗i = r∗l)−Ψ(r̂|i �= l, r̂i = r∗l) < 0

Proof:

Ψ(r∗|i �= l, r∗i = r̂l)−Ψ(r̂|i �= l, r̂i = r̂l) =∑
i:i �=l
r∗i =r̂l

(
bi

wr∗
i

∑
j:r∗j=r∗i

j �=i

bj +
μ

2

∑
j:r∗

j
�=r∗

i

cij

)
=

∑
i:i �=l
r̂i=r̂l

(
bi

wr̂i

∑
j:r̂j=r̂i
j �=i

bj +
μ

2

∑
j:r̂j �=r̂i

cij

)
=

∑
i:i�=l
r∗i =r̂l

(
bi

wr̂l

∑
j:r∗j=r̂l

j �=i

bj +
μ

2

∑
j:r∗

j
�=r̂l

cij

)

−
∑
i:i �=l
r̂i=r̂l

(
bi

wr̂l

∑
j:r̂j=r̂l
j �=i

bj +
μ

2

∑
j:r̂j �=r̂l

cij

)
.

We know that the two sets {i : i �= l, r̂i = r̂l} and {i : i �=
l, r∗i = r̂l} are equal. This is so because all other assignments

except rl are the same in the new assignment vector r∗. So,

Ψ(r∗|i �= l, r∗i = r̂l)−Ψ(r̂|i �= l, r̂i = r̂l) =∑
i:i�=l
r∗i =r̂l

(
bi

wr̂l

∑
j:r∗j=r̂l

j �=i

bj −
bi

wr̂l

∑
j:r̂j=r̂l
j �=i

bj

+
μ

2

∑
j:r∗

j
�=r̂l

cij −
μ

2

∑
j:r̂j �=r̂l

cij

)

=
∑
i:i �=l
r∗i =r̂l

(
bi

wr̂l

(∑
j:r∗j=r̂l

j �=i

bj −
∑

j:r̂j=r̂l
j �=i

bj

)

+
μ

2

(∑
j:r∗

j
�=r̂l

cij −
∑

j:r̂j �=r̂l

cij

))

We know that for i �= l, {j : r∗j = r̂l, j �= i} represents

the set of nodes except the lth and ith node which are

currently assigned to r̂l
th processor and {j : r̂j = r̂l, j �= i}

represents the set of nodes except the lth and ith node

whose new assignment is the r̂l
th processor. So, for i �= l,

{j : r∗j = r̂l, j �= i} \ {j : r̂j = r̂l, j �= i} = l. This implies∑
j:r∗j=r̂l

j �=i

bj −
∑

j:r̂j=r̂l
j �=i

bj = −bl.

Also, {j : r∗j �= r̂l} \ {j : r̂j �= r̂l} = l. So, we can write∑
j:r∗

j
�=r̂l

cij −
∑

j:r̂j �=r̂l

cij = cil,

which implies,

Ψ(r∗|i �= l, r∗i = r̂l)−Ψ(r̂|i �= l, r̂i = r̂l) =∑
i:i �=l
r∗i =r̂l

(
−bl

(bi

wr̂l

)
+

μ

2
cil

)
.

Using a similar approach, we can prove:

Ψ(r∗|i �= l, r∗i = r∗l)−Ψ(r̂|i �= l, r̂i = r∗l) =∑
i:i �=l
r∗i =r∗l

(
bl

(bi

wr∗
l

)
−

μ

2
cil

)
.

So,

Ψ(r∗|i �= l, r∗i = r̂l)−Ψ(r̂|i �= l, r̂i = r̂l)+

Ψ(r∗|i �= l, r∗i = r∗l)−Ψ(r̂|i �= l, r̂i = r∗l) =∑
i:i �=l
r∗i =r̂l

(
−bl

(bi

wr̂l

)
+

μ

2
cil

)
+

∑
i:i�=l
r∗i =r∗l

(
bl

(bi

wr∗
l

)
−

μ

2
cil

)
.

Consider

Cl(r
∗)− Cl(r̂) =

bl
∑

i:r∗i =r∗l
i �=l

bi

wr∗
l

+
μ

2

∑
i:r∗i �=r∗l

i �=l

cil−

bl
∑

i:r̂i=r̂l
i �=l

bi

wr̂l

−
μ

2

∑
i:r̂i �=r̂l
i �=l

cil.

Now,∑
i:r∗i �=r∗l

i �=l

cil −
∑

i:r̂i �=r̂l
i �=l

cil

=
∑
r∗i =r̂l
i �=l

cil +
∑

i:r∗i �=r∗l
r∗i �=r̂l
i�=l

cil −
∑
r̂i=r∗l
i �=l

cil −
∑

i:r̂i �=r̂l
r̂i �=r∗l
i �=l

cil.

But, ∑
i:r∗i �=r∗l
r∗i �=r̂l
i �=l

cil =
∑

i:r̂i �=r̂l
r̂i �=r∗l
i �=l

cil.

12 Proceedings of the 2011 International Workshop on Modeling, Analysis, and Control of Complex Networks

Hence,∑
i:r∗i �=r∗l

i �=l

cil −
∑

i:r̂i �=r̂l
i �=l

cil =
∑
r∗i =r̂l
i �=l

cil −
∑
r̂i=r∗l
i �=l

cil

⇒ Cl(r
∗)− Cl(r̂) = −bl

∑
i:r̂i=r̂l
i �=l

bi

wr̂l

+
μ

2

∑
r∗i =r̂l
i �=l

cil

+ bl
∑

i:r∗i =r∗l
i �=l

bi

wr∗
l

−
μ

2

∑
r̂i=r∗l
i �=l

cil.

But we know that {i : r̂i = r̂l, i �= l} = {i : r∗i = r̂l, i �= l}
and {r̂i = r∗l , i �= l} = {r∗i = r∗l , i �= l}. So,

Cl(r
∗)− Cl(r̂) =

− bl
∑

i:r∗i =r̂l
i �=l

bi

wr̂l

+
μ

2

∑
r∗i =r̂l
i �=l

cil

+ bl
∑

i:r∗i =r∗l
i �=l

bi

wr∗
l

−
μ

2

∑
r∗i =r∗l
i �=l

cil =

∑
i:i �=l
r∗i =r̂l

(
−bl

(bi

wr̂l

)
+

μ

2
cil

)
+

∑
i:i �=l
r∗i =r∗l

(
bl

(bi

wr∗
l

)
−

μ

2
cil

)
=

Ψ(r∗|i �= l, r∗i = r̂l)−Ψ(r̂|i �= l, r̂i = r̂l)+

Ψ(r∗|i �= l, r∗i = r∗l)−Ψ(r̂|i �= l, r̂i = r∗l)

Thus it follows that:

Ψ(r∗|i �= l, r∗i = r̂l)−Ψ(r̂|i �= l, r̂i = r̂l)+

Ψ(r∗|i �= l, r∗i = r∗l)−Ψ(r̂|i �= l, r̂i = r∗l) < 0

This completes the proof of this claim.

Hence using Claims 1, 2 and 3, Ψ(r∗) − Ψ(r̂) < 0. This

contradicts our assumption that r̂ is an optimal solution of our

problem. Hence r̂ is also the Nash equilibrium.

V. ALGORITHM DESIGN AND ANALYSIS

A. Initial Partitioning

The goal of an initial partitioning is not to obtain an

optimum partition, but an initial distributed node-to-host as-

signment from which the iterative partitioning can commence

potentially after the simulation actually begins. We argue that

due to initial uncertainty of node and edge weights and their

dynamic nature, an optimum partition is not possible a priori.

As a result, we employ a simple initial partitioning method

in which each processor chooses initial “focal nodes” from

among the nodes of the graph and then expands hop-by-hop

to include neighboring nodes. To avoid contention between

partitions we require that each processor wait a random

amount of time after every hop and check for a semaphore

before claiming ownership of new nodes. Unit edge and node

weights are assumed during initial partitioning. The choice

of the focal nodes is important to ensure a high probability

of a good initial partition. We discuss this problem briefly in

the appendix. As will be described later, the iterative partition

refinement algorithm converges to one of the local minima

and hence a good initial partition might improve the chances

of converging to a global minimum.

B. Iterative Partition Refinement

The refinement algorithm demonstrates the practical utility

of the game theoretic framework described previously. During

the refinement step, each processor takes turns to decide

the “most dissatisfied” node in its partition and transfers its

ownership to a new processor. The “most dissatisfied” node

is the one which would benefit the most in terms of its cost

by changing its processor. The cost function used here is the

same as given in equation 2. Each partition maintains a list

of nodes currently owned by it along with their current costs

and costs if they were to change processor for each processor.

Hence Ci(k) represents the cost of the ith node if it were

to be assigned to the kth processor and Ci(ri) represents the

current cost of the ith node. We define the dissatisfaction of

the ith node as

�(i) = Ci(ri)−min
k

Ci(k)

Hence the most dissatisfied node in a partition is the one with

maximum value of �. If � = 0 for the most dissatisfied node,

then the partition forsakes its turn. When all the partitions

have most dissatisfied nodes with � = 0 then the algorithm

has converged to a local minimum as will be proved later.

Algorithm 1 Iterative Partition Refinement Algorithm

1: repeat

2: repeat

3: Wait

4: until trigger is received

5: if ReceiveNodeTrigger then

6: Add the new node to the list

7: Update cost functions and recalculate � for all nodes

in my partition

8: if RegularUpdateTrigger then

9: Update cost functions for the new assignment and

recalculate � for all nodes in my partition.

10: if TakeMyTurnTrigger then

11: Transfer the “most dissatisfied” node to the suitable

processor

12: Send ReceiveNodeTrigger to the destination proces-

sor

13: Send RegularUpdateTrigger to all other processors.

14: Send TakeMyTurnTrigger to the next processor

15: Update cost functions for the new assignment and

recalculate � for all nodes in my partition.

16: until forever

Proceedings of the 2011 International Workshop on Modeling, Analysis, and Control of Complex Networks 13

C. Convergence of Algorithm

Theorem 2: The iterative partition refinement algorithm

converges.

Proof: Ψ(r) defined in Theorem 1 will be shown to be

a potential function. Suppose the lth node is transferred from

its current allocated processor rl to a new processor r∗l . Call

the new assignment vector r∗. Then obviously,

Cl(r
∗)− Cl(r) < 0. (4)

From Theorem 1 we also know that

Ψ(r∗)−Ψ(r) = Ψ(r∗|i = l)−Ψ(r|i = l)+

Ψ(r∗|i �= l, r∗i = rl)−Ψ(r|i �= l, ri = rl)+

Ψ(r∗|i �= l, r∗i = r∗l)−Ψ(r|i �= l, ri = r∗l)+

Ψ(r∗|i �= l, r∗i �= rl, r
∗
i �= r∗l)−Ψ(r|i �= l, ri = rl, ri �= r∗l) =

[Ψ(r∗|i = l)−Ψ(r|i = l)] +

[Ψ(r∗|i �= l, r∗i = rl)−Ψ(r|i �= l, ri = rl)+

Ψ(r∗|i �= l, r∗i = r∗l)−Ψ(r|i �= l, ri = r∗l)] =

[Cl(r
∗)− Cl(r)] + [Cl(r

∗)− Cl(r)]

= 2
(
Cl(r

∗)− Cl(r)
)
< 0

Hence for every iterative step the potential function Ψ(r)
decreases and we know that due to bounded nature of the com-

binatorial optimization problem, there exists an assignment

vector r which will yield the minimum value of Ψ. Hence

an achievable lower bound for the potential function exists

and so, we can conclude that the algorithm converges.

D. Price of Anarchy

The potential function Ψ(r) may not be convex. So, the

algorithm can possibly converge to only a local minimum as

dictated by the properties of the graph. The algorithm does

not guarantee an optimal performance and in some cases

the “price of anarchy” (here, the gap between global and

local optima) might be significant. As in other problems of

similar nature, a meta-heuristic approach such as (distributed)

simulated annealing can be used to get a good approximation

to the global optimum. Also, restricting our search to the

“most dissatisfied node” constrains the strategy space. If we

consider coordinated play by a set of nodes/players, instead

of an individual node, we can push the algorithm out of the

only local optimum equilibrium. So, we would like to consider

more than one nodes for transfer during a single iteration.

However, in this case the search space increases exponentially

with the number of nodes. To address this issue, in the future

we will explore the use a “sparse cut” criterion to narrow our

search for the “most dissatisfied” set of nodes.

E. Algorithm Complexity

Every transfer of a single node necessitates re-computation

of the cost function for each node and for each partition.

This might seem computationally onerous if we calculate the

cost function naively. But we can optimize our computational

effort by using the fact that computations can be spatially

localized, in the sense that the communication cost of only

Fig. 1: Potential function versus number of iterations

those nodes will be affected which are connected to the

node involved in the transfer. Also, the computational cost of

each node can be calculated using a common variable array

containing the current aggregate weights of each partition. We

can see that the computational effort scales linearly with the

number of nodes associated with the processor. To optimize

further we can allow simultaneous transfer of nodes by more

than one processor if they are distant in the graph and if

they are between disjoint pairs of processors. Furthermore,

hierarchical search techniques can be employed to find the

“most dissatisfied” node and arbitrate the transfer of nodes.

As discussed previously, the hierarchy of processors helps to

reduce the communication overhead for coordination between

the processors.

VI. SIMULATION STUDY

In the first phase of experiments, we verified our theoretical

claims via a numerical study. We used NetLogo [13] which

is a multi-agent simulation software to create random graphs

representing the network model under simulation. We ran-

domly generated node and edge weights each with a mean

5. The number of nodes were fixed to 300 and the number of

partitions to 5. The degree of each node varied from 3 to 6
randomly. We also fixed the value of μ to 100. Every cycle of

iterative refinement steps are preceded by initial partitioning

and we used the heuristic described in the appendix to choose

the initial focal nodes. Fig 1 shows the decrease in the

value of the potential function Ψ as the algorithm iterates.

Here an iteration consist of one round of play where each

processor takes turns to give up the “most dissatisfied” node

in its partition. We see that it ultimately converges to a local

minimum. We plot this curve for different initial partitions. Fig

2 shows the decrease in the centralized cost and we see that it

decreases with the number of iterations reaffirming our belief

that the node cost function does indeed help to minimize social

welfare interpreted here as the centralized cost of partitioning

given by equation1. Moreover, we observe that the decreasing

trend for the quantities shown in the two figures is similar

although they represent two disparate quantities.

In the second phase, we tested the partitioning algorithm

on a software based model of an asynchronous optimistic

discrete-event based simulator. Such a simulator can be de-

scribed by a deterministic model: if we know the event-

generation model, the processor load and speed which gives us

the time interval between two instruction cycles, the function

14 Proceedings of the 2011 International Workshop on Modeling, Analysis, and Control of Complex Networks

Fig. 2: Centralized Partitioning Cost versus number of itera-

tions

Fig. 3: Simulation time versus partition refinement frequency

that each logical process performs for each event and the

number of instruction cycles needed for it, the maximum

length of the memory that stores past history needed in case

of a roll-back, and the assignment of logical processes to

processors (which we will be studying). We are interested in

the wall-clock time (in ticks) for the simulation to complete

and the number of roll-backs that arise from load imbalance.

We study a simple communication scenario consisting of

limited-scope flooding sessions. The node weight is equal to

the size of the event list, where each event is weighed by the

execution time of its associated function and the weight of

edge (i, j) is the number of events in the event list of i (j)

that spawn events in j (i). Using Netlogo [13], we generated a

random graph of 300 nodes depicting the graphical model of

the logical processes. We generated a random initial event list

for each LP and kept it constant throughout the experiment.

The initial partition was also retained and kept constant for

all the runs so to compare the final results. For each setting

of the partition refinement frequency, average simulation time

for 10 runs was calculated and is shown in fig 3. With just

the initial partitioning i.e., without any refinement the average

simulation time was 74264.9. We observed that the simulation

time decreases as we increase the frequency of refinement.

Fig 4 shows the load across all the processors as wall

clock time progresses. The processor load is calculated as the

average length of event list of LPs assigned to the processor.

We observed that this variance is very high suggesting that

initial partitioning alone is not sufficient to balance the load.

Fig 5 shows the same when we apply iterative partition

refinements after every 2500 ticks of wall-clock time.

Fig. 4: Variance of load across processors without refinement

Fig. 5: Variance of load across processors with refinement

VII. FUTURE WORK

In the future, we plan to carry out more extensive study

with event generation modes of varying load generation char-

acteristics. On the theoretical front, we can study the price of

anarchy of using such a technique as opposed to centralized

partitioning. Also, we will explore the use of meta-heuristics

such as simulated annealing to avoid local minima. Local

minima are reached because of node-by-node transfer, so we

can also think of finding the “most dissatisfied cluster” instead

of the “most dissatisfied node” to exchange; however this

may be computationally infeasible and so we will need to

find methods to intelligently choose “ideal clusters” of nodes

suitable for transfer. We will also try pairwise exchange of

nodes, where a pair of processors exchanges two “dissatisfied”

nodes between themselves. This can be studied as a “semi-

cooperative” game.

VIII. SUMMARY AND CONCLUSIONS

We studied the graph partitioning problem in the context

of distributed network simulation. For our goal of a dis-

tributed technique of partitioning which works iteratively on

dynamic graphs, we studied a game theoretic formulation of

the problem and considered each node as a player. The insights

gained from this model allowed us to design a greedy iterative

refinement algorithm which improved the partition as shown in

the numerical results. We also suggested an initial partitioning

scheme to improve the performance of the algorithm by

avoiding poor local minima. Finally, we identified some ideas

to enhance the algorithm which we plan to consider as part of

our future work.

Proceedings of the 2011 International Workshop on Modeling, Analysis, and Control of Complex Networks 15

REFERENCES

[1] R. Bagrodia, R. Meyer, M. Takai, Yu-An Chen, Z. Xiang, J. Martin,
H. Song. PARSEC: a parallel simulation environment for complex
systems. In IEEE Computer, Vol. 31(10), 1998.

[2] R. Bulo. Game-theoretic framework for similarity-based data clustering.
Ph.D. dissertation, Universita CaFoscari Venezia, 2009.

[3] A. Boukerche, S. Das. Dynamic Load Balancing Strategies for Conser-
vative Parallel Simulation. In Proc. PADS, pp. 20-28, 1997.

[4] I. Caragiannis, M. Flammini, C. Kaklamanis, P. Kanellopoulos and
L. Moscardelli. Tight Bounds for Selfish and Greedy Load Balancing.
In Proc. 33rd International Colloquium on Automata, Languages and

Programming, pp. 311322, 2006.

[5] P. Cramton, Y. Shoham, R. Steinberg. Combinatorial Auctions. The MIT

Press, Cambridge, Massachusetts, 2006.

[6] M. Garey, D. Johnson. Computers and Intractability. W. H. Freeman

and Company, New York, 1979.

[7] G. Karypis, V. Kumar. Parallel Multilevel K-way Partitioning for
Irregular Graphs. In SIAM Review, 41(2):278300, 1999.

[8] G. Karypis, V. Kumar. MeTiS: A software package for partitioning
unstructured graphs, partitioning meshes, and computing fill-reducing
orderings of sparse matrices. Univ. of Minnesota, Dept. of Computer

Science, Version 4.0, 1998.

[9] B. Kernighan, S. Lin. An efficient heuristic procedure for partitioning
graphs. In The Bell System Technical Journal, 49(2):291307, 1970.

[10] A. Kurve, C. Griffin, G. Kesidis. Iterative Partitioning Scheme for
Distributed Simulation of Dynamic Networks. submitted, January 2011.

[11] J. Lui, M. Chan. An efficient partitioning algorithm for distributed
virtual environment systems. In IEEE Trans. on Parallel and Distributed

Systems, 13(3), March 2002.

[12] B. Nandy, W. Loucks. On a Parallel Partitioning Technique for use with
Conservative Parallel Simulation. In Proc. 7th Workshop on Parallel
and Distributed Simulations, pp. 43-51, 1993.

[13] NetLogo itself: Wilensky, U. 1999. NetLogo.
http://ccl.northwestern.edu/netlogo/. Center for Connected Learning and
Computer-Based Modeling, Northwestern University. Evanston, IL.

[14] D. Nicol, R. Fujimoto. Parallel Simulation Today. In Ann. Operations

Research, pp. 249285, 1994.

[15] N. Nisan et al. Algorithmic Game Theory. Cambridge University Press,
2007.

[16] H. Ohsaki, G. Oscar, and M. Imase. Quasi-dynamic network model
partition method for accelerating parallel network simulation. In Proc.

IEEE MASCOTS, pages 255-264, 2006.

[17] P. Peschlow, T. Honecker, and P. Martini. A flexible dynamic partitioning
algorithm for optimistic distributed simulation. In Proc. PADS, pp. 219-
228, 2007.

[18] K. Psounis, R. Pan, B. Prabhakar, and D. Wischik. The Scaling
Hypothesis: Simplifying the Prediction of Network Performance using
Scaleddown Simulations. In Proc. ACM HOTNETS, Oct. 2002.

[19] R. Rosenthal. A class of games possessing pure strategy Nash equilibria.
In International Journal of Game Theory, 2:65-67, 1973.

[20] S. Thulasidasan, S. Kasiviswanathan, S. Eidenbenz and P. Romero.
Explicit Spatial Scattering for Load Balancing in Conservatively Syn-
chronized Parallel Discrete-Event Simulations. In Proc. PADS, pp. 1-8,
2010.

[21] D. Xu, M. Ammar. Benchmap: benchmark-based, hardware and model-
aware partitioning for parallel and distributed network simulation. In
Proc. IEEE MASCOTS, pp. 455463, 2004.

APPENDIX

The choice of focal nodes is critical to get somewhat equal

partitions with high probability. The focal nodes are chosen so

that they are at a maximum geodesic distance from each other.

More precisely every focal node should be at least 2N |V |
K

geodesic distance away from all other focal nodes, where N |V |
K

is the mean number of hops that cover
|V |
K

nodes. In this case,

we assume that we know the properties of the underlying graph

for calculating N |V |
K

. We would simply like to have the focal

nodes as far as possible (in geodesic distance) from each other.

This will ensure that the partitions formed after hop-by-hop

expansion are somewhat equal. Suppose F = {f1, f2, ..., fK}
is the set of focal nodes. Hence we would like to have

F = arg max
H⊆V s.t. |H|=K

min
h,l∈H:l �=h

dG(h, l), (5)

where dG is the geodesic distance between the two nodes.

We can attempt to find such nodes using heuristics. A simple

heuristic could be the one which starts by assigning an

arbitrary set of distinct nodes as focal nodes to each processor.

Each processor takes a turn sequentially at finding a node

from the set of the neighboring nodes that is further away

from other focal nodes . This becomes the new focal node

of the processor. This process is iterated until we obtain the

local maximum of F . We iterate this process over multiple

initializations of the focal node set and the maximal set of

focal nodes is identified.

16 Proceedings of the 2011 International Workshop on Modeling, Analysis, and Control of Complex Networks

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

