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Abstract—We propose a framework for modeling higher-order
(beyond two point) degree correlation among nodes, depending
on their mutual connectivity. Our focus is on the introduction
of the Markov property to find maximally unbiased networks
under the constraint of a prescribed two-point degree correlation.
The topological features of the Markovian networks – networks
satisfying the Markov property – are fully characterized solely
by the two-point degree correlation. We theoretically investigate
the topological characteristics of Markovian networks and derive
the analytical formulas for their graph theoretical metrics. We
present a comparative analysis of AS- and router-level topologies
in terms of whether they are Markovian or not. The results of the
analysis show that the studied AS- and router-level topologies are
not Markovian. This finding indicates that it is rather difficult to
capture the topological characteristics of the Internet either at
AS- or at router-level solely by the input of the two-point degree
correlation.

I. Introduction

Network topology has a large impact on the performance

of communication protocols and applications [1]. The stability

of routing protocols, robustness against network failures, effi-

ciency of file search algorithms, and vulnerability to the DDoS

attacks all strongly depend on the topological characteristics

of networks. Over the past decade, a considerable number of

studies have been made on how to analyze and describe the

topological characteristics of networks using graph-theoretical

metrics. Various network generators have also been proposed

to generate a set of graphs, which reproduce graph-theoretical

metrics commonly found in real-world networks [2], [3], [4],

[5], [6], [1], [7].

The empirical analysis of real networks (not only in

telecommunication filed but also in various scientific fields)

reveals the presence of common topological properties. The

power-law degree distribution is a widely-known property

commonly found in real networks. Most of existing network

generators aim at producing graphs with power-law degree

distributions or graphs with prescribed degree distributions.

The degree distribution does not, however, capture all of

topological features, and other metrics beyond the degree

distribution are required to more precisely categorize and

distinguish various networks observed in real world.

It has been found that empirical networks in the real

world show a nontrivial degree correlation between adja-

cent nodes (two-point degree correlation); for example, large-

degree nodes are more likely to be connected to small-degree

nodes. Motivated by the observation of the presence of the

degree correlation, a number of works have been devoted to

construct network models, called correlated network models,

to study the origin of correlations in real networks [8],

[9], [10], [11], [12]. Mahadevan et al. [1], [7] introduced

the concept of dK-graphs, which are specified by the joint

degree distribution of nodes within a subgraph of size d of

the original network. For example, 1K-graphs reproduce the

degree distribution of the original network, and 2K-graphs

reproduce the joint degree distribution of adjacent nodes of

the original network. They proposed an algorithm to construct

a graph among dK-graphs for d = 0, 1, 2, 3, and they claimed

that 2K-graphs reproduce the Internet AS- and router-level

topologies with accuracy sufficient for most practical purposes.

The results by Mahadevan et al. [1], [7] tell us the impor-

tance of considering the two-point degree correlation in the

analysis of the network topology. The 2K-graphs satisfying a

prescribed two-point degree correlation, however, still show

the structural diversity; for example, they are largely different

in their clustering coefficient. Thus, it is natural to seek a

principle to find the most unbiased (random) network among

ones satisfying a prescribed two-point degree correlation. To

this end, in this work, we introduce a notion of Markov

property. The topological features of Markovian networks are

fully characterized solely by the two-point degree correlation.

We propose a framework for modeling the degree correla-

tion of nodes within a subgraph of size three, on which

the Markov property is introduced. Our framework allows

us to consider the dependence of degree correlation among

three nodes on their mutual connectivity (wedge or triangle).

We theoretically investigate the topological characteristics of

Markovian networks and derive analytical formulae for some

graph theoretical metrics. Based on the analytical results

obtained in the work, we numerically investigate whether the

Internet AS- and router-level topologies are Markovian or not

using the real data.
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The manuscript is organized as follow. Section II introduces

the notation used in this work and explains some related

results. Section III proposes a new framework for modeling the

three-point degree correlation as well as the structural detail

of a subgraph on which the three-point degree correlation

is considered. Section IV defines the Markov property and

theoretically derives the topological characteristics of Marko-

vian networks. Section V numerically investigates whether the

Internet AS- and router-level topologies are Markovian or not.

We conclude the article in Sec. VI.

II. Background

A. Degree distribution

Consider an undirected connected network with N nodes

and L links. We treat degree of a randomly chosen node D as

a discrete random variable and let p(k)(= P[D = k]) denote

the probability that the degree of a randomly chosen node is

k. If D follows a power-law distribution, that is

p(k) ∼ ak−(η),

then the network is called scale free and parameter η is called

characteristic exponent.

B. Edge-based sampling

Here, we consider two sampling methods for nodes in the

network. The first one is the normal sampling, which chooses

any of nodes with equal probability. The other is the edge-

based sampling, which randomly chooses a link (an edge) in

the first step and chooses one of its end nodes in the second

step. Let pe(k)(= Pe[D = k]1) denote the probability that the

edge-based sampling chooses a node with degree k [12]. The

edge-based sampling is different with the normal sampling,

and there is the following relationship between the degree

distributions under the edge-based and normal samplings [12]:

pe(k) =
kp(k)

E[D]
, (1)

where E[D] denotes the average degree of randomly chosen

(normally sampled) nodes. The edge-based sampling is more

likely to choose nodes with higher degrees, while the normal

sampling equally chooses nodes irrespective of their degrees.

This fact can easily be understood from the observation that

one of links connected to a node with degree k is chosen

with probability proportional to kp(k) when any of links in

the network are chosen with equal probability.

C. Two-point degree correlation

Let pe(k, l) denote the probability that a randomly chosen

link of the network has nodes with degrees k and l at its ends.

The two-point degree correlation is fully expressed in terms

of pe(k, l). If the degrees of the end nodes of any given link

are statistically independent, we have

pe(k, l) = pe(k)pe(l). (2)

1Pe[·] and Ee[·] respectively denote the probability measure and the
expectation under the edge-based sampling.

If (2) holds, we say that networks are uncorrelated [12]; if

pe(k, l) < pe(k)pe(l) (pe(k, l) > pe(k)pe(l)), networks are called

positively (negatively) correlated. The assortativity introduced

by Newman is a metric representing the extent of the two-point

degree correlation [13]. In terms of pe(k, l), the assortativity

is expressed as

r(1) def
=

∑
k,l kl(pe(k, l) − pe(k)pe(l))

Ee[D2] − (Ee[D])2
,

where Ee[D] and Ee[D2] respectively denote the average

degree and the average square degree of edge-based sampled

nodes [13]. As apparent from the above expression, the assor-

tativity is the Pearson correlation coefficient of the degrees of

two end nodes of a link. It follows from (1) that

Ee[D] =

∑
k2 p(k)

E[D]
= E[D2]/E[D],

Ee[D2] =

∑
k3 p(k)

E[D]
= E[D3]/E[D],

and thus we have another expression for the assortativity.

r(1) =
(E[D])2(

∑
k,l klpe(k, l)) − (E[D2])2

E[D]E[D3] − (E[D2])2
.

The assortativity falls into the range [−1, 1] and for uncorre-

lated networks it is equal to zero.

Remark 1. Within the authors’ knowledge, the notion of

edge-based sampling has never been introduced in existing

literature. This notion allows us to have a very concise

description of the two-point degree correlation. In [12], pe(k)

is called the distribution over edge ends.

III. Modeling Three-Point Degree Correlation

A. Framework

Consider a subgraph made of a node (node A) and its

randomly chosen two neighbors (nodes B and C) (Fig. 1).

(Node A has at least two neighbors.) If nodes B and C are not

directly connected, the subgraph is called wedge, a chain of

three nodes connected by two links; otherwise, it is a triangle.

The degree correlation of nodes A, B and C defines the three-

point degree correlation. Let pe(k,m; l) be the conditional

probability that the degree of a edge-based-sampled node is

l, and the degrees of its two neighbors randomly chosen are

respectively k and m, given that l ≥ 2. We also let q(k,m; l)

denote the probability that the subgraph forms a triangle.

For example, p(k), pe(k), pe(k, l), pe(k,m; l) and q(k,m; l) of

a network depicted in Fig. 2 are given below

p(1) = 1/4, p(2) = 1/2, p(3) = 1/4,

pe(1) = 1/8, pe(2) = 1/2, pe(3) = 3/8,

pe(1, 3) = pe(3, 1) = 1/8,

pe(2, 3) = pe(3, 2) = pe(2, 2) = 1/4,

pe(1, 2; 3) = pe(2, 1; 3) = pe(2, 2; 3) = 1/7,

pe(2, 3; 2) = pe(3, 2; 2) = 2/7,

q(1, 2; 3) = q(2, 1; 3) = 0,

q(2, 2; 3) = q(2, 3; 2) = q(3, 2; 2) = 1.

2 Proceedings of the 2011 International Workshop on Modeling, Analysis, and Control of Complex Networks



);,( lmkpejoint-degree distribution

);,( lmkq

wedge

triangle

);,(1 lmkq
node B 

(degree k)

node A 

(degree l)

node C 

(degree m)

Fig. 1. Subgraph of size three.

Note that pe(k,m; l) is meaningful only if pe(1) < 1; otherwise

any connected-subgraphs with size three do not exist with

probability one.

The clustering coefficient, the probability that two neighbors

of a node are also neighbors themselves, can be expressed in

terms of pe(k,m; l) and q(k,m; l). For example, the average

clustering coefficient of nodes with degree l, C(l), is expressed

as

C(l) =

∑
k,m pe(k,m; l)q(k,m; l)∑

k,m pe(k,m; l)

=
1 − pe(1)

pe(l)

∑
k,m

pe(k,m; l)q(k,m; l), (3)

where we use the fact that
∑

k,m pe(k,m; l) = pe(l)/(1 − pe(1)).

(Node A should have at least two neighbors.)

The joint degree distribution of nodes within a wedge

p∧(k,m; l) is expressed in terms of pe(k,m; l) and q(k,m; l)

as follows:

p∧(k,m; l) = A(1 − q(k,m; l))pe(k,m; l),

where

A
def
= 1/

∑
k,m,l

(1 − q(k,m; l))pe(k,m; l)

=
1 − pe(1)

1 − pe(1) −
∑

l≥2 pe(l)C(l)

=
1

1 − Ee[C]
,

Ee[C]
def
=

1

1 − pe(1)

∑
l≥2

pe(l)C(l).

Note that Ee[C] is the average clustering coefficient, where

the average is taken in the edge-based-sampling sense. Using

p∧(k,m; l), we define the second-order assortativity:

r(2) def
=

∑
k1,k3

k1k3

(∑
k2

p∧(k1, k3; k2) − p∧(k1)p∧(k3)
)

E∧[D2] − (E∧[D])2
, (4)

Fig. 2. Exapmle of networks.

where

p∧(k)
def
=
∑
l,m

p∧(k,m; l),

E∧[D]
def
=
∑

k

kp∧(k), E∧[D2]
def
=
∑

k

k2 p∧(k).

Note that p∧(k) is the degree distribution under the wedge-

based sampling, which randomly chooses a wedge structure

and chooses one of its end nodes. The second-order assorta-

tivity is the Pearson correlation coefficient of the degrees of

two nodes located at a distance of two hops.

The second-order assortativity and the clustering coefficient

are independent metrics for the three-point degree correlation.

B. Uncorrelated network

Although most of real networks show the existence of

degree correlation, the uncorrelated networks are practically

important to check the accuracy and the analytical solutions

of dynamical processes defined on random networks [14].

The topological features of uncorrelated networks are fully

characterized solely by the degree distribution. Uncorrelated

networks are maximally random networks under the constraint

of two-hop degree correlation [1]. To see this, let H(D)

denote the entropy of the degree distribution under the edge-

based sampling and H(D1,D2) denote the entropy of the joint

degree distribution of end nodes of a link. It follows from the

definition of the entropy that H(D1,D2) ≤ 2H(D), but for the

uncorrelated network

H(D1,D2)

= −
∑

k

∑
l

pe(k, l) log pe(k, l)

= −
∑

k

∑
l

pe(k)pe(l) log pe(k) −
∑

k

∑
l

pe(k)pe(l) log pe(l)

= −
∑

k

pe(k) log pe(k) −
∑

l

pe(l) log pe(l) = 2H(D).

That is, the Markov property maximizes the mutual informa-

tion of joint degree distribution pe(k, l).

In uncorrelated networks, a neighbor of any nodes is a m-

degree node with probability pe(m). Thus, a k-degree node has

kpe(m) adjacent nodes of degree m in average. Since there are

N p(m) m-degree nodes in the network, k-degree and m-degree
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nodes are connected with the following probability:

kpe(m)

N p(m)
=

km

NE[D]
.

This observation yields

q(k,m; l)

= q(k,m) =

⎧⎪⎪⎨⎪⎪⎩
(k−1)(m−1)

NE[D]
for (k − 1)(m − 1) ≤ NE[D],

1 otherwise,
(5)

where q(k,m) is the probability that k- and m-degree nodes are

connected, and terms k − 1 or m − 1 comes from the fact that

one of the connections of each node has already been used.

In uncorrelated networks, we have

pe(k,m; l) = pe(k)pe(m)pe(l)/(1 − pe(1)).

Thus, by substituting (5) into (3) and assuming (k−1)(m−1) ≤

NE[D], we obtain

C(l) =

∑
k,m pe(k)pe(m)pe(l)

(k−1)(m−1)

NE[D]

pe(l)

=
∑
k,m

(k − 1)(m − 1)pe(k)pe(m)

NE[D]

=
(E[D2] − E[D])2

N(E[D])3
.

The same expression has been derived in [15], [9].

The normalization constant A in the expression of p∧(k,m; l)

is equal to (1 − C̄)−1 for uncorrelated networks, where

C̄
def
=

1

1 − p(1)

∑
l≥2

p(l)C(l)

(
=

(E[D2] − E[D])2

N(E[D])3

)

is the average clustering coefficient in the normal-sampling

sense. Thus, the degree distribution under the wedge-based

sampling, p∧(k), is expressed as

p∧(k) =
1

1 − C̄

∑
m,l

(1 − q(k,m))pe(k,m; l)

=
1

1 − C̄

∑
m

(1 − q(k,m))pe(k)pe(m)

=
1

1 − C̄
pe(k)

⎛⎜⎜⎜⎜⎜⎝1 −
∑

m

q(k,m)pe(m)

⎞⎟⎟⎟⎟⎟⎠ ,
which reveals a non-trivial result: in general p∧(k) is not equal

to pe(k) even in uncorrelated networks. We also have a rather

surprising result concerning the assortativity coefficients. The

(1st-order) assortativity coefficient r(1) is zero, but the 2nd-

order assortativity coefficient r(2) is not always equal to zero

because the term in the numerator of (4)∑
k1,k3

k1k3

∑
k2

p∧(k1, k3; k2)

=
1

1 − C̄

∑
k1,k3

k1k3(1 − q(k1, k3))pe(k1, k3)

cannot be factorized into the product of E∧[D] because of

the term q(k1, k3). The wedges are likely to have small-degree

nodes at theirs ends, which generates the degree correlation

between end nodes of a wedge even in uncorrelated networks.

The two-point degree correlation is characterized by the

average degree of adjacent nodes of a k-degree node, which

is formally defined as

Dnn(k) =
∑

l

lpe(l|k),

where pe(l|k) = pe(k, l)/pe(k) is the probability that a

randomly-selected adjacent node of a degree-k node has degree

l. In uncorrelated networks, Dnn(k) does not depend on k as

shown below.

Dnn(k) =
∑

l

lpe(l|k)

=
∑

l

lpe(l)

= E[D2]/E[D].

It has been shown [16] that the average distance between two

nodes is the order of log(N)/ log d̃.

It has been an interesting issue to generate uncorrelated

networks. The configuration model is the most widely-used

algorithm to construct uncorrelated networks from a prescribed

degree distribution and the topological properties of networks

constructed by the configuration model has been extensively

studied [6], [17], [18], [19], [20], [21], [22], [23], [24], [14].

The PLRG (Power-Law Random Graph) [6] is an algorithm

of scale-free network generation based on the configuration

model.

IV. Markov Property

A. Definition

Definition 1. If a network meets the following two conditions,

then we say that it has the Markov property:

pe(k,m; l) =
pe(k, l)

1 − pe(1)
pe(m|l) (6)

q(k,m; l) = q(k,m). (7)

To see the implication of condition (6), consider the follow-

ing conditional probability:

pe(m|k, l)
def
=

pe(k,m; l)

pe(k, l)/(1 − pe(1))
,

which represents the conditional probability that a (randomly

selected) neighbor of an edge-based-sampled node has degree

m, given that the edge-based-sampled node has degree l, the

other end node of the sampled edge has degree k, and l is

greater than 1. (It intuitively corresponds to the probability

that, in a structure depicted in Fig. 1, the degree of node C is

m given that the degrees of nodes A and B are respectively l

and k.) It follows from (6) that

pe(m|k, l) = pe(k, l)pe(m|l)/pe(k, l) = pe(m|l),

meaning that the degree of node C is independent of the degree

of node B under the condition that the degree of node A is

given. In other word, the degree of node C depends on node B
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only through the degree of node A, which is so-called Markov

property.

The second condition (7) has the similar meaning with (6):

the connectivity between a pair of nodes does not depend

on the degree of common neighbor given that the degrees

of the pair of nodes are specified. Note that q(k,m) can be

analytically expressed in terms of joint degree distribution. To

see this, first observe that a node with degree k is connected

to kpe(m|k) nodes with degree m in average. Since there are

N p(m) nodes with degree m in the network, we have

q(k,m)

=

⎧⎪⎪⎨⎪⎪⎩
(k−1)pe(m|k)

N p(m)
=

(k−1)(m−1)pe(k,m)

NE[D]pe(k)pe(m)
for

(k−1)(m−1)pe(k,m)

NE[D]pe(k)pe(m)
≤ 1,

1 otherwise,
(8)

The Markovian network would be maximally random net-

works under the constraint of two-point degree correlation in

the sense that it maximizes the entropy of the joint-degree

distribution of degrees of nodes within a subgraph of size

three. To see this, let H(D2,D3; D1) be the entropy of the

joint degree distribution of a size-three subgraph depicted

in Fig.1 (D1, D2, and D3 respectively denote the degrees of

nodes A, B and C). It follows from the definition of the

entropy that H(D2,D3; D1) = H(D1,D2) + H(D3|D1,D2) ≤

H(D1,D2) + H(D3|D2), but if (7) holds

H(D2,D3; D1)

= −
∑

k

∑
l

∑
m

pe(k,m; l) log pe(k,m; l)

= −
∑

k

∑
l

∑
m

pe(k, l)

1 − pe(1)
pe(m|l) log

(
pe(k, l)

1 − pe(1)
pe(m|l)

)

= −
∑

k

∑
l

∑
m

pe(k, l)

1 − pe(1)
pe(m|l) log

pe(k, l)

1 − pe(1)

−
∑

k

∑
l

∑
m

pe(k, l)

1 − pe(1)
pe(m|l) log pe(m|l)

= −
∑

l

∑
k

pe(k, l)

1 − pe(1)
log

pe(k, l)

1 − pe(1)

−
∑

l

∑
m

pe(l)

1 − pe(1)
pe(m|l) log pe(m|l)

= H(D1,D2) + H(D3|D2),

That is, in the Markovian network, the mutual information of

joint degree distribution pe(k,m; l) is maximized.

Conditions (6) and (7) of the Markov property yields the

following analytical expression for the degree distribution of

a wedge structure p∧(k,m; l) in terms of the joint degree

distribution of adjacent nodes pe(k, l):

p∧(k,m; l)

= A

(
1 −

(k − 1)(m − 1)pe(k,m)

NE[D]pe(k)pe(m)

)
pe(k, l)pe(m|l)/(1 − pe(1))

=
pe(k, l)pe(m|l)

1 − pe(1) −
∑

l≥2 C(l)pe(l)

(
1 −

(k − 1)(m − 1)pe(k,m)

NE[D]pe(k)pe(m)

)
.

(9)

From the above expression, we obtain the degree distribution

under the wedge-based sampling p∧(k) and the average degree

of a wedge-based sampled node E∧[D], which are used in the

evaluation of the second-order assortativity coefficient. These

values can be used as benchmarks to investigate whether a

given network is Markovian or not.

Remark 2. Boguna et al. [25] proposed a Markovian network

model for describing higher-order degree correlation, but

their model does not consider the dependence of the degree

correlation among nodes on their mutual connectivity. Thus,

it is difficult for their model to evaluate the joint degree

distributions of nodes forming a wedge (or triangle).

B. Metrics of three-point-degree correlation of Markovian

network

The Markov property allows us to evaluate the metrics

of the three-point degree correlation (e.g. the clustering and

the second-order assortativity coefficients) based on the joint

degree distribution of adjacent nodes pe(k, l). For example,

substituting (8) into (3) yields

C(l) =
1

NE[D]

∑
k

∑
m

(k − 1)(m − 1)pe(l, k)pe(l,m)pe(k,m)

pe(k)pe(m)(pe(l))2
.

(10)

The second-order assortativity coefficient can also be evaluated

by substituting (9) into (4) although we cannot have simpler

expressions than (4). The results concerning the clustering

coefficient and the second-order assortativity can be used as

benchmarks of the Markov property.

C. Generation of Markovian networks

It would be an interesting issue to find the algorithm for

generating a network satisfying the Markov property. One

possible approach is to perform 2K − preserving rewiring

a sufficient number of times to a graph satisfying a pre-

scribed two-point degree correlation [1]. We have proposed

an algorithm to construct a graph satisfying a prescribed

two-point degree correlation [26]. Our algorithm generates

a connected graph that does not have any self-loops and

any multiple links between nodes. Thus, we can use the

output of our algorithm as an input for the 2K − preserving

rewiring. Through numerical experiments, we have found that

the above mentioned procedure yields a network that has the

clustering and the 2nd-assortativity coefficients very close to

the expectations by the Markov property.

V. Are the Internet topologies areMarkovian?

We have numerically investigated whether the AS-level and

router-level topologies have the Markov property.

A. Network data

We used eight measured AS-level and ten router-level

topologies. The AS-level topologies are snapshots obtained

from BGP routing tables collected at BGP beacon of RIPE

NCC RIS (Route Information Service) project [27]. The BGP

data used in the analysis were collected on the September 3rd

of every year from 1999 to 2007. The router level topologies
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TABLE I
AS-level topology

Year # of links # of nodes cluster. coef. assort. coef.

1999 7825 5817 0.209792 -0.174473
2000 16814 8594 0.431251 -0.184715
2001 22360 11816 0.431538 -0.187681
2002 25385 13739 0.398226 -0.196199
2003 29801 15871 0.334195 -0.195170
2004 34185 18100 0.342195 -0.195262
2005 37811 20534 0.343488 -0.195812
2006 43357 23149 0.298065 -0.189331

TABLE II
Router-level topology

Network # of links # of nodes cluster. coef. assort. coef.

AT&T 14261 11745 0.017112 -0.450118
Sprintlink 12816 10180 0.057527 -0.316064
Verio 9450 6252 0.119402 -0.278969
Telstra 4322 3515 0.054640 -0.230357
Level3 6917 1786 0.191861 0.015039
Abovenet 1332 654 0.285643 -0.196377
Tiscail 756 506 0.039277 0.062716
Exodus 893 424 0.292335 -0.210903
Ebone 548 300 0.175320 -0.198499
VSNL 285 226 0.058946 -0.235925

were measured by the research group of Washington university

using Rocketfuel, traceroute-base tool for topology analysis

[28]. We summarize the topological data of the networks in

Tables I and II.

The tables indicate that all of the networks are correlated

because their assortativity coefficients are far from zero. All of

the AS-level topologies and most of the router level topologies

have negative assortativity coefficients, but the router-level

topologies of Level-3 Communications and Tiscail have pos-

itive assortativity coefficients. The AS-level topologies have

larger clustering coefficients than the router-level topologies.

Figure 3 shows the log-log plot of survival functions of

the degree distributions of the AS-level topologies in 1999

and 2006. Although the AS-level topologies in 1999 and 2006

are very different in terms of the number of nodes and links,

they have very similar power-law degree distributions. Figure

4 shows the log-log plot of survival functions of the degree

distributions of router-level topologies of AT&T, Sprintlink,

Verio, Telstra and Level 3 Communications. As the figures

indicate, the degree distributions of router-level topologies do

not necessarily exhibit typical power-law distributions.

B. Degree distributions under wedge-based sampling

We first investigate the degree distribution of wedge-based

sampled nodes p∧(k) in the following procedure: we evaluate

p∧(k) based on the two-hop degree correlation ({pe(k, l)}k,l∈N)

of the original topology (one of the AS-level and the router-

level topologies) using the Markov property, and compare the

resultant distribution with the real one of the original topology.

Figure 5 shows the results for six topologies. For reference, in

Fig. 5, we also show the cumulative degree distribution under

the edge-based sampling. The figure shows that the cumulative
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Fig. 5. Degree distribution under wedge-based sampling

degree distribution under the wedge-based sampling is larger

than the one under the edge-based sampling. That is, wedges

are likely to have small degree nodes at their ends. This fact

can be understood from the observation that a three-node

subgraph in Fig. 1 is likely to become a wedge when nodes

B and C are small degree nodes. The figure also shows that,

for AS-level topologies, the Markov property underestimates

the cumulative degree distribution under the wedge-based

sampling, equivalently implying that the Markov property
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TABLE III
Average degree: AS-level topologies.

Year E[D] Ee[D]
E∧[D]

real Markov

1999 2.690390 110.5357 54.35840 68.45700
2000 3.912963 201.4241 75.08271 124.0863
2001 3.784699 269.1720 88.62603 162.8148
2002 3.695320 289.9202 107.3246 179.2369
2003 3.755403 266.4795 123.4499 178.5335
2004 3.777348 270.8629 121.7359 181.1810
2005 3.682770 270.7002 122.0396 182.1087
2006 3.745907 254.6451 126.3163 178.7363

TABLE IV
Average degree: router-level topologies.

Network E[D] Ee[D]
E∧[D]

real Markov

AT&T 2.428438 15.85211 10.15614 10.26589
Sprintlink 2.517878 31.82498 15.16892 15.63006
Verio 3.023033 18.70159 14.66031 15.87358
Telstra 2.459175 14.78968 10.86147 11.28003
Level3 7.745801 36.91615 34.53724 34.91744
Abovenet 4.073394 11.26577 9.111358 10.32635
Tiscail 2.988142 7.003968 6.608177 6.829092
Exodus 4.212264 7.977604 6.705841 6.946289
Ebone 3.653333 7.047445 6.462871 6.632233
VSNL 2.522124 6.712281 6.016624 5.907109

overestimates the average degree of a wedge-based sampled

node. In router-level topologies, the Markov property yields

very accurate estimates of the cumulative degree distribution

under the wedge-based sampling.

We evaluate the average degree of a wedge-based sampled

node (E∧[D]) based on {pe(k, l)}k,l∈N of the original topology

using the Markov property, and compare the result with the

real average degree of the original topology. The results of

the AS-level topologies are summarized in Table III. In the

table, we also show the average degrees of nodes chosen by

the normal sampling (E[D]) and the ones chosen by the edge-

based sampling (Ee[D]). The edge-based sampling has a ten-

dency to choose large-degree nodes, so Ee[D] is much larger

than E[D]. The wedge-based sampling also has a tendency to

choose large-degree nodes and thus E∧[D] > E[D], while the

wedges are likely to have small degree nodes at their ends

and thus E∧[D] < Ee[D]. As we expect, the Markov property

overestimates the average degree of a wedge-based sample

node. That is, wedges in the AS-level topologies have smaller

degree nodes at their ends than the expectation by the Markov

property.

Table IV summarizes the results of the router-level topolo-

gies. The Markov property yields accurate estimates of the

average degree of wedge-based-sampled nodes.

In summary, in terms of the degree distribution under

wedge-based sampling, the router-level topologies are more

Markovian than the AS-level topologies.

C. Clustering coefficient and 2nd-order assortativity

Next, we evaluate the clustering and the 2nd-order as-

sortativity coefficients based on {pe(k, l)}k,l∈N of the original

TABLE V
Verification ofMarkov property: AS-level topologies.

Year
clustering coefficient 2nd assortativity coefficient

real Markov real Markov

1999 0.209792 0.112524 0.088542 0.133358
2000 0.431251 0.235564 -0.04367 0.096591
2001 0.431538 0.238117 -0.03945 0.103146
2002 0.398226 0.232803 -0.03756 0.085701
2003 0.334195 0.190260 0.001133 0.052462
2004 0.342195 0.187181 0.009139 0.042524
2005 0.343488 0.178313 0.023968 0.035633
2006 0.298065 0.151402 0.047786 0.027109

TABLE VI
Verification ofMarkov property: router-level topology.

Network
clustering coefficient 2nd assortativity coefficient

real Markov real Markov

AT&T 0.017112 0.003581 0.225254 0.127726
Sprintlink 0.057527 0.007260 0.255543 0.150171
Verio 0.119402 0.008947 0.398492 0.128577
Telstra 0.054640 0.009537 0.008529 0.064626
Level3 0.191861 0.062740 0.328257 0.038356
Abovenet 0.285643 0.037228 0.088277 0.040090
Tiscail 0.039277 0.022826 0.073944 0.010652
Exodus 0.292335 0.020878 0.269113 0.047952
Ebone 0.175320 0.031574 0.137128 0.039227
VSNL 0.058946 0.042803 0.315413 0.111277

topology (one of the AS-level and router-level topologies)

using the Markov property, and compare them with the actual

ones of the original topology. Table V summarizes the results

for the AS-level topologues. The Markov property expects

smaller clustering coefficients than those of the real AS-level

topologies, while it expects larger values for the 2nd-order

assortativity coefficient than the real topologies.

Table VI summarizes the results for the router-level topolo-

gies. Both the clustering and the 2nd-order assortativity co-

efficients of the router-level topologies are larger than the

expectations by the Markov property. The router-level topolo-

gies show structural diversity; Exodus or Ebone is found to

be nearly Markovian in the sense that its clustering and the

2nd-order assortativity coefficients are comparatively close to

the expectations by the Markov property, but these metrics

of Sprintlink and Verio are far from the expectations by the

Markov property.

The clustering coefficients of the AS and router-level topolo-

gies are plotted in Fig. 6 where the x-axis shows the real data

and the y-axis shows the expectation by the Markov property.

Most of the real topologies used in the analysis exhibit larger

clustering coefficients than the expectation of the Markov

property. These results are not surprising because in general

the uncorrelated network has small clustering coefficient and

the Markovian network is the simplest generalization of the

uncorrelated network. In terms of the clustering and the 2nd-

order assortativity coefficients, the AS-level topologies are

comparatively closer to the Markovian network than the router-

level topologies.

The 2nd-order assortativity coefficients of the AS and the
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router-level topologies are plotted in Fig. 7. The AS-level

topologies show smaller values while the router-level topolo-

gies show larger values than the expectation of the Markov

property. Overall, the AS and the router-level topologies are

not Markovian with respect to the clustering coefficient and

the 2nd-order assortativity.

VI. Conclusion

We propose the Markov property for correlated random

networks to find maximally unbiased networks under the

constraint of a prescribed two-point degree correlation. The

topological characteristics of the Markovian networks are

fully characterized solely by the two-point degree correlation.

We theoretically investigate the topological characteristics of

Markovian networks and derive the analytical formulas for

their graph theoretical metrics. A comparative analysis of AS-

and router-level topologies shows that the studied topologies

are not Markovian. This finding indicates that it is rather dif-

ficult to capture the topological characteristics of the Internet

either at AS- or at router-level solely by the input of the two-

point degree correlation.

There are several possible reasons why the real AS- and

router-level topologies are not Markovian. The most promising

one is the existence of hidden parameters: each node has some

hidden parameters (other than degree), which influences the

interconnectivity between nodes. For example, the locations

of nodes in the real seem to be typical hidden parameters

because they would affect the interconnectivity. Estimating the

hidden parameters of nodes based on the difference from the

expectation by the Markov property would be an interesting

subject.
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