
A Case for Overlays in DCN Virtualization

Katherine Barabash†, Rami Cohen†, David Hadas†, Vinit Jain∗, Renato Recio∗ and Benny Rochwerger†

∗IBM
†IBM Haifa Research Lab

Abstract—Server virtualization has brought about tremendous
value to a modern computing landscape and in particular to
data center and cloud infrastructures. Virtual server deployments
have become ubiquitous in many development and production
sites, in cloud infrastructures and in disaster recovery solutions.
Network connectivity is a vital aspect of modern computing.
In this work we explore the new requirements the server
virtualization brings to the networking world and show how
these requirements are different from those of a physical server
connectivity. We then describe the Distributed Overlay Virtual
Ethernet (DOVE) network architecture for building virtual net-
works infrastructure. We show how host-based overlays answer
the novel networking requirements and describe a working
example of their usage for network virtualization. We discuss
the benefits and the drawbacks of the method, outline options
for its efficient implementation, and show what additional work
is required in order to base DCN virtualization on overlays.

I. INTRODUCTION

Server virtualization is not a new concept. It has been

around since mid 1960s when IBM Mainframe implemented

the first virtual machine monitor for the 360/40 [1]. For several

decades mainframe was the only virtualized platform, running

vital enterprise workloads, achieving high rates of hardware

consolidation, and providing high application availability and

security.

Since the introduction, by VMware, of virtualization tech-

nologies for non strictly virtualizable commodity hardware

architectures in the late 1990s, server virtualization ceased to

be a privilege of high end enterprise clients and became pos-

sible on affordable off-the-shelf server hardware. This brought

about abundant new virtualization use cases and scenarios and,

eventually, led to a new paradigm of hosting and providing

computing services, namely, cloud computing.

In recent years, multiple vendors are putting their efforts

together in order to achieve efficient, secure, and convenient

data center virtualization techniques. These efforts extend to

providing hardware support, developing software infrastruc-

tures, creating unified management solutions. As a result,

off-the-shelf virtualization technology today supports running

enterprise level applications, hosting multiple independent

tenants on shared infrastructure, and implementing advanced

business continuity and load balancing scenarios.

Networking is an important enabling part of almost any

computing infrastructure today. All the applications running

in a data center need network connectivity to achieve the

application goals, to access remote storage and services, to

provide services to remote clients, etc. Traditionally, data

center applications are deployed on physical servers and are

interconnected according to the application needs, security,

load balancing, and quality of service considerations. These

and other considerations are very complex, making it hard

and labor intensive to tailor custom configurations for every

data center; moreover, maintaining and managing data center

networks over time is a challenging task. To cope with the

complexity, over the years, researchers and industry experts

defined best practices for data center networking configuration

and management [2], [3], [4]. In addition, protocols and tools

for automatic configuration propagation, network equipment

redundancy and failover were developed to help managing the

network’s dynamic requirements.

Initial use cases for the commodity virtualization plat-

forms were desktop virtualization and creating development

and testing environments for various uses [5]. Networking

requirements of such scenarios were similar to the regular

networking requirements. Naturally, network connectivity of

virtual machines was approached as an extension of the

existing and well understood networking paradigm. Virtual

machine monitors and/or hypervisors were patched to provide

network connectivity to virtual machines they host. Virtual

machines became new end-points for the existing networking

infrastructures; hypervisors became the edge switches for these

new types of network end-points.

Today, when server virtualization technology has advanced

to allow production data center deployments, many new appli-

cation scenarios became possible. Examples of such scenarios

are: elastic applications where application components are

added and removed based on the application load; mobile

application components relocated to different hosts based on

hardware availability or distance to entities the component

communicates to; site evacuation when all the application

components are moved to another site before anticipated site

service shutdown or disaster [6], [7].

In this work, we draw attention to the unique properties

and requirements for interconnecting virtual servers in a data

center. We stress the importance of satisfying these new

requirements and explain why, in our opinion, host-based

overlay networks is the future of virtual networking for data

centers and cloud infrastructures. We describe one possible

implementation of the host-based virtual networks and discuss

benefits, drawbacks, and performance aspects of this solution.

A. Organization

The rest of this paper is organized as follows. In Section II

we give our view on interconnecting virtual network endpoints

and discuss why and how it is different from interconnecting

regular physical servers. In Section III we describe the concept

30978-0-9836283-2-3 c© 2011 ITC

This paper was peer reviewed by subject matter experts for publication in the Proceedings of DC–CaVES 2011

of overlay, give examples of its current usages, and explain

why overlay networks can be useful in a virtualized data

center. In Section IV we present the Distributed Overlay

Virtual Ethernet (DOVE) network architecture for intercon-

necting virtual machines (VMs). First, we describe this generic

host-based overlay network architecture and then give an

example of how this architecture was implemented to serve

as federated cloud networking infrastructure of the FP7 EU

project, RESERVOIR [8]. Conclusions and future directions

are presented in Section V.

II. NETWORKING IN THE SERVER VIRTUALIZATION ERA

On the surface, interconnecting virtual servers seems no

different from interconnecting physical servers. Indeed, hy-

pervisors are built in a way allowing virtual servers to run

unmodified versions of operating systems and, hence, unmod-

ified application stacks. This means that virtual servers can be

viewed as regular network endpoints, not different from regu-

lar hardware servers. Virtual servers are configured with their

own network addresses, e.g. MAC and IP addresses, and other

networking attributes, e.g. IP subnet mask and default gateway

IP address. Virtual servers participate in neighbor discovery

protocols, e.g. ARP, and perform network endpoint routing

just like regular servers do. Indeed, networking services for

virtual servers can be provided by connecting them to the same

physical network the hosting physical machine is connected to.

So why do we claim that there are important differences

between interconnecting virtual and interconnecting physical

servers? To answer this question, let us analyze the networking

implications of consolidating DCN applications on virtualized

platforms.

First, multi-component nature of modern data center ap-

plications led to a great increase in the amount of severs.

Before virtualization, typical enterprise data center contained

thousands of physical servers and this number was steadily

rising leading to increasingly high costs in terms of floor space,

power needs and management. With server virtualization,

physical hosts are capable of hosting tens of virtual servers,

thus making possible to satisfy application needs in server

components without increasing the amount of physical servers

in a data center. However, with the current tendency of treating

virtual servers as physical network endpoints, the number of

network endpoints continues to grow and can easily reach

tens and hundreds of thousands per data center [9], [10], [11].

Network equipment and network management costs are rising

with the increase in the number of interconnected endpoints,

making data center networks larger, more complex, and harder

to manage. DCN designs have to be reinforced with more

switches or with switches with larger memories and learning

capacities to cope with the amount of additional virtual MAC

addresses that have to be learned.

Second, data center applications are created of clusters

and/or communication tiers so that providing connectivity to

a single application requires building several isolated commu-

nication links with varying quality of service, security, and

management requirements. Due to application consolidation

on virtualized platforms, data center networks must support

significantly more different isolated networks than traditional

data center networks do.

Third, as data center application loads depend on various

external factors, resource requirements of applications and

their components vary over time. In order to satisfy varying

resource requirements without massively overprovisioning the

physical resources, components of multiple applications are

consolidated on shared physical hosts. In some cases, different

application components running on a same physical host be-

long to different data center tenants. Thus, to add on a previous

requirement, virtualized data center networks must support

large amounts of isolated networks belonging to different

tenants and, possibly, managed by different authorities.

Fourth, recent advances in the virtualization technology

enable automating virtual machine lifecycle by allowing to

create and to destroy virtual machines on demand, as well

as to migrate virtual machines from one physical host to

another. These capabilities allow for advanced use cases such

as elastic applications and application component mobility.

To take advantage of these capabilities and to enable these

advanced use cases, virtualized data center networks must

be very dynamic and support frequent addition, removal and

moving around of endpoints. One important particular case

is supporting virtual machine migration anywhere in a data

center without having to reconfigure the virtual machine or

cause it to loose its existing network connections.

Fifth, to add on to a previous requirement, virtualized data

center must support deploying virtual machine anywhere in

a data center, irrespectively of the underlying layout and

configuration of the physical network components, so it can

communicate as required by the application it is a part of.

To achieve this, connectivity services for virtual machines

must be independent and isolated from the underlying physical

network. This means that changes in a virtual network does

not have to cause physical network reconfigurations and vice

versa. One important consequence of this requirement is that

physical network configuration in a data center can remain

static and continue to follow the time tested and convenient

best practices.

A. Networking Requirements for Virtualized Data Centers

Here we summarize the discussion above and list the impor-

tant new requirements server virtualization brings to the data

center networking world. In addition to the regular require-

ments of interconnecting physical servers, network designs for

virtualized data centers have to support:

• Huge number of endpoints. Today physical hosts can

effectively run tens of virtual machines. With the increase

of number or cores and IO capacity, a single physical

machine will be able to host even more virtual machines.

• Large number of isolated and independent networks. The

most important is to achieve address space isolation,

management isolation, and configuration independence.

Performance isolation is another important requirement.

Proceedings of the 2011 3rd Workshop on Data Center — Converged and Virtual Ethernet Switching 31

• Multitenancy, where application components belonging to

different tenants are collocated on a single physical host.

• Network and network endpoint dynamics. Server virtu-

alization technology allows for dynamic and automatic

creation, deletion and migration of virtual machines.

Networks must support this function in a transparent

fashion.

• Separation from the underlying physical network and

isolation from changes in it.

These requirements call for a solution different from just

extending physical networks up the hypervisors and con-

necting virtual servers to the physical data center network.

What is required is proper network virtualization, i.e. creating

virtual networks in a way similar to creating virtual servers:

independent of physical infrastructure characteristics, isolated

from each other, dynamic, configurable and manageable. This

work describes our approach to this challenge, namely, using

hypevisor based overlay to provide networking services to

virtual servers in a data center.

III. OVERLAY NETWORKS

Overlay networks is a method for building one network on

top of another. Applications of overlay networks are many

and the technology is well understood. Overlay networks are

extensively used by research communities for Grid, HPC and

distributed systems to create custom application level networks

over infrastructures of the standard distributed components

interconnected by standard network protocols. Industrial usage

of overlay technology is abundant as well, e.g virtual private

networks to achieve remote office and traveling employees

connectivity [12], [13], [14].

The major advantage of overlay networks is their separation

from the underlying infrastructure in terms of address spaces,

protocols and management. In standard, TCP/IP networks,

overlays are usually implemented by tunneling. Overlay net-

work payload is encapsulated into headers and delivered over

the underlying infrastructure. Overlay payload can be Ethernet,

IP, other standard or custom application protocols. Underlay

networks can use different technologies and protocols, can be

homogeneous or heterogeneous, can be local to a site or an

organization or public and wide, spanning the entire Internet.

Encapsulation can be simple, aiming only to correctly deliver

the overlay payload on top of the underlay infrastructure,

and it can be complex, bearing lots of control information

and allowing overlay nodes to relay and route packets among

themselves.

The main drawback of the overlay techniques is the over-

head it adds onto the packet processing in the end nodes and

sometimes in the middle boxes. Apart from the direct costs of

adding and parsing the encapsulating headers by the overlay

nodes, there are additional non-direct performance penalties.

Sometimes, the presence of encapsulation header causes pack-

ets to be dropped or to be handled by slow path processing

units in switches, routers, and network appliances. In addition,

encapsulated packets are larger in size than the original ones,

potentially causing inefficiency due to unexpected fragmen-

tation. Another drawback of using encapsulation in the data

center is that encapsulated traffic becomes opaque to network

monitoring tools and security appliances.

Abundance of overlay technologies and their deployments

by providers, enterprises and research communities testifies

that the need for overlay designs and their benefits outweigh

the drawbacks. Network vendors support and introduce over-

lays in their products for widespread and proven use cases such

as VPN, VPLS, OTV, etc. End point network stack designers

create processing hooks to enable efficient creating, parsing

and modifying of overlay headers on a fast packet processing

path.

Recently, overlay network designs started to be used for

interconnecting virtual machines. Most of the work in this

space belongs to research community in distributed systems

in attempts to utilize cloud platforms opportunities in building

large scale distributed and peer to peer systems [15], [16]. In

this work, we investigate the opportunities of employing the

overlay networks technology to interconnect virtual machines

in data centers. We show that this approach leads to satisfying

the new networking requirements for virtualized data centers

we have presented in Section II-A.

IV. HOST-BASED VIRTUAL OVERLAY NETWORKS

The network virtualization architecture we propose employs

the encapsulation technique from the overlay networks in order

to achieve the separation of the virtual networks from the

underlying infrastructure and from each other. The separation

means separate address spaces, ensuring that virtual network

traffic is seen only by network endpoints connected to this

virtual network, and allowing different virtual networks to

be managed by different administrators. In our architecture,

overlay network nodes are located in physical hosts and are

responsible for capturing virtual machines traffic and sending it

between each other on the physical network. Overlay nodes do

not relay encapsulated traffic between themselves as in peer to

peer architectures. All the routing and forwarding in the phys-

ical network is relied upon the physical network infrastructure

and, as such, builds upon the connectivity, security, and other

properties the underlying network infrastructure provides.

A. Distributed Overlay Virtual Ethernet (DOVE) Architecture

We define the notion of Distributed Overlay Virtual Ethernet

(DOVE) Network and allow administrators to manage DOVE

Network instances in a data center. For example, DOVE

instances can be created and deleted; virtual machines can

be attached to and detached from DOVE instances. Upon

creation, every DOVE instance is assigned unique identity

and all the traffic sent over this overlay network will bear the

DOVE instance identity in the encapsulation header in order

to be delivered to the correct destination virtual machine. To

achieve this, virtual machine interfaces are marked as being

connected to a specific DOVE instance by the virtual network-

ing component that resides in each physical host in a data

center. We call this component Distributed Overlay Virtual

32 Proceedings of the 2011 3rd Workshop on Data Center — Converged and Virtual Ethernet Switching

Fig. 1. Distributed Overlay Virtual Ethernet (DOVE) switches in physical hosts are responsible for creating connectivity between virtual machines: capturing
their traffic, encapsulating it, and sending the encapsulated traffic over the physical data center network. Physical networking devices in a data center are not
aware of virtual machines, their addresses and their connectivity patterns.

Ethernet (DOVE) switch (DOVE switch). DOVE switches are

similar in function to the traditional hypervisor switches but

have additional functions as overlay nodes.

First of all, DOVE switches mark network interfaces of

the hosted virtual machines by assigning the virtual network

identity to them. DOVE switches must sit in a network IO

path of each hosted virtual machine and intercept traffic sent

by it.

Second, upon getting the data packet originating in the

hosted virtual machine, DOVE switch identifies the DOVE

Network instance the packet belongs to. It then resolves the

identity and the location of the target virtual machine and,

if the destination is not hosted by the same physical host,

encapsulates the packet with the header bearing encapsulation

specific control information and sends it to the destination

physical host over the underlying physical network.

Third, upon receiving the encapsulated packet from the

physical network, DOVE switch parses and removes encapsu-

lation header and delivers the packet to the correct destination

virtual machine as identified both by the target virtual machine

address in the packet and by the virtual network identifier in

the encapsulation header.

In addition, DOVE switches participate in control plane

protocols to exchange and distribute information about virtual

machine location, virtual machine addresses, virtual machine

migration events, etc.

Figure 1 shows DOVE switches residing in data center hosts

and providing network service for hosted virtual machines so

that virtual machines are connected to independent isolated

overlay networks. As virtual machine traffic never leaves

physical hosts in a non-encapsulated form, physical network

devices are not aware of virtual machines, their addresses, and

their connectivity patterns.

Different implementations of the described architectural

concept are possible, depending on several factors:

• The kind of service provided to virtual machines. It is

possible to provide a layer-2, e.g. Ethernet connectivity,

layer-3, e.g. IPv4 connectivity, some custom application

level protocols connectivity, etc. Providing Ethernet con-

nectivity is beneficial in that it is simple and does not limit

the upper layers of network stack in virtual machines.

Providing IP connectivity to virtual machines is beneficial

in that it allows to limit the amount of traffic sent to the

physical network due to IP service protocols like DHCP,

ARP, etc. On the other hand, choosing this type of overlay

limits the ability to support applications requiring non-IP

communications between virtual machines.

• Type of underlying physical network that is used as

a carrier. Each implementation of host-based overlay

architecture must assume a specific underlying physical

network topology and technology and be tailored to it.

More advanced implementations can be made capable of

supporting different underlays, e.g. IPv4, MPLS, Internet,

or even heterogeneous underlays.

• Whether the control plane is fully distributed or is relying

on centralized components. Overlay nodes can be fully

autonomous in discovering and distributing the control

information or can rely on a centralized entity to keep and

distribute it. Implementations can differ in the amount of

control data sent between the overlay nodes, between the

Proceedings of the 2011 3rd Workshop on Data Center — Converged and Virtual Ethernet Switching 33

overlay nodes and the controlling entities.

• Where in the host DOVE switches are implemented.

The most straightforward option is to implement DOVE

switch as a software component integrated into the phys-

ical server’s network stack. Implementations involving

forwarding hardware are possible as well.

While particular implementations can be different, all the

solutions following the presented architectural concept will

have the following desirable properties that are essential in

order to support the advanced data center virtualization sce-

narios:

• Separation of virtual networks from the underlying infras-

tructure and from each other. Different virtual networks

can be created, modified, migrated and deleted with no

relation to one another and with no need to reconfigure

the physical network components. Different virtual net-

works can be assigned address spaces independently of

each other and of the physical addresses. Virtual machines

are able to see network traffic of virtual networks they

are connected to and are not able to see traffic of other

virtual networks.

• Possibility of unrestricted placement and migration of

virtual machines. Virtual machine placement and mi-

gration possibilities are not restricted by the physical

network topology, so that virtual machines will continue

to communicate when one or both of the communicating

endpoints are migrated over the physical network switch,

router, or site boundary.

• Configuration flexibility and manageability. Virtual net-

work configuration is easy to manage and does not require

involvement of physical network administrator. It is pos-

sible to integrate the virtual network management into the

data center management tools and allow for transparent

management of changes as required by modern elastic

applications.

Of course, solutions based on the proposed architecture

will inherit the drawbacks of the overlay network designs.

Inefficiencies caused by these drawbacks must be resolved in

order for the host-based overlay to scale into an acceptable

industry strength solution, supporting huge number of network

endpoints and large number of independent virtual networks.

• Per packet processing overhead can be reduced by smart

tailoring of DOVE switch function into the physical

server’s networking stack, handling fragmentation, and by

creating offload solutions. Encapsulation header standard-

ization can reduce overheads incurred in middle boxes

and the need for encapsulated packets to go through the

slow processing path.

• Opaqueness of the inter-VM traffic to the traditional net-

work monitoring tools and appliances can be overridden

either by developing a new generation of these tools and

appliances or by custom agents that will remove and

recreate encapsulation headers at the key points of the

packet path.

Fig. 2. DOVE packet encapsulation format.

Fig. 3. DOVE encapsulation header. Proposed OTV extension fields are
shown in yellow.

B. DOVE Encapsulation Header

Here we propose packet encapsulation format for DOVE

that is based on and extends the Overlay Transport Virtualiza-

tion (OTV) encapsulation format [12]. Basing the encapsula-

tion format on an existing encapsulation format such as OTV

allows for a common format for overlay network encapsula-

tion. This encourages the switch ASIC and NIC vendors to add

support which is essential for high performance implementa-

tions where encapsulation support is available through NIC

offloads and in Gateways at the edge of Overlay Networks.

Figure 2 shows DOVE encapsulated packet, where the en-

capsulation header consists of an outer IP header followed by

a UDP header that guards the DOVE encapsulation header. By

using the outer IP and the UDP headers we get the benefit of

ubiquitous acceptance of encapsulated packets throughout the

networking infrastructure. Network forwarding and security

devices will see these packets as standard and process them

on their fast processing paths. Figure 3 zooms into the DOVE

encapsulation header. As discussed previously, the Instance ID

can be used to logically separate the overlay traffic of differ-

ent DOVE instances in a common underlay. Our proposed

extensions to the OTV header add support for versioning,

fragmentation and addition of optional header extensions.

As overlay networks evolve and get standardized, having

versioning support will be critical to deploying the protocol

header changes. While fragmentation should be discouraged

wherever possible through adjustment of MTU in the physical

infrastructure, we believe that fragmentation support will be

required. Handing fragmentation at the IP layer is not preferred

as administrators frequently configure middle-boxes to drop

fragmented IP packets due to security reasons. Therefore we

propose adding fragmentation support at the DOVE session

layer where it will be transparent to network middle-boxes.

Finally, the addition of optional header extensions will allow

for accomodation of new requirements as overlay networks

and use cases based on them continue to evolve. Figure 3

describes one possible extension to the OTV header that would

enable fragmentation, versioning and the addition of future

headers.

While we propose extending the OTV packet format for

34 Proceedings of the 2011 3rd Workshop on Data Center — Converged and Virtual Ethernet Switching

Fig. 4. Edge bridges established for each VAN instance inside the physical
host. VMs on same edge bridge communicate directly, while traffic out of the
host is sent through overlay.

DOVE, the IS-IS control protocol used by OTV for address

dessemination may not be suitable for DOVE as it is un-

likely to scale to the limits where every Host is expected

to have a DOVE switch. Considering the massive scaling

requirements of DOVE networks, approaches where multiple

centralized controllers are deployed to help in the collection

and dessemination of address information seem preferrable.

We see innovative evolution in this address dissemination

approach.

C. Example of DOVE Architecture Implementation - RESER-

VOIR VANs

This section describes an example of a host-based overlay

network implementation: virtual network infrastructure created

as part of the EU project RESERVOIR [8] and referred

to as Virtual Application Network (VAN). In RESERVOIR,

VANs provide an Ethernet service to virtual machines by

constructing an overlay between hosts and using a standard IP

network as the underlying physical infrastructure. The solution

is fully distributed, so that all the data plane and control

plane functionality resides in host based modules. To virtual

machines connected to a VAN instance, the VAN service is

transparent and appears to be as though they are connected

to peer virtual machines through an Ethernet network. All

virtual machines belonging to the same VAN instance therefore

belong to the same virtual layer-2, while virtual machines

belonging to different VAN instances are isolated from each

other.

Figure 4 presents a physical host, a VAN switch residing in

it, and its hosted virtual machines. Hosted virtual machines

are connected to two different VAN instances, VAN1 and

VAN2. VAN switch implements two VAN instances in the

host instantiated by two layer-2 bridges. All virtual machines

belonging to the VAN instance are connected to an instance

of bridge established for that VAN instance so that commu-

nication between two local VMs belonging to the same VAN

instance is handled locally by the bridge without the packets

having to enter the overlay.

Fig. 5. VAN overlays provide connectivity between VMs on different
hosts irrespective of their physical location. Traffic within the VAN instance
is logically isolated through use of VAN instance identifiers in the VAN
encapsulated headers.

The VAN switch maintains a table per VAN instance of

destination VMs that local VMs are communicating with.

When a VAN switch recognizes a packet destined for a VM

that is not on the local host, it encapsulates the packet and

includes the VAN instance id in the encapsulation header.

The encapsulated packet is then addressed to the physical

host where the destination VM is hosted and the physical IP

underlay is used to send the packet.

VAN switches are aware of all virtual machines that are

active on a particular VAN instance on that host. The VAN

switch on the destination host recognizes the encapsulated

packet and parses it to retrieve the VAN instance id. VAN

switch then verifies that destination virtual machine is hosted

on this host and belongs to the correct VAN instance. If

everything is correct, the VAN switch removes the VAN

encapsulation header and delivers the packet to the destination

virtual machine. The use of a VAN instance id in the encap-

sulation header ensures logical separation between the VAN

instances in the overlay. As shown in Figure 5, an overlay is

constructed to provide VAN connectivity between VMs of the

same VAN instance but hosted on different, possibly remotely

located, hosts.

This mechanism can be used irrespectively of the physical

location of the destination VM as long as physical connectivity

exists between the hosts hosting the source and the destination.

There may be situations where the physical underlay does

not provide direct connectivity to hosts between different

sites. This scenario is handled through the establishment of

VAN proxies at each site with each VAN proxy having the

ability to handle multiple VAN instances. The VAN proxies

maintain a table per VAN instance of the destination VMs

with the corresponding proxy that the VMs from the local

site are communicating with. The VAN switch on the host

encapsulates the packet and sends it to the local VAN proxy.

The VAN proxy then delivers the packet to the destination site

Proceedings of the 2011 3rd Workshop on Data Center — Converged and Virtual Ethernet Switching 35

proxy based on its tables. The VAN proxy at the destination

site then reconstructs the packet for delivery to the host that

is hosting the destination VM. The use of VAN proxies is

optional and is needed only when directly addressable physical

connectivity does not exist between two sites.

Isolation between different VAN instances is maintained

through the use of VAN instance id which provides a logical

separation in the overlay. The VAN instance id is an essential

part of the VAN encapsulation header and helps ensure the

VAN switches provide connectivity to VMs in the same VAN

instance while denying connectivity between VMs between

different VAN instances.

A multicast or broadcast domain is created between the

VAN switches residing on different hosts. When multicast

support is not available, a multi-unicast may be used to reach

all VAN switches serving a VAN instance. The VAN switches

use this broadcast domain to flood a request to learn about

unknown traffic for a VAN instance endpoint. Since VAN

switches on hosts have complete awareness of VMs it serves

for a VAN instance, the VAN switch hosting the endpoint

responds to the learn request.

When a VM migrates or is shutdown, the VAN switch where

it was previously hosted updates its tables to reflect that the

VM is no longer active on this host. When a VAN switch

on the host where the VM was previously operational sees

traffic destined for this migrated VM, it will send an un-learn

request to the VAN switch originating this traffic. This enables

the VAN switch on the originating host to re-initiate a learn

request. One possible optimization is for a VAN switch to

send immediate un-learn requests to all the VAN switches the

previously active VM was communicating with.

In RESERVOIR, VAN switches were implemented in KVM

hypervisor and the resulting system was deployed and run in

a setup consisting of two remote data centers with several

x86 boxes each. For test purposes, RESERVOIR team has

deployed multi-tier web serving applications and exercised

elasticity and migration scenarios. More details on KVM

implementation and its performance characteristics can be

found in [17]; details on a more advanced scenario using VANs

for deploying virtual networks over autonomous federated

cloud infrastructures can be found in [18].

V. CONCLUSIONS

In this work we have analyzed the advanced novel data

center scenarios that have became possible due to server

virtualization and derived new networking requirements these

scenarios create. To allow server virtualization to succeed

in data center and cloud infrastructures, there is a need to

support creating, configuring and maintaining large numbers

of isolated, efficient, and dynamic networks connecting virtual

machines. Moreover, there is a need to enable these net-

works to be managed independently of each other and of the

underlying infrastructure and to have independent, possibly

overlapping address spaces.

We have discussed the challenges and possible solution

directions and presented their properties. We have described

the Distributed Overlay Virtual Ethernet (DOVE) Network

Architecture as one possible solution. This architecture allows

creating virtual networks that are independent from the under-

lying physical infrastructures and each other, can be separately

managed and configured, have independent address spaces and

are highly dynamic. The proposed architecture consists of net-

working modules in physical hosts and a control infrastructure.

Host based networking modules are responsible for intercept-

ing the virtual machines packets, resolving the destination

virtual machine location, and, if the destination is outside the

source physical host, encapsulating the packets and sending

them over the underlying physical network to the destination

physical host. In the destination host, the networking module is

responsible for parsing and removing the encapsulating header

and delivering the packets to the destination virtual machine.

The architecture supports mechanisms to handle connectivity

between the hosted virtual machines, external network con-

nectivity, virtual machine migration, address provisioning and

address resolution.

In addition to the generic DOVE Network Architecture,

we have described one particular implementation of network

virtualization framework that goes along the lines of this

architecture, RESERVOIR VANs. VANs solution provides

isolated Ethernet networking service to virtual machines over

the standard IP physical infrastructure using a fully distributed

control plane. DOVE Architecture based solution providing

layer-3 (IP) service to its clients is currently being developed

by us. This new solution, layer-3 Distributed Overlay Virtual

Ethernet (DOVE) Network, is a next step towards a proper

network virtualization in a data center.

There are many challenges that need to be resolved in order

to make overlay based solutions practical. First of all, it is

not straightforward to provide efficient implementations of

host-based networking components so that the processing per

packet overhead will be minimal. In addition, non-standard en-

capsulation header can cause problems for traditional network

appliances, network offload engines, and traffic monitoring

tools. Thus, standardization is vital in order for the solution

to become practical. Control plane developments are crucial

as well: protocol development and standardization will help

implementing coherent integrated data center management

solutions; control plane scalability, coherency and performance

are important challenges for future work.

In summary, although there is a lot of work ahead, we be-

lieve that the future of data center networking is in hypevisor-

based overlay architectures. We continue to advance the DOVE

Network Architecture and make solutions based on it a reality.

ACKNOWLEDGMENT

The authors would like to thank the RESERVOIR net-

working infrastructure team, in particular Irit Loy, Sergey

Guenender, Liran Schour, and Kenneth Nagin for their work on

developing the implementation of VAN overlay and advanced

scenarios based on it. We also thank Alexander Landau

and Edi Shmueli for their contribution to the performance

evaluation and optimization of VAN implementation.

36 Proceedings of the 2011 3rd Workshop on Data Center — Converged and Virtual Ethernet Switching

REFERENCES

[1] J. P. Buzen and U. O. Gagliardi, “The evolution of virtual
machine architecture,” in Proceedings of the June 4-8, 1973,

national computer conference and exposition, ser. AFIPS ’73. New
York, NY, USA: ACM, 1973, pp. 291–299. [Online]. Available:
http://doi.acm.org/10.1145/1499586.1499667

[2] Cisco data center network architecture. [Online]. Available: http:
//www.cisco.com/go/datacenter

[3] Brocade data center best paractices. [Online]. Available: http:
//www.brocade.com/data-center-best-practices/index.page

[4] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data
center network architecture,” in Proceedings of the ACM SIGCOMM

2008 conference on Data communication, ser. SIGCOMM ’08.
New York, NY, USA: ACM, 2008, pp. 63–74. [Online]. Available:
http://doi.acm.org/10.1145/1402958.1402967

[5] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield, “Xen and the art of
virtualization,” in Proceedings of the nineteenth ACM symposium

on Operating systems principles, ser. SOSP ’03. New York,
NY, USA: ACM, 2003, pp. 164–177. [Online]. Available: http:
//doi.acm.org/10.1145/945445.945462

[6] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A. Konwinski,
G. Lee, D. A. Patterson, A. Rabkin, I. Stoica, and M. Zaharia,
“Above the clouds: A berkeley view of cloud computing,” Feb 2009.
[Online]. Available: http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/
EECS-2009-28.html

[7] (2011) How cloud computing will change application platforms. [On-
line]. Available: http://blogs.forrester.com/john r rymer/11-04-26-how
cloud computing will change application platforms

[8] B. Rochwerger, D. Breitgand, E. Levy, A. Galis, K. Nagin, I. M.
Llorente, R. Montero, Y. Wolfsthal, E. Elmroth, J. Caceres, M. Ben-
Yehuda, W. Emmerich, and F. Gal, “The reservoir model and architecture
for open federated cloud computing,” pp. 1–11, 2009.

[9] R. Miller. (2009) Who has the most web servers? [Online].
Available: http://www.datacenterknowledge.com/archives/2009/05/14/
whos-got-the-most-web-servers/

[10] C. Harris. (2011) Data centers face growth challenges.
[Online]. Available: http://www.informationweek.com/news/hardware/
data centers/229600034

[11] R. Figueiredo, P. A. Dinda, and J. Fortes, “Guest editors’ introduction:
Resource virtualization renaissance,” Computer, vol. 38, pp. 28–31,
May 2005. [Online]. Available: http://portal.acm.org/citation.cfm?id=
1069588.1069631

[12] H. Grover, D. Rao, D. Farinacci, and V. Moreno, “Overlay transport
virtualization,” draft-hasmit-otv-03, Jul. 2011.

[13] R. Callon and M. Suzuki, “A framework for layer 3 provider-provisioned
virtual private networks (ppvpns),” RFC4110, Jul. 2005.

[14] D. Andersen, H. Balakrishnan, F. Kaashoek, and R. Morris, “Resilient
overlay networks,” 2001.

[15] A. Ganguly, A. Agrawal, P. O. Boykin, and R. Figueiredo, “Wow:
Self-organizing wide area overlay networks of virtual workstations,”
in In Proc. of the 15th International Symposium on High-Performance

Distributed Computing (HPDC-15, 2006, pp. 30–41.
[16] ——, “Ip over p2p: Enabling self-configuring virtual ip networks for grid

computing,” in In Proc. of 20th International Parallel and Distributed

Processing Symposium (IPDPS-2006, 2006, pp. 1–10.
[17] A. Landau, D. Hadas, and M. Ben-Yehuda, “Plugging the hypervisor

abstraction leaks caused by virtual networking,” in SYSTOR 2010: The

3rd Annual Haifa Experimental Systems Conference, 2010.
[18] D. Hadas, S. Guenender, and B. Rochwerger, “Virtual network services

for federated cloud computing,” IBM Research Division, HRL, Tech.
Rep. H-0269, Nov. 2009.

Proceedings of the 2011 3rd Workshop on Data Center — Converged and Virtual Ethernet Switching 37

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

