
Approximate Fairness Through Limited Flow List

Addisu Eshete and Yuming Jiang

Centre for Quantifiable Quality of Service in Communication Systems∗

Norwegian University of Science and Technology, Trondheim, Norway

addisu.eshete@q2s.ntnu.no ymjiang@ieee.org

Abstract—Most of router mechanisms proposed for fair band-
width sharing lack either (1) simplicity due to complexity of
intricate per flow management of all connections (e.g., WFQ,
SFQ), (2) heterogeneity due to a design targeting a specific traffic
type, e.g., RED-PD and Fair RED (FRED) or (3) robustness due
to requirement for proper router configurations (e.g., CSFQ). All
of these severely impact the scalability of the schemes. This paper
proposes a novel router fairness mechanism, namely Approximate
Fairness through Partial Finish Time (AFpFT). Key to the design
of AFpFT is a tag field the value of which defines the position of
the packet in an aggregate queue shared by all flows. The specific
of tag computation depends on the router’s role—edge or inner—
to the flow. While gateways closest to traffic source manage all
flows, successive or inner routers only manage a limited subset at
flow level. The managed flows are usually of higher rates than fair
share. Following the heavy-tailed Internet flow distribution, these
flows are indeed the minority in the Internet. Using extensive
simulations, we show that the scheme is highly fair and potentially
scalable unlike other proposed schemes.

1. INTRODUCTION

The traditional way to achieve congestion control has been

with the help of congestion avoidance algorithms implemented

at the end hosts. These schemes, however, require all users to

adopt them without offering any incentives for doing so. A

user can end up with more bandwidth without using these

schemes. In addition, a lot of emerging applications (e.g.

multimedia, VoIP) do not implement them and therefore do not

backoff when given congestion notifications. Researchers have

therefore looked for router schemes to protect the Internet from

severe congestion. Broadly speaking, such router schemes

can either be per flow fair queueing (PFFQ) (e.g., [3], [7],

[8]) or per flow dropping (e.g. [12]) algorithms. The PFFQ

algorithms maintain a separate FIFO queue for each flow

and, at each transmission epoch, decide the next packet to

send from among the backlogged queues (or flows). Since

flows are confined to their own queues, they can be protected

and their service requirements be fulfilled in fine time scales.

The second approach, using per flow dropping, is based on a

simpler design with a single FIFO queue and it makes use of

per flow accounting to determine the connections from which

packets are dropped.

While per flow fair queueing schemes are powerful in

providing intricate flow level fairness, this comes with a heavy

price: complexity due to buffer partitioning and the amount

of information that must be maintained for each of a possible

∗“Centre for Quantifiable Quality of Service in Communication Systems,
Centre of Excellence” appointed by The Research Council of Norway, funded
by the Research Council, NTNU and UNINETT. http://www.q2s.ntnu.no

million of flows. This raises questions about their feasibility in

high speed implementations. Taking the well-known Weighted

Fair Queuing (WFQ) [3] as an example, there is a need to keep

information for all flows traversing the router for both the

packet system and the fluid system that the WFQ is designed

to emulate. The buffer at the router’s output port must also

be partitioned into separate queues, one for each flow served

by the router. Another example is Start-time Fair Queueing

(SFQ) [8]. In SFQ, to compute the start tag of every arriving

packet, the server needs to hold the finish tag of the previous

packet. The majority of Internet flows are “Web mice” that

last for few round trip times. Continuously updating state for

all these short-lived flows is very impractical.

Stochastic Fair Queueing [14] and Deficit Round Robin [19]

are efficient and less complex designs of per flow queueing.

In their implementations, packets are classified into a smaller

number of queues by the use of hash functions. Still, to

approach the FQs performance and avoid hash collisions, the

number of logical queues (buffer partitioning) must be in the

order of thousands.

Is it possible to retain the nice fairness qualities of

per flow schemes without keeping states for all flows?

Replicating the fairness of PFFQ with no states is a difficult

challenge [10]. This is because the per flow parameters (e.g.,

the virtual flow finish times) are not stand-alone but depend on

all flows traversing the router [10]. Due to this dependency, en-

coding the per flow parameters at the ingress nodes, and using

them later for scheduling inside the network is not possible.

Therefore, several attempts—with some degrees of success—

have been made in the literature to approximate the fairness of

PFFQ with limited flow states in core routers [12], [13], [16],

[17], [21]. One novel approach is Core Stateless Fair Queueing

(CSFQ) [21] where routers are configured as edge or core.

Edge routers keep each flow’s state and estimate the flow’s

arrival rate ri and encode this information into the packet

header. The encoded flow rate is later retrieved at the core

routers and, together with the max-min fair share rshare
1, deter-

mines the flow’s dropping probability as max(0,1− rshare/ri).
As the core routers do not maintain any per flow state, they are

stateless. However, they still need to insert the newly computed

outgoing rate min(ri,rshare) into the packet header and pass it

on to the next router. Hence, the computation of fair share,

and hence flow dropping rates, is based on implicit trust of

1For a congested router with output link capacity C and serving n flows, the
fair share rate rshare is the solution to the condition C = ∑

n
i=1 min(ri,rshare),

where ri is the incoming rate of flow i.

198978-0-9836283-0-9 c© 2011 ITC

This paper was peer reviewed by subject matter experts for publication in the Proceedings of ITC 2011

upstream nodes in the network. A faulty router along the

flow’s path can therefore insert inconsistent values into packet

headers and severely undermine the fairness, and the overall

performance, of CSFQ [22]. Therefore, CSFQ can neither

transcend network boundaries nor withstand malfunctioning

or wrongly configured routers. Besides, the flow dropping

mechanism based entirely on incoming flow rate and the fair

share at the router may not be suitable for closed-loop traffic,

see Sec 3-B. Also, CSFQ can be unfair to long RTT flows

(see Fig. 7).

In CHOKe [17], when a new packet arrives to the queue,

it is compared to packets randomly drawn from the queue. If

they belong to the same flow, all of them are dropped, else

the randomly chosen packets are left intact and the arriving

packet is dropped with a probability. The idea is that an ill-

behaved flow has more packets in the buffer and hence a higher

probability of dropping. The results in [17] show that the high

rate flows can still achieve much more than the fair share.

As will be discussed in Sec 2-D, the high rate, large sized

flows are the minority in the Internet. Both Approximate

Fairness Dropping (AFD) [16] and RED with Preferential

Dropping (RED-PD) [13] use the notion of partial flow state—

state only for the “heavy-hitting” subset—to help provide

fairness. The manner of identifying these flows is different.

AFD keeps record of recent arrivals to find the flow rates, and

the flow states to be kept is proportional in size to that of

the buffer. But, the authors concede that fairness performance

of AFD is not as good as that of CSFQ. RED-PD uses

recent RED’s drop history and TCP-friendliness criterion to

identify the high bandwidth flows. An implicit assumption in

the design is that all sources comply with a standard TCP

implementation. A critical RED-PD configuration parameter

is the target RTT R. Flows with more drops in the drop history

than a TCP flow with RTT R are monitored and controlled at

a prefilter. While the quality of fairness increases with R, this

also increases the amount of flow state to be maintained.

This paper presents a router fairness scheme called Approx-

imate Fairness through partial Finish Time (AFpFT). Detailed

design is presented in Sec 2, but main features are summarized

here. An AFpFT queue is an aggregate queue shared by all

flows, and sorts arriving packets based on encoded timestamps,

hereafter called tags. An AFpFT router can act as edge or core

to a flow, but there is no hard-and-fast router configuration

per se. At network entrance of the flow, the first router acts as

an edge and maintains the flow information. All downstream

routers act as core or inner routers and keep only partial flow

states; by partial, we mean information only about those flows

that already have packets in the buffer. We call these flows

listed flows, and their flow information or state is stored as

records in a flow list FL. The size of FL is proportional to

the memory allocated to the packet buffers, just as in AFD. By

keeping the state for a limited subset of flows at inner nodes,

AFpFT enables routers with less stateful and less complex

but still powerful flow protection and fair bandwidth sharing.

Extensive simulations under different operating conditions

show that the mechanism is superior in fairness to other related

schemes such as FRED and CSFQ. It can, for instance, restrict

the high bandwidth flows (e.g., TCP flows with small round-

trip times or aggressive flows that lack e2e congestion control)

to a common fair share. Incidentally, the listed flows at core

routers are usually such high rate flows, see Sec 2-D.

The rest of the paper is organized as follows. Detailed

design of AFpFT is provided in the next section. Section 3

provides context on AFpFT’s performance by comparing it

with RED, FRED and CSFQ under different simulations

conditions. Finally, conclusions are presented in Sec 4.

2. DETAILED DESIGN OF AFPFT

The pseudocode of AFpFT is shown in Fig. 1, and notation

of important variables is summarized in Table I. Central to

AFpFT design are a packet header field called start tag, or

simply tag, and a non-FIFO shared queue Q. Packet tags are

routinely initialized to negative values at the source. When a

packet arrives to an AFpFT queue Q, this is the sequence of

router actions that would happen (details follow subsequently):

first, a new tag value is computed for the packet and encoded

into the packet’s header; second, the flow of the arriving packet

may be added to flow list FL or its flow record in flow list

FL may be updated; third, the packet is then queued in Q in

increasing order of its tag value; fourth, if the queue becomes

full, the packet(s) at the tail are dropped and flow record(s)

of dropped packet(s) may need to be updated. Note that tag

computation is dependent on a local server variable called

virtual time v(t); v(t) is the tag of the packet being transmitted

at time t. We describe design details as follows.

TABLE I: Notations used in AFpFT tag computation.

Variable Semantics

p
j
f jth packet of flow f

r rate allocated to flows (also called flow weight)

S(p
j
f) start tag or tag of packet p

j
f

F(p
j
f) finish tag of packet p

j
f . For a start F(p0

f) = 0.

v(A[p
j
f]) server’s virtual time when p

j
f arrives to queue

Q shared queue that enques packets based on tag

A. Tag computation

Packet tags define the position of the packet in the queue.

They are computed upon packet arrival and encoded into

packet header. Based on whether or not the packet’s flow entry

can be found in the flow list2, there are two ways3 to compute

tags.

Tag Encoding 1: When a packet arrives, the server examines

its flow list for the finish tag. If the flow is listed (e.g., flow

entry is found), tag computation is borrowed from SFQ ([8])

and is given by Eq. 1 below (see Fig 1, Algorithm 1, line 9).

1) On arrival of packet p
j
f , S(p

j
f) and F(p

j
f) are:

2While any source-destination combination obtainable from a packet header
can be used, we define a flow in this paper as a stream of packets with
matching source and destination addresses and ports. After a period of
inactivity, idle flows expire and are removed from the flow list.

3The need for two different tag computations is presented in Sec 2-D.

Proceedings of the 2011 23rd International Teletraffic Congress (ITC 2011) 199

S(p
j
f) = max(v[A(p

j
f)],F(p

j−1
f)) j ≥ 1 (1)

F(p
j
f) = S(p

j
f)+

l
j
f

r
j ≥ 1 (2)

2) At the start, server virtual time is 0. During a busy period,

the server virtual time at t is equal to the start tag of

packet currently in service. At the end of busy periods,

v(t) can be reset to 0.

In (2), we use r instead of r f . This means all bottlenecked

flows obtain equal share and the servers maintain a single r.

The actual flow share is insensitive to the r value, but depends

on the number and incoming rates of flows traversing the

server. In our implementation, we use r = 10kbps.

Tag Encoding 2: If a flow’s entry is unavailable, the tag

directly assumes the virtual time of the server upon packet’s

arrival, i.e., S(p
j
f) = v[A(p

j
f)] (see Fig 1, Algorithm 1, line 11).

Since the start tag carried over from a previous node has no

significance in tag recomputation on the current node, AFpFT

is more robust to router problems, unlike CSFQ (see [22]).

The packet tag encoding at a router is merely based on the

availability of flow’s entry in the list. Whether or not the router

maintains the flow defines the router’s role as explained below.

B. Router roles

When a router sees a negative packet tag value, it assumes

it is ingress to the flow in question and adds the flow to the

list and updates the per flow information, i.e., finish time of

previous packet. If the tag value is nonnegative, the router

assumes the value is encoded at upstream nodes and therefore

acts as an inner node to the flow (see Fig 1, Algorithm 1, lines

5–9). In that case, the router only maintains flow information

if the packets of that flow have been queued in the buffer.

Summarizing Secs 2-A and 2-B: computation of tag S(.)
takes two forms: (1) the per flow computation given by Eq. 1

for all flows at the edge and for flows with buffered packets

in inner routers; (2) S(p
j
f) = v[A(p

j
f)], otherwise.

C. Buffer Management

When the buffer becomes full, we choose to drop packet(s)

with the highest tag(s), found at the tail of the buffer (see

Fig 1, Block A). Since the packet just enqued (line 12) could

be larger than the packet(s) at the tail, more than one packets

may need to be dropped. When a packet of a flow is dropped,

its flow record, if any, should be updated. In case the router

acts as inner node to the flow, and there are no any other

packets of this flow in the buffer (i.e., counti ≤ 0), the flow

record is removed (Fig 1, Algorithm 1, lines 21–22, and also

in Algorithm 2, lines 9–10). Probably the trickiest part is the

correction of the flow finish time when a packet is dropped

(line 20). For ease of understanding, consider a congested

router serving well-behaved flows and an aggressive high rate

flow f . Flow f often finds its packets queued near the tail,

as will be explained shortly. When a flow f packet arrives,

it first updates finish f in the flow list before being queued

near the tail and getting dropped because of congestion.

Flow List FL Variables:
count f : count of flow f packets in Q
finish f : finish time of flow f

Functions:
tag(p) : start tag field in packet p’s header
edge(p): tag(p)< 0 (Is router edge?)
v(t): server virtual time at t
conn(p): flow/connection id of packet p

Algorithm 1: Enqueing

1: Upon receiving p
j
f at t

2: if (f /∈FL) then

3: add f to flow list FL

4: count f ⇐= count f +1

5: if (edge(p
j
f) or (f ∈ FL and count f ≥ 2)) then

6: update f variables in FL

7: compute S(p
j
f) // Eq. 1

8: compute F(p
j
f) and save in finish f // Eq. 2

9: tag(p
j
f)⇐= S(p

j
f) // encoding type 1

10: else

11: tag(p
j
f)⇐= v(t) // encoding type 2

12: enque p
j
f into Q // based on tag(p

j
f) value

13:

14: // Block A—buffer management when queue becomes full.
15: while (Q-size > Q-limit) do

16: draw packet p from Q tail

17: i ⇐= conn(p)
18: if (i ∈ FL) then

19: counti ⇐= counti −1
20: f inishi ⇐= f inishi − length(p)/r
21: if (!edge(p) and counti < 1) then

22: remove flow i from FL

23: drop p

Algorithm 2: Dequeuing

1: draw p from Q head

2: if (p exists) then

3: // Block B— p is packet in service
4: extract tag(p) from p header

5: v(t)⇐= tag(p)
6: i ⇐= conn(p)
7: if (i ∈ FL) then

8: counti ⇐= counti −1
9: if (!edge(p) and counti < 1) then

10: remove flow i from FL

11: else

12: // Block C— Q empty; reset server & flow params
13: v(t)⇐= 0.0

14: ∀j ∈ FL : f inish j ⇐= 0.0, count j ⇐= 0
15: return p

Fig. 1: Enque and Dequeue in AFpFT

In the long run, the flow’s finish time no longer indicates

the flow’s transmission progress, but its packet “obituaries”

instead. Therefore, when a packet p of a flow is dropped,

since its contribution to the flow’s throughput is zero, the

flow’s state (e.g., finish f) should be as if the packet had never

arrived to the queue in the first place. In short, we must

cancel out the contribution of p’s arrival to the flow finish

time. Finding the exact contribution is generally not possible

200 Proceedings of the 2011 23rd International Teletraffic Congress (ITC 2011)

because the finish f updating is done upon p’s arrival, usually

much earlier than the time of its dropping and we do not have

information about the previous values of finish f . Therefore,

we fairly approximate this contribution by length(p)/r (see

line 20). Before we end this section, we provide an example

showing the fairness power of AFpFT and the importance of

this correction (see Fig. 2).

Example: Figure 2 shows the result of 20 CBR sources

sending at four different flow rates of 0.5Mbps, 1Mbs,

1.5Mbps, and 2Mbps for a total traffic rate of 25Mbps. The

capacity of the AFpFT link is 20Mbps. Flow groups 3 and 4

send more than the fair share rate of 1.25Mbps. As can be seen,

without applying Algorithm 1, line 20, the flows in the last

group are punished while the third flow group is transmitting

at full incoming rate (see Fig. 2a). With the introduction of

the patch, both high rate flow groups are exactly limited to

their max-min fair share (see Fig. 2b).

D. Rationale for AFpFT

Generally, designing a fairness scheme on a par with

PFFQ without keeping per flow state is almost an impossible

task [10]. Therefore, AFpFT’s aim is to approximate fairness

with partial flow information maintained at inner nodes. A

key observation useful for the fairness approximation is that

packets already buffered in Q at any time t must all have tags

greater than the server’s virtual time v(t). For a flow f and its

packet p
j
f which arrives at the server at time t, consider the

two possibilities:

1) (High bandwidth f) It is more likely that the flow is listed

as it may have sent many packets and some are still in

the buffer. In this case, flow information is maintained at

the server and the tag computation is given by Eq. 1.

2) (Flow f sending at or less than fair share4) When p
j
f

arrives, all its previous packets may have left the server

and the flow is unavailable in the flow list. The fact that

previous packets have left at time of p
j
f arrival indicates

that the start tags of the departed packets must have been

less than the virtual time, i.e., S(p
j−1
f) ≤ v(A(p

j
f)). We

also boldly estimate F(p
j−1
f) ≤ v(A(p

j
f)), which in turn

implies that S(p
j
f) = v(t) (Fig 1, Algorithm 1, line 11).

The packet is therefore placed at or near the head of

queue, getting priority over other (high bandwidth) flows

with buffered packets.

Most backbone routers in the Internet have a bandwidth-

delay product of buffering for each link [1] where delay here

refers to round-trip-delay. An implicit assumption useful for

AFpFT design is that the number of high bandwidth flows

during a window of round trip delay and the buffer size (in

packets) should be of the same order of magnitude. To clarify

the need for the above assumption, consider a scenario where

we have a congested router with a mix of both well-behaved

and high bandwidth flows. Assume the buffer size is less than

the number of high bandwidth flows. As a consequence, per

flow state of some of the high bandwidth flows will not be

4Fair share is a function of the number and rates of flows, see footnote 1.

maintained and therefore the vast majority of their packets

use S(p) = v(t) tag encoding (Fig 1, Algorithm 1, line 11)

and compete with the well-behaved flows. This has a potential

to impair the fairness of AFpFT. Fortunately, there are strong

arguments that these high bandwidth flows are very few. A

related but entirely independent work [11] using real traces of

commercial networks shows that the number of listed (a.k.a.

bottlenecked) flows is much smaller than the total number

of flows in progress. In addition, numerous measurement

studies ([13], [16], [18], [23]) report that Internet flow

distribution is skewed with respect to sizes, and rates of flows.

Accordingly, a large proportion of Internet flows are indeed

short-lived web traffic that end up in TCP slow start phase.

The majority of bytes are accounted for by very few high

bandwidth flows. Further, flow rates and flow sizes are also

strongly correlated [23]. The high rate flows passing through

a particular router at a specific time instant will be even

fewer. Using AFpFT, therefore, we only need to allocate buffer

slots for (or equivalently add to flow list) the few “heavy-

hitters”. By keeping state only for these flows, AFpFT makes

sure that the few relatively high rate flows cannot get more

than the fair share. In addition, the small flows often use the

S(p)= v(t) to get a service ahead of the high rate flows. Giving

time and space priority to small flows is usually taken as a

good design principle. AFpFT inevitably fulfills that objective

without making it an explicit design goal.

3. PERFORMANCE EVALUATION

A. Topologies and Parameters

We implemented AFpFT in ns-2. Unless otherwise stated,

the topologies shown in Fig. 4, and simulation parameters

summarized in Table II are used for evaluation. AFpFT flow

fairness and link utilization are compared with Adaptive

RED [6], FRED [12], and CSFQ [21]. RED and development

of its control parameters is summarized in an earlier related

work [4, §3]. FRED and CSFQ implementations are freely

available [20]. Quite briefly, FRED fairness mechanism is

through fair allocation of buffer space to flows, while CSFQ

adopts per flow dropping rates (ri − rshare)/ri to bring down

the outgoing rates of bottlenecked flows to rshare. K and Kα

are averaging constants (time windows) used for estimating

incoming flow rates and the fair share rshare, respectively.

B. Single Link Case

Fig. 4a shows 32 long-lived TCP (New Reno) flows and a

single CBR flow competing for a scarce 1Mbps bottleneck.

CBR flow sends at full bottleneck capacity of 1Mbs, and the

TCP windows are unlimited. The bottleneck buffer size is

100kB. Figures 3 shows the results averaged over 30 replica-

tions. The max-min fair share in the above scenario is 30.3kbps

per flow. AFpFT is an extremely fair scheme, providing an

average of 29.5 kbps to each TCP flow, close to the ideal

fair flow share. It also manages to restrict the nonadaptive

UDP flow to the fair share. The same cannot be said for

RED with Drop Tail which allows unfair link domination (in

excess of a whopping 70%) by the unresponsive flow. Average

TCP flow throughput is a meagre 8.4 kbps in RED. All flows

Proceedings of the 2011 23rd International Teletraffic Congress (ITC 2011) 201

 500

 1000

 1500

 2000

 0 2 4 6 8 10 12 14 16 18 20

T
hr

ou
gh

pu
t (

kb
ps

)

Flow ID

Offered Load and Flow Throughput

Flow Arrival
Flow Departure

(a) AFpFT without finish f adjustment.

 500

 1000

 1500

 2000

 0 2 4 6 8 10 12 14 16 18 20

T
hr

ou
gh

pu
t (

kb
ps

)

Flow ID

Offered Load and Flow Throughput

Flow Arrival
Flow Departure

(b) AFpFT with finish f adjustment.

Fig. 2: Offered Load and Flow Throughput of 20 CBR sources under AFpFT.

TCP
UDP

 100

 1000

RED FRED CSFQ AFpFT

Throughput fairness between TCP and UDP (in Kbps).

8

700

28
57

26

93

29 30

 1

 10

Fig. 3: UDP and average TCP throughput.

n

0

bottleneck

(a) Single Congested Link.

R 1 R 2 R K R K+1

CBR-1 CBR-10

CBR-1 CBR-10

CBR-11 CBR-20 CBR-K1 CBR-K10

CBR/TCP-0

CBR/TCP-0

Source Sink

CBR-K1 CBR-K10

(b) Multiple Congested Links.

Fig. 4: Topology used for evaluation.

TABLE II: Default Settings used for Evaluation.

GENERAL PARAMETERS ALGORITHMS

Link and Buffer RED

Link speed 1Mbps minth 25% Buf lim.
Prop. delay 1ms maxth 75% Buf lim.
Buf. limit 50kB adaptive yes

Traffic Source FRED

TCP version New Reno minth 25% Buf lim.
TCP segment size 960 B maxth 75% Buf lim.
UDP packet size 1000 B CSFQ

Flow start time t ∈ [0.0,5.0) K 100 ms
Simulation Kα 200 ms

Simul. Duration 50s Buf thresh. 50% Buf lim.

Results taken 2nd half Flow weights Equal

Replications 30 or 100 AFpFT

Confidence level 90% Flow weights r 10kbps

are uniformly punished even though only UDP is responsible

for congestion. FRED significantly improves upon RED due

to its per flow dropping rates. Nevertheless, UDP still gets

twice as much as an average TCP flow (57kbps vs 28 kbps).

In addition, despite the fact that all TCP flows are identical

with respect to round trip times, congestion control algorithm

and receiver window sizes, a maximum difference of 12kbps

(≈ 40% of ideal share) is noted between TCP flow throughput

values in FRED. Using CSFQ and AFpFT this difference is,

however, less than 3kbps and 1kbps, respectively. The Jain’s

fairness index5 quantifies the overall fairness between these

5For a network of n connections, Jain’s fairness index f = (∑xi)
2/(n∑x2

i),
where xi is the resource share of connection i [9]. An ideal fair system has a
score of 1.0.

identical TCP flows: 0.9329 (RED), 0.9905 (FRED), 0.9994

(CSFQ) and 0.9999 (AFpFT). While CSFQ is better than

FRED in fair distribution of bandwidths among TCP flows, its

performance with regard to TCP bandwidth quota is generally

poorer than FRED. Average TCP flow throughput is 26kbps

and UDP takes up more than 3 times the fair share. This

may largely be explained by the inadvertent packet dropping

scheme employed by CSFQ and its consequential impact on

TCP throughput. The per flow dropping rate is based entirely

on the incoming flow rate ri and fair share rshare and is given by
ri−rshare

ri
. The aim is to limit the throughput of a congested flow

i to the fair share rshare. Dropping with the above rate can, due

to the unresponsive nature of UDP, successfully bring down

UDP flow output rates to rshare. However, dropping TCP flows

with the above rate6, rather than limit the flow rate to the fair

rate rshare, may potentially reset the congestion windows. This

occasional but unfortunate situation can degrade average TCP

flow throughput.

What happens to TCP throughput if we vary the incoming

rate of the UDP flow? In Fig 5, the UDP source rate increases

by a factor of 500 along the x-axis. Most values are in log-

arithmic scale. Performance difference becomes clearer with

higher incoming UDP rates. RED is very poor at restricting

high bandwidth flows. The linear RED curve in 5b indicates

that the UDP share is a linear function of the incoming UDP

rate. When the UDP arrival rate is 5Mbps, over 99.99% of link

capacity is used by UDP, completely starving out the well-

behaved TCP flows. As before, CSFQ offers approximately

6A TCP friendly drop rate in the steady state should consider, among others,
the window limits and round trip delays ([5], [13], [15]).

202 Proceedings of the 2011 23rd International Teletraffic Congress (ITC 2011)

 10 50 100 500 1000 5000
 0

 5

 10

 15

 20

 25

 30

 35

UDP Arrival Rate (Kbps)

RED
FRED
CSFQ

AFpFT

(a) Average TCP Throughput Comparison.

 1000

 10

UDP Arrival Rate (Kbps)

RED
FRED
CSFQ

AFpFT
 100

50 100 500 1000 500010

(b) UDP Throughput Comparison.

Fig. 5: Average TCP and UDP Throughput in kbps as incoming UDP rate is varied.

 0

UDP Flow IDs

RED
FRED
CSFQ

AFpFT

B
an

dw
id

th
/F

ai
r

ra
te

0.5

1

2

2.5

3

3.5

1.5

4 8 12 16 20 24 28 32

Fig. 6: Normalized throughput allocated for
UDP flows.

 4

 8

 12

 16

 20

 24

 10 20 30 40 50 60 70 80 90 100 0

FRED
RED

AFpFT

Flow ID

Ideal Share

T
hr

ou
gh

pu
t (

M
bp

s) CSFQ1

CSFQ2

Fig. 7: Flow Throughput Fairness over a Gigabit link.

Adaptive RED

 0

 50

 100

 150

 200

 250

 300

 18.6 18.8 19 19.2 19.4 19.6 19.8 20
A

ve
ra

ge
 q

ue
ue

 s
iz

e
av

g
(i

n
Pa

ck
et

s)

Time (s)

Static RED wq = 1/C

FRED wq = 1/CFRED wq = 0.002

Fig. 8: Impact of parameter sensitivity on FRED’s link utilization.

100kbps to UDP which is several times larger than the TCP

share. While FRED is better at controlling high bandwidth

flows than CSFQ, the TCP share slightly decreases with

increasing UDP traffic rate. AFpFT provides precisely the

same fair share to TCP at all levels of incoming UDP noise.

Another set of experiments consisting of only CBR flows

is carried out. A total of 32 flows (with flow i sending

at i× 0.3125Mbps) are simulated. The results are shown in

Figure 6. Following our argument earlier in this section, this

all UDP scenario is the natural environment for CSFQ’s fair

bandwidth allocation. AFpFT performs as good as CSFQ,

allocating exactly the fair share of 0.3125Mbps to all flows

even though the last flow, for instance, sends 32 times as fast

as the first one. FRED, by contrast, fails to deliver the fair

bandwidth allocation; indeed, the maximum allocation can be

several times larger than the minimum allocation.

C. Link Scalability and Different RTTs.

This section considers fairness when the TCP flows have

largely distinct RTT delays in a high-speed environment.

We increase the link speed to 1Gbps and its delay 5ms.

Now we have a total of 100 TCP flows divided, based

on their RTTs, into equal groups of size 25: G1, . . . , G4.

The RTTs are respectively 20ms, 40ms, 80ms, and 100ms.

The queueing delay at a gigabit link is insignificant. Flow i

belongs to G	i/25
. We apply caution here when dimensioning

the buffer size. Optimal buffer sizing is still an active field

of networking research and the bandwidth-delay product is

usually used as a general rule of thumb to provision buffer

size [1]. We use 500 packets as our buffer size—a fraction

of the bandwidth-delay product here. Under current routers

(FIFO with Drop Tail), average TCP throughput is inversely

proportional to RTT [15]. Then the flows in groups G1, . . . ,G4

attain throughput r1, r1/2, r1/4, r1/5, respectively, where G1

flow throughput r1 = 21.33Mbps. Figure 7 illustrates per flow

throughput under different schemes.

First, the most unexpected of the observations: with default

K = 100ms and Kα = 200ms, CSFQ performance, labeled

CSFQ1 in the figure, is worse than RED and FRED. Using

RED, for instance, the average throughput per G1/G4 flow are

20.6/3.9 Mbps, respectively. Corresponding CSFQ values are

24.3 and 2.6 in Mbps. We believe that the averaging constants

are too relaxed for CSFQ to be able to accurately estimate

and control the rates of low RTT high speed TCP flows. With

tighter window constants of K = 20ms and Kα = 40ms, CSFQ

fairness shown as CSFQ2 is much better, e.g., the average

G1/G4 per flow throughput are 19 Mbps and 3.4 Mbps. Of

all schemes, however, only AFpFT is significantly fairer: G1

flows obtain only 20% more than the fair share and G4 flows

receive on average 12% less than the fair share. We find that

FRED is unfair and only marginally better than RED. G1 flows

in FRED receive on average 4.8× than those of G4. Therefore,

fairness in a network with a mix of different RTT flows, as is

the case in the Internet, is very poor with FIFO, RED, FRED

and CSFQ. In addition, FRED produces both the least total

throughput and total link utilization of all schemes. In steady

Proceedings of the 2011 23rd International Teletraffic Congress (ITC 2011) 203

state, we obtain the following link utilizations: RED (99.9%),

FRED (92.7%), CSFQ (95.7%) and AFpFT (98.9%).

The RED version imbedded in FRED is to blame for the

poorer link utilization of FRED. FRED was proposed much

earlier than the adaptive and gentle7 parameters introduced to

enhance RED’s performance. FRED may therefore suffer from

poor queue utilization caused by sensitivity to the parameters

(see [6, §5.1]). The default FRED values maxp = 0.1 and

wq = 0.002 are too conservative and not optimal for the sce-

nario in hand. RED’s recommended queue averaging constant

wq, for instance, is 1−exp(−1/C), where C is the link speed in

packets/sec. Since C is very high—1.25×105 in this case—we

can fairly approximate it as wq
8 � 1.0/C. Without the adaptive

feature, the static parameters do not allow FRED to operate

optimally. Adaptive RED, on the other hand, can improve

throughput performance by self-tuning, enabling it to maintain

a target avg away from maxth. And gentle smoothly increases

the dropping probability pb when the avg exceeds maxth. As

a consequence, queue utilization in FRED, and generally in

non-adaptive RED, is poor. Figure 8 shows the link utilization

curves for non-adaptive RED, Adaptive RED with gentle,

FRED with default wq, and FRED with wq = 1/C all in a

typical run of heavy load scenario. Adaptive RED always

attempts to maintain avg around 1
2
(maxth+minth) = 250. We

see that the default value wq = 0.002 is too large, making

avg extremely sensitive to the actual queue size. The behavior

of FRED (wq = 1/C) is similar to the non-adaptive RED

(with default wq = 1/C), i.e. both increase avg in cycles

corresponding to alternating periods of high loss and low loss.

Hereafter, we use wq = 1/C for FRED.

D. Multiple Congested Link

This section discusses how flow throughput fairness is

affected across multiple congested links. Topology for this

section is borrowed from [21] and shown Fig 4b. The links

connecting hosts to routers are 20Mbps, and routers to routers

10Mbps. Each 10Mbps link is traversed by 11 flows: 10

CBR cross flows each with rates 2 Mbps and a well-behaved

flow 0. In the first experiment, flow 0 is TCP. In the second

experiment, flow 0 is CBR sending close to fair share of

0.909Mbps. To remove bias, we collect throughput of flow

0 as a function of the number of congested links, L, for the

second half of the simulation. Flows start times are uniformly

distributed on [0,5.0]. Results from 100 replications are shown

in Fig. 9.

Regardless of whether the flow is TCP or UDP, its through-

put decreases as it traverses multiple congested links. Since

UDP does not react to congestion, its throughput is generally

higher than that of TCP. There is a total lack of protection for

TCP flow when RED is used, see Fig. 9a. Corresponding UDP

7adaptive and gentle features can improve performance. adaptive makes
RED robust against variations in traffic conditions by auto-tuning the param-
eters for optimal performance. An equivalent way is to manually configure
the RED parameters that suit the traffic conditions in the network.

8We use the approximation: (1− 1
C
)C � e−1. wq ≈ 1/C for all realistic

cases since C is usually large enough. Following this approximation, RED’s
avg computation can then be simplified as: avg = (1−wq)avg+wqq = ((C−
1)avg+q)/C.

 0

 200

 400

 600

 800

 1000

 1 2 3 4 5 6

Number of congested links (L)

Throughput (Kbps) of TCP flow.

RED FRED

CSFQ AFpFT

Ideal Share

(a) Flow 0 is TCP.

 0

 200

 400

 600

 800

 1000

 1 2 3 4 5 6

Number of congested links (L)

Throughput (Kbps) CBR−0 flow.

RED FRED
CSFQ AFpFT

(b) Flow 0 is UDP with rate 1 Mbps.

Fig. 9: How flow throughput scales with number of congested links.

throughput decays with increasing number of links when using

RED. The results here are generally consistent with those in

[21, Fig. 8]. In FRED, UDP throughput decreases steadily with

the number of congested links. CSFQ scales much better than

both RED and FRED: It provides a stable throughput share

to CBR with increasing links, and a slowly decreasing share

to TCP. The only exception to the usual trend of throughput

decline is AFpFT which reasonably provides the fair share to

the flow no matter what the kind of flow traffic or the number

of links traversed. A very important, but seemingly discrepant,

observation is the fact that TCP flow throughput slightly

increases with L in AFpFT. This non-intuitive observation is

in sharp contrast to all other schemes, and can be explained

as follows. For small L, due to smaller propagation delays,

many packets may arrive before previous packets of the flow

have left the queue. As explained in Sec 2-D, this causes the

flow to be listed, and the arriving packets may be queued at or

near the queue tail. This means there is a higher probability of

packet drops and/or high queuing delays. This in turn causes

timeouts and slower TCP sending rates. For large propagation

delays (i.e., multiple congested links), it is the opposite: When

packets arrive, there may be no previous packets in the queue.

Such packets use tag encoding 2 (see Sec 2-A) and are pushed

to the front of the queue as soon as they arrive. The overall

result is fewer packet drops, smaller average queuing delay,

and higher flow throughput.

204 Proceedings of the 2011 23rd International Teletraffic Congress (ITC 2011)

E. Other Traffic Models

Web Traffic Model.: We consider performance of Web traffic

which forms the most dominant portion of Internet traffic.

Such flows are typically short-lived and often end up during

the slow start phase. We model such traffic as a Poisson arrival

process with an average of 25 new sessions per second, and

the size of each session (file) Pareto distributed with average

size of 30kB (about 30 packets) and shape parameter 1.3.

The model captures the heavy-tailed (highly variable) nature

of Web file sizes and their transmission times [2]. Session

statistics such as mean transfer times are important for such

flows. We simulate the flows together with a 5Mbps CBR flow

under a dumbbell topology: 10Mbps, 1ms link with buffer size

of 100 packets. The results are summarized in Table III.

AFpFT performs the best in terms of fulfilling the short

transfer demands of mice flows. Half of the web flows finish

the transfers under 50ms. The mean transfer times of flows are

640ms (RED), 150 ms (FRED), 220ms (CSFQ) and 110ms

(AFpFT). A flow, on the average, completes its web transfer

twice as fast in AFpFT as in CSFQ. In all schemes, over a

thousand flows have completed their transfers within 50s of

simulation. The number of flows that complete transfers is

largest in AFpFT than in any other scheme.

TABLE III: Web Session Statistics under Different Router Schemes.

Scheme
Percentage of Flows With Transfer Times

< 0.05s < 0.5s < 1.0s < 2.0s < 5.0s ≥ 5.0s
≥ 0.05 ≥ 0.5 ≥ 1.0 ≥ 2.0

RED 6.70 64.75 16.00 6.50 4.80 1.30
FRED 26.90 69.50 2.28 0.89 0.33 0.09
CSFQ 24.60 67.74 5.00 1.50 0.97 0.16
AFpFT 50.20 47.23 1.46 0.74 0.28 0.08

ON-OFF Traffic Model.: The bottleneck is now used by

N−1 CBR sources sending at the fair rate, and 1 bursty ON-

OFF source. We choose N = 20. The ON and OFF periods are

taken from exponential distributions with means of 0.2s and

(N − 1)× 0.2s = 19× 0.2s, respectively. During ON period,

the ON-OFF source sends at full link capacity of 10Mbps,

making it highly bursty. Then it goes idle during the OFF

period. ON-OFF sources are normally challenging for AFpFT

because at the start of an ON period a packet potentially

arrives after packets of previous ON periods have left the

buffer. Our interest here is how well the algorithms can restrict

this bursty source. Of all packets sent by the ON-OFF source,

92% (RED), 22% (FRED), 28% (CSFQ) and 21% (AFpFT)

have been delivered. The result confirms that AFpFT matches

FRED in restricting the bursty ON-OFF source.

4. CONCLUSION

Designing core-stateless versions of fair PFFQ is not an easy

task. The main hurdle is that computation of flow parameters

is dependent on other interacting flows and it is impossible

to determine these parameters at network edges. The goal of

AFpFT is to approximate the fairness of per flow fair queueing

algorithms with minimum states possible. Unlike some of the

existing works [12], [13], we make no assumptions about the

kind of traffic in the Internet, nor we explicitly define routers

as core or edge as in [21]. Where flows enter the network,

the first router acts as edge and keeps the flow state. This

is generally a sound assumption since edge routers manage

fewer flows and, being closest to the traffic sources, are ideally

suited to provide flow level fairness. Inside the network where

there are many more flows, we manage only a subset of those

flows that have relatively high rates and, following the heavy-

tailed Internet flow distribution, this subset is generally small

in number. The state requirement in the core network can

therefore be limited (from above by the buffer size). Extensive

simulations show that the fairness performance of AFpFT is

superior to related schemes such as CSFQ, RED, and FRED.

REFERENCES

[1] N. Beheshti, Y. Ganjali, M. Ghobadi, N. McKeown, and G. Salmon.
Experimental Study of Router Buffer Sizing. In Proc. of IMC, pages
197–210, 2008.

[2] M. E. Crovella and A. Bestavros. Self-similarity in world wide
web traffic: evidence and possible causes. In IEEE/ACM Trans. on

Networking, volume 5, Dec 1997.
[3] A. Demers, S. Keshav, and S. Shenker. Analysis and simulation of a

fair queueing algorithm. In Proc. of ACM/SIGCOMM, 1989.
[4] A. Eshete and Y. Jiang. On the Flow Fairness of Aggregate Queues. In

Proc. of BCFIC, pages 120–127, Feb 2011.
[5] S. Floyd and K. Fall. Promoting the use of end-to-end congestion control

in the internet. IEEE Trans. on Networking, 7(4):458–472, Aug 1999.
[6] S. Floyd, R. Gummadi, and S. Shenker. Adaptive RED: An algorithm for

increasing the robustness of RED’s Active Queue Management. Tech.
Report, 2001.

[7] S. J. Golestani. A Self-Clocked Queueing Scheme for Broadband
Applications. In Proc. of IEEE Infocom, pages 636–646, June 1994.

[8] P. Goyal, H. M. Vin, and H. Cheng. Start-time fair queuing: A scheduling
algorithm for integrated services packet switching networks. In ACM

SIGCOMM, 1996.
[9] R. Jain. The Art of Computer Systems Performance Analysis,. John

Wiley and Sons, 1991.
[10] J. Kaur and H. M. Vin. Core-stateless guaranteed rate scheduling

algorithms. In Proc. of INFOCOM, number 1484–1492, 2001.
[11] A. Kortebi, L. Muscariello, S. Oueslati, and J. Roberts. Evaluating the

number of active flows in a scheduler realizing fair statistical bandwidth
sharing. In Proc. of ACM/SIGMETRICS, pages 217 – 228, 2005.

[12] D. Lin and R. Morris. Dynamics of random early detection. In ACM

SIGCOMM CCR, volume 27, pages 127 – 137, 1997.
[13] R. Mahajan, S. Floyd, and D. Wetherall. Controlling high-bandwidth

flows at the congested router. In Proc. of ICNP, pages 192 – 201, 2001.
[14] P. McKenney. Stochastic fairness queueing. In Proc. of INFOCOM,

pages 733–740, 1990.
[15] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose. Modeling TCP

throughput: a simple model and its empirical validation. In Proc. of

ACM SIGCOMM, pages 303–314, 1998.
[16] R. Pan, L. Breslau, B. Prabhakar, and S. Shenker. Approximate fairness

through differential dropping. ACM SIGCOMM CCR, 33:23–39, 2003.
[17] R. Pan, B. Prabhakar, and K. Psounis. CHOKe - a stateless active queue

management scheme for approximating fair bandwidth allocation. In
Proc. of Infocom, 2000.

[18] F. Qiana, A. Gerber, Z. M. Mao, S. Sen, O. Spatscheck, and W. Willinger.
TCP Revisited: A Fresh Look at TCP in the Wild. In Proc. of IMC,
pages 76–89, Nov 2009.

[19] S. Shreedhar and G. Varghese. Efficient fair queueing using deficit round
robin. IEEE/ACM Trans. Networking, 4:375–385, June 1996.

[20] I. Stoica. http://www.cs.berkeley.edu/ istoica/csfq/, Dec 2000.
[21] I. Stoica, S. Shenker, and H. Zhang. Core-stateless fair queueing:

Achieving approximately fair bandwidth allocations in high speed net-
works. In SIGCOMM, pages 118—130, 1998.

[22] I. Stoica, H. Zhang, and S. Shenker. Self-Verifying CSFQ. In Proc. of

INFOCOM, pages 21–30, 2002.
[23] Y. Zhang, L. Breslau, V. Paxson, and S. Shenker. On the characteristics

and origins of internet flow rates. Proc. of SIGCOMM, pages 309–322,
2002.

Proceedings of the 2011 23rd International Teletraffic Congress (ITC 2011) 205

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

