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Abstract—We explore the spatio-temporal congestion dynamics
of wireless networks with backlog-based random-access mecha-
nisms. While relatively simple and inherently distributed in na-
ture, suitably designed backlog-based access schemes provide the
striking capability to match the optimal throughput performance
of centralized scheduling algorithms in a wide range of scenarios.
In the present paper, we show that the specific activity functions
for which maximum stability has been established, may however
yield excessive queue lengths and delays. The results reveal that
more aggressive/persistent access schemes can improve the delay
performance, while retaining the maximum stability guarantees
in a rich set of scenarios. In order to gain qualitative insights
and examine stability properties we will investigate fluid limits
where the system dynamics are scaled in space and time. As it
turns out, several distinct types of fluid limits can arise, exhibiting
various degrees of randomness, depending on the structure of the
network, in conjunction with the form of the activity functions.
We further demonstrate that, counter to intuition, additional
interference may improve the delay performance in certain cases.
Simulation experiments are conducted to illustrate and validate
the analytical findings.

I. INTRODUCTION

Emerging wireless mesh networks typically lack any cen-

tralized control entity for regulating access and coordinating

transmissions. Instead, these networks vitally rely on the

individual nodes to operate autonomously and to efficiently

share the medium in a distributed fashion. This requires the

nodes to schedule their individual transmissions and decide

on the use of a shared medium based on knowledge that is

locally available or only involves limited exchange of infor-

mation. A popular mechanism for distributed medium access

control is provided by the so-called Carrier-Sense Multiple-

Access (CSMA) protocol, various incarnations of which are

implemented in IEEE 802.11 networks. In the CSMA protocol

each node attempts to access the medium after a certain back-

off time, but nodes that sense activity of interfering nodes

freeze their back-off timer until the medium is sensed idle.

While the CSMA protocol is fairly easy to understand at

a local level, the interaction among interfering nodes gives

rise to quite intricate behavior and complex throughput char-

acteristics on a macroscopic scale. In recent years relatively

parsimonious models have emerged that provide a useful tool

in evaluating the throughput characteristics of CSMA-like net-

works. These models essentially assume that the interference

constraints can be represented by a general conflict graph,
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and that the various nodes activate asynchronously whenever

none of their neighbors are presently active. Such models were

originally considered by Boorstyn et al. [3], and pursued in

the context of IEEE 802.11 systems by Wang & Kar [24] and

Durvy et al. [5], with several extensions and refinements in [4],

[8]. Although the representation of the IEEE 802.11 back-off

mechanism in the above-mentioned models is far less detailed

than in the landmark work of Bianchi [2], the general interfer-

ence graph offers greater versatility and covers a broad range

of topologies. Experimental results in [15] demonstrate that

these models, while idealized, provide throughput estimates

that match remarkably well with measurements in actual IEEE

802.11 systems.

Despite their asynchronous and distributed nature, CSMA-

like algorithms have been shown to offer the capability of

achieving the full capacity region and thus match the optimal

throughput performance of centralized scheduling algorithms

operating in slotted time [13], [14], [16]. More specifically,

any throughput vector in the interior of the convex hull asso-

ciated with the independent sets in the underlying interference

graph can be achieved through suitable back-off rates and/or

transmission lengths. Based on this observation, various clever

algorithms have been developed for finding the back-off rates

that yield a particular target throughput vector or that optimize

a certain concave throughput utility function in scenarios

with saturated buffers [13], [14], [18]. In the same spirit,

several powerful algorithms have been devised for adapting

the transmission lengths based on backlog information, and

been shown to guarantee maximum stability [12], [20].

Roughly speaking, the maximum-stability guarantees were

established under the condition that the activity factors of the

various nodes behave as logarithmic functions of the back-

logs. Unfortunately, such activity factors can induce excessive

backlogs and delays, which has triggered a strong interest in

developing approaches for improving the delay performance

[11], [17], [19], [21]. Motivated by this issue, Ghaderi &

Srikant [9] recently showed that it is in fact sufficient for

the logarithms of the activity factors to behave as logarithmic

functions of the backlogs, divided by an arbitrarily slowly

increasing, unbounded function. These results suggest that

activity functions can be used that are essentially linear for all

practical values of the backlogs in order to reduce the delays

while preserving maximum-stability guarantees.

In the present paper we will establish a lower bound for

the mean delay in full interference graphs for concave activity
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functions and a corresponding upper bound for convex activity

functions. Simulation experiments indicate that the lower and

upper bounds are in fact remarkably tight. These results

provide detailed insight into how the mean delays depend

on the activity functions, and explicitly reveal how aggres-

sive/persistent access schemes improve the delay performance.

In particular, the mean delay in a heavy-traffic regime is

exponentially larger for logarithmic activity functions than

for linear ones. Since the bounds are difficult to extend to

general interference graphs, we provide further arguments

which suggest that qualitatively similar observations apply for

a broader set of topologies. As a side-result, we show that,

counter to intuition, additional interference may improve the

delay performance in certain cases!

As it turns out, maximum stability is ensured for arbitrarily

aggressive/persistent access schemes in the full interference

graph as well as several further scenarios. However, the exist-

ing throughput optimality results for general topologies require

the activity functions to grow relatively slowly. Specifically,

the results in [9] allow the activity functions to be essentially

linear for all practical values of the backlogs, but still require

them to grow slower than any positive power of the backlogs

asymptotically. This raises the issue how fast the activity

functions are allowed to grow, depending on the topology,

while retaining throughput optimality. In order to examine

that issue, we will investigate fluid limits where the system

dynamics are scaled in space and time. As we will show,

several distinct types of fluid limits can arise, exhibiting

various degrees of randomness, depending on the structure

of the network, in conjunction with the form of the activity

functions.

The remainder of the paper is organized as follows. In

Section II we present a detailed model description. We analyze

delay issues in Section III and provide lower and upper bounds

for the mean delay in a full interference graph for concave

and convex activity functions, respectively. In Section IV we

investigate fluid limits in order to gain qualitative insight

and examine stability issues. The analysis identifies a strong

trichotomy, as governed by the mixing properties of the

system, which is corroborated through simulation experiments.

In Section V we make some concluding remarks and identify

various topics for future research.

II. MODEL DESCRIPTION

Network, interference, and traffic models. We consider a

network of several nodes sharing a wireless medium according

to random multi-access protocols. The network is described

by an undirected graph (V, E) where the set of vertices V =
{1, . . . , M} represents the various nodes of the network and

the set of edges E ⊂ V × V indicates which pairs of nodes

interfere. Nodes that are neighbors in the interference graph are

prevented from simultaneous activity, and the independent sets

correspond to the feasible joint activity states. A node is said

to be blocked whenever the node itself or any of its neighbors

is active, and unblocked otherwise. Define Ω ⊂ {0, 1}M as the

set of all feasible joint activity states of the network, i.e., the

incidence vectors of the independent sets of the interference

graph. Let σ(t) ∈ Ω represent the activity state of the network

at time t, with σi(t) indicating whether node i is active at time

t or not. Packets arrive at node i as a Poisson process of rate

λi. The packet transmission times of node i are independent

and exponentially distributed with mean 1/μi. Denote by ρi =
λi/μi the traffic intensity of node i.

Backlog-based CSMA protocols. We analyze the following

general class of backlog-based random multi-access protocols.

Denote by Li(t) the number of packets at node i at time t.
When inactive, node i may start transmitting at the instants of a

time-inhomogeneous Poisson process of intensity fi(Li(t)) at

time t, where fi : [0,∞) �→ [0,∞) and fi(0) = 0. It actually

starts a transmission if it is unblocked. fi(·) is referred to as

the activation function of node i. When active, at the end of a

packet transmission, say at time t∗, node i releases the medium

with probability pi(Li(t
∗)) or starts a new packet transmission

with probability 1−pi(Li(t
∗)), where pi : [0,∞) �→ [0, 1] and

pi(1) = 1. In other words, node i releases the medium at the

instants of a time-inhomogeneous Poisson process of intensity

gi(t) = pi(Li(t))μi. gi(·) is referred to as the de-activation

function. We define the activity function hi(·) of node i as

hi(Li) = fi(Li)/gi(Li) and hi(0) = 0.

Network dynamics. Under any of the aforementioned queue-

based CSMA protocols, (L(t), σ(t), t ≥ 0) with L(t) =
(L1(t), . . . , LM (t)) is a continuous-time Markov process. We

are interested in quantifying the mean delays, depending on

the functions fi(·) and gi(·). We are also interested in deriving

conditions on ρ = (ρ1, . . . , ρM ) guaranteeing the ergodicity

of this Markov process. It is well known [22] that ergodicity

can be achieved only if the vector of traffic intensities ρ lies

in Γ, defined as the set of ρ such that there exists η in conv(Ω)

with ρ < η component-wise. We therefore assume that ρ lies

in Γ.

III. DELAY ISSUES

In this section we study the (mean) number of packets in

the system for several access schemes and topologies. Note

that the mean packet delay follows directly from the mean

number of packets by Little’s law. In fact, the delay distribution

also follows from the distribution of the number of packets by

virtue of the distributional form of Little’s law. We start with

an exact analysis for a full interference graph. Next we will

provide a heuristic analysis for general topologies. Because of

page constraints, we limit the attention to the case gi(·) ≡ μ
for all i = 1, . . . , M , but similar results hold for other choices.

A. Full interference graph

Denote by ρ =
∑M

i=1 ρi the total traffic intensity and by

λ =
∑M

i=1 λi the total arrival intensity. As at most one node

can be active at a time in the full interference graph it follows

that the necessary condition for ergodicity in Section II is

ρ < 1. Also, it is easily verified that the system is stable for

any ρ < 1 as long as each of the functions fi(·) is unbounded.

Before looking at general activation functions we first present
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an exact analysis of the distribution of the number of packets

for linear activation functions.

1) Linear activation functions: For linear activation func-

tions fi(n) = νn, we no longer need to distinguish between

nodes in order to describe the evolution in time of the total

number of packets in the system. In fact, the total number

of packets in the system gives rise to a “one-and-a-half”-

dimensional Markov process whose stationary distribution can

be found analytically, as shown next.

Consider the continuous-time Markov process with state

space {0, 1, 2, . . .} × {0, 1}, where the first component rep-

resents the total number packets in the system, L =
∑M

i=1 Li,

and the second component indicates whether one of the nodes

is active (state 1) or not (state 0). Transitions from (n, 0) to

(n + 1, 0) occur at rate ρ, transitions from (n, 0) to (n, 1)
occur at rate νn, transition from (n, 1) to (n + 1, 1) occur at

rate ρ, and transitions from (n+1, 1) to (n, 0) occur at rate 1.

With π(n, k) the stationary probability that the Markov process

resides in states (n, k), we obtain the balance equations

λπ(0, 0) = μπ(1, 1),

(λ + μ)π(1, 1) = νπ(1, 0),

(λ + νn)π(n, 0) = λπ(n − 1, 0) + μπ(n + 1, 1), n ≥ 1,

(λ + μ)π(n, 1) = λπ(n − 1, 1) + νnπ(n, 0), n ≥ 2.

Introducing the generating functions G0(z) =∑∞
n=0 π(n, 0)zn and G1(z) =

∑∞
n=1 π(n, 1)zn, the

balance equations lead to

λ(1 − z)G0(z) + νzG′
0(z) =

μ

z
G1(z), (1)

(μ + λ − λz)G1(z) = νzG′
0(z), (2)

yielding

G1(z) =
ρz

1 − ρz
G0(z) (3)

(which corresponds to the Fuhrmann-Cooper decomposition

property [7] for the distribution of the total number of packets

in the system) and

G0(z) =
νz(μ − λz)

λz(λ + μ − λz)
G′

0(z). (4)

Since G0(1) = 1− ρ, we obtain from (3) that G′
1(1) = ρ(1 +

G′
0(1))/(1 − ρ). Also G′

0(1) = μ
ν G1(1) = λ

ν . So the mean

number of packets in the system is

E {L} =

∞∑
n=1

n(π(n, 0) + π(n, 1)) = G′
0(1) + G′

1(1) (5)

=
ρ + G′

0(1)

1 − ρ
=

ρ + λ
ν

1 − ρ
=

λ(μ + ν)

ν(μ − λ)
. (6)

In fact, we can obtain the entire stationary distribution by

solving the differential equation for G0 in (4). The solution

reads (using G0(1) = 1 − ρ)

G0(z) = (1 − ρ)

(
1 − ρ

1 − ρz

)λ/ν

e(z−1)λ/ν , (7)

which can be interpreted as a convolution of a negative bino-

mial distribution and a Poisson distribution. This observation

leads to

π(n, 0) =
e−λ/ν(1 − ρ)λ/ν+1

Γ(λ
ν )

n∑
k=0

Γ(k + λ
ν )ρk(λ

ν )n−k

Γ(k + 1)Γ(n − k + 1)
.

2) General activation functions: For general activation

functions fi(·), Equation (3) continues to hold, but Equa-

tion (4) no longer does, making an exact analysis less tractable.

Hence we now proceed to derive bounds for E {L}.

Denote by Li,I the number of packets at node i at an

arbitrary epoch during a non-serving interval per unit of time.

Observing that the mean number of non-serving intervals

equals the mean number of packets served per unit of time,

we obtain

M∑
i=1

E {fi(Li,I)} =
λ

1 − ρ
, (8)

which may also be deduced directly from the balance equa-

tions for the above-described Markov process. In fact, it may

be shown that

E {fi(Li,I)} =
λi

1 − ρ
, i = 1, . . . , M. (9)

Theorem 1: Let fi(·) ≡ f(·) with f : [0,∞) �→ [0,∞) be

a strictly increasing, unbounded and concave function. Under

the above assumptions,

E {L} ≥ ρ

1 − ρ
+ Mf−1

(
1

M

λ

1 − ρ

)
. (10)

Similarly, if fi(·) ≡ f(·) is a strictly increasing, continuous

and convex function,

E {L} ≤ ρ

1 − ρ
+ Mf−1

(
1

M

λ

1 − ρ

)
. (11)

Proof: First note that the system is stable as ρ < 1 and

f(·) is unbounded. If f(·) is concave it follows by Jensen’s

inequality that

M∑
i=1

E {f(Li,I)} ≤ Mf

(
1

M

M∑
i=1

E {Li,I}
)

.

Since f(·) is increasing, we get using (8),

M∑
i=1

E {Li,I} ≥ Mf−1

(
1

M

λ

1 − ρ

)
.

The Fuhrmann-Cooper decomposition property [7] (applied

to the total number of packets in the system) implies

E {L} =
ρ

1 − ρ
+

M∑
i=1

E {Li,I} ,

yielding (10). Equation (11) follows by symmetry.

Note that when f(·) is linear, all inequalities in the proof of

Theorem 1 are in fact equalities (or note that this function is

both concave and convex), so that we recover (6). Further

note that for concave functions with f(1) ≤ ν, the mean
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Fig. 1. Average number of packets in the system for f(x) = log(x + 1).

Fig. 2. Average number of packets in the system for f(x) =
√

x.

number of packets in the system is always larger than the mean

number of packets in the system with the linear activation

function f(n) ≡ νn. Conversely, for convex functions with

f(1) ≥ ν, the mean number of packets in the systems is

always less than the mean number of packets in the system

with f(n) ≡ νn. More specifically, in heavy traffic as ρ ↑ 1
the mean number of packets, and hence the mean delay, grows

like M exp( ρ
M(1−ρ) ) for a logarithmic activation function and

like ρ
1−ρ for an exponential activation function. We thus see

that more aggressive activation functions improve the delay

performance.

In order to investigate how tight the bounds derived in The-

orem 1 are for non-linear activation functions, we performed

several numerical experiments. Figures 1, 2 and 3 show the

average number of packets in a simulation for a 4-node full

interference graph for activation functions f(x) = log(x+1),

Fig. 3. Average number of packets in the system for f(x) = ex − 1.

f(x) =
√

x and f(x) = ex − 1, respectively. In each figure

we also plotted the bound derived in Theorem 1 and we see

that the numbers from the simulation are close to the bound,

i.e. the bound is rather tight. Further, for values of ρ close to

1 the bound is relatively tighter. Note that we used a log-lin

scale.

B. General topologies

For general interference graphs, assuming the system to be

stable, we may write ρi = φiπi, with φi = E {fi(Li) | Ei} /μ,

πi = P {Ei}, and Ei denoting the event that node i and all

its neighbors are inactive. In the case of a full interference

graph, we trivially have πi = 1 − ρ, but unfortunately such

a simple relationship does not hold in general. Hence we

make the approximation that the activity process behaves

as if each of the nodes operates according to a constant

activation function that corresponds to its mean queue size.

This provides approximations for both πi and φi. First of all,

πi ≈ π̂i(φ), with φ = (φ1, . . . , φM ), where π̂i(φ) pertains

to a scenario with constant activity factors φ1, . . . , φM . Now

observe that replacing πi by π̂i(φ) results in ρi = φiπ̂i(φ),
which is tantamount to (ρ1, . . . , ρM ) being the long-term

throughputs in case of constant activity factors φ1, . . . , φM .

As proved by Jiang & Walrand [14] and Van de Ven et

al. [23], this uniquely determines each of the φi’s as some

function φi(ρ) of ρ = (ρ1, . . . , ρM ), rendering φi ≈ φi(ρ).
In addition, φi ≈ fi(E {Li})/μ. Combining the above two

approximations, we obtain

E {Li} ≈ f−1
i (μφi(ρ)).

Note that φi(ρ) does not depend on the activation functions

fi(·) at all. Thus the above approximation suggests that when

fi(q) increases with q in a more aggressive manner, so that

f−1
i (r) is smaller for a given value of r, the mean number of

packets at node i will be smaller.

The above approximation seems reasonable when the acti-

vation functions are relatively flat, and the numbers of packets

at the various nodes do not fluctuate too much and are

concentrated around their mean values. In order to investigate

the accuracy, we first revisit the case of a full interference

graph and compare the approximations with the exact results

of Section III-A. Next we will examine the approximations

for two other networks.

1) Full interference graph: In this case, we have
φi(ρ)

1+
∑

M
j=1

φj(ρ)
= ρi, so that φi(ρ) = ρi

1−ρ , yielding

E {L} ≈
M∑
i=1

f−1
i

(
λi

1 − ρ

)
. (12)

With fi(n) = νn for all i = 1, . . . , M , the above

approximation yields E {L} ≈ λ/ν
1−ρ , which differs from the

exact result (6). Upon closer inspection and comparison with

Equation (9), we note that the relationship φi ≈ φi(ρ) is in

fact exact in this case, and that the discrepancy is entirely

due to the approximation φi ≈ fi(E {Li}). Invoking the

relationship
∑M

i=1 E {Li} = ρ
1−ρ +

∑M
i=1 E {Li|Ei} based
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Fig. 4. Average number of packets in the 4-node ring network with h(x) =
log(x + 1).

on the Fuhrmann-Cooper decomposition instead, recovers the

exact result.

We further observe that for less aggressive activation func-

tions (12) performs better as expected. In particular, the ratio

of (12) and the lower bound in Theorem 1 tends to 1 as ρ ↑ 1
for strictly concave activation functions.

2) 4-node ring network: Consider a network of 4 nodes

that are positioned in a ring, so that node 1 interferes with

nodes 2 and 4, and so on. Assume that ρ1 = ρ3 = ρ13 and

ρ2 = ρ4 = ρ24, then φi(ρ) ≈
√

ρi(
√

ρ13+
√

ρ24)

1−ρ , and we obtain

E {L} ≈
4∑

i=1

f−1
i (μφi(ρ)), (13)

which for ρ1 = ρ2 = ρ
2 simplifies to

E {L} ≈
4∑

i=1

f−1
i

(
λ

1 − ρ

)
.

In Figure 4 we check the accuracy of (13) with simulation

results for fi(x) ≡ f(x) = log(x + 1). We observe that the

approximation formula (13) is quite accurate for most values

of ρ.

3) 4-node linear network: Consider a network of 4 nodes

that are positioned on a line, so that node 2 interferes with

nodes 1 and 3, while node 3 further interferes with node 4.

Assume ρi ≡ ρ
2 , then φ1(ρ) = φ4(ρ) = φ14(ρ) = λ

2(1−ρ) , and

φ2(ρ) = φ3(ρ) = φ23(ρ) = (2−ρ)λ
4(1−ρ)2 , and we obtain

E {L} ≈ f−1
1 (φ14)+f−1

2 (φ23)+f−1
3 (φ23)+f−1

4 (φ14). (14)

In Figure 5 we compare (14) with simulation results for

fi(x) ≡ f(x) = log(x+1). We see that the approximation (14)

is accurate for higher values of ρ.

Remarkably we observe that the 4-node linear network

performs worse than the 4-node ring network in terms of mean

delay in heavy traffic, even though the 4-node linear network

is just the 4-node ring network in which nodes 1 and 4 do

not interfere. Thus adding an interference constraint improves

the delay performance in this case! This may be explained by

noting that removing the interference between nodes 1 and 4

requires nodes 2 and 3 to have far higher activation rates and

hence far larger numbers of packets in order to claim a fair

share of the throughput.

Fig. 5. Average number of packets in the 4-node linear network with h(x) =
log(x + 1).

IV. FLUID LIMITS

The results in the previous section demonstrated that more

aggressive activation functions improve the delay performance

in various specific scenarios. For arbitrary networks, however,

the existing maximum stability results involve slowly varying

activation functions, which raises the issue how aggressively

the activation functions are allowed to grow, depending on the

topology, while retaining throughput optimality. In order to

address that issue, we will explore in this section the dynamics

of the Markov process Z(t) = (L(t), σ(t)) using fluid limits.

Fluid limits may be interpreted as first-order approxima-

tions of the Markov process, and provide valuable qualitative

insights and a powerful approach for establishing ergodicity

properties. Fluid limits are obtained by scaling the relevant

stochastic processes in both space and time. More specifically,

we consider a sequence of processes ZN (t) indexed by a

sequence of positive integers N , each governed by similar

statistical laws as the process Z(t), where the initial states

satisfy
∑M

i=1 Li(0) = N and LN
i (0)/N → qi ≥ 0 as

N → ∞. The process Z̄N (t) = ( 1
N LN (Nt), σN (Nt)) is

called the fluid-scaled version of the process ZN (t). Note that

the activity process is scaled in time as well, but not in space.

For conciseness, define ξN (t) = 1
N LN (Nt). Then ξN (t)

can be viewed as a random element of D(R+, RM
+ ), the set

of cadlag functions with values in R
M
+ . There is a metric

on D(R+, RM
+ ) such that the latter set is a complete and

separable space. Any random element of D(R+, RM
+ ) which

is a limit point of the sequence {ξN (t)}N≥1, i.e., whose law

is an accumulation point of the laws of {ξN (t)}N≥1, is called

a fluid limit.

A. Fluid limit trichotomy

Unlike in most queueing systems where fluid limits follow

deterministic trajectories described by a set of differential

equations, our system may exhibit fluid limits that are stochas-

tic processes. To facilitate the discussion here, we assume that

all queues are initially backlogged, i.e., qi > 0 for all i.
The process ZN (t) has two interacting components, LN (t)

and σN (t), respectively. On the one hand, the evolution of

LN (t) depends on the rate at which queues are served, and in

turn depends on σN (t). On the other hand, when the queues
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LN (t) are fixed, the process σN (t) is a reversible Markov pro-

cess on the set of possible activation states whose transitions

are functions of LN (t). As it turns out, we encounter different

types of fluid limits depending on the mixing properties of the

activity process σN (t) as described next.

1) Fast mixing - Deterministic fluid limits: When all the

transitions between the various activity states occur on a time

scale faster than N , we obtain classical deterministic fluid

limits. In such cases, σN (t) evolves much faster than LN (t)
as N grows large, and to obtain the rate at which queues

are served in the fluid regime, the activity process σN (t) is

averaged. More precisely, we encounter fluid limits of the form

ξ′i(t) = λi − μiφi(ξ(t)),

where φi(ξ) is the limiting fraction of time that node i is active

in a saturated version of the system with node-dependent but

time-invariant activation factors hi(Nξi) as N → ∞. Now

suppose that hi(·) ≡ h(·) for all i = 1, . . . , M . Also assume

that limN→∞ h(aN)/h(bN) exists for any a, b > 0, and that

h(aN) = o(h(bN)h(cN)) for any a, b, c > 0 as N → ∞.

The latter assumption ensures that at the limit when N → ∞,

the schedules belong to the collection of dominant activity

states, which corresponds to the collection of maximum-size

independent sets defined by

Ω∗ := {σ ∈ Ω :

M∑
i=1

σi = max
u∈Ω

M∑
i=1

ui}.

For any σ ∈ Ω∗, define

ψ(σ; ξ) = lim
N→∞

M∏
i=1

(
h(Nξi)

h(N)

)σi

.

For example, when h(x) = x, we obtain ψ(σ; ξ) =
∏M

i=1 ξσi

i ,

and when h(x) = log(x), we obtain ψ(σ; ξ) = 1.

Then

φi(ξ) =
∑

σ∈Ω∗

σiπ̂(σ; ξ),

where π̂(σ; ξ) = 1
Ẑ(ξ)

ψ(σ; ξ), with σ ∈ Ω∗, and Ẑ(ξ) =∑
σ∈Ω∗ ψ(σ; ξ).
2) Slow mixing - Inhomogeneous Poisson fluid limits:

When all the transitions between the various activation states

occur on a time scale of order N , we will observe these in the

fluid regime. More specifically, the fluid limit is differentiable

almost everywhere in that case, except in some random set

of measure zero which is produced by a time-inhomogeneous

Poisson process as we will argue in Section IV-B.

3) Torpid mixing - Pseudo-deterministic fluid limits: Fi-

nally, when all the transitions between the various activation

states occur on a time scale slower than N , the activation

state seems to be frozen in the fluid regime. We obtain, until

at least one queue empties, a fluid limit with deterministic

(in fact linear) trajectories, but which trajectory is followed

depends on the initial state and might be random. Transitions

in the activation states can occur when a queue empties, and

may be random as well, yielding similar qualitative behavior

as in [6].

It should be noted that one may construct examples of

networks and activity functions such that the fluid limits cor-

respond to a combination of fast, slow and torpid mixing. The

above-described trichotomy will be discussed in greater depth

below for the example of K-partite complete interference

graphs. The strong qualitative difference in fluid limits raises

the question how to determine whether the transitions between

the dominant states occur on a time scale of the order N , faster,

or slower. As it turns out, this is governed by the structure and

size of the interference graph, in conjunction with the behavior

of the activity factors as function of the backlog. Informally

speaking, the more stable the maximum-size independent sets

associated with the dominant states, and the higher the activity

factors, the slower the transitions, see [10] for related results.

A complete characterization of the transition rate for arbitrary

graphs and arbitrary activity functions is outside the scope of

the present paper.

B. K-partite complete interference graph

To illustrate the fluid limit trichotomy described above, we

focus here on networks with a K-partite complete interference

graph. Specifically, the set of nodes can be partitioned into

K disjoint subsets V1, . . . , VK , of respective cardinalities

M1, . . . , MK . Nodes within a given subset Vi do not interfere

with each other, but do interfere with all other nodes. In other

words, there is an edge {v, w} between two nodes v ∈ Vi and

w ∈ Vj if and only if i �= j, i.e., E =
⋃

i 	=j Vi × Vj .

For K-partite networks, there are K maximal schedules. A

maximal schedule consists in having all nodes from a given Vi

simultaneously active. We assume here that fi(·) ≡ f(·) and

gi(·) ≡ g(·). We further assume that f(·) and g(·) are chosen

such that the system spends almost all of the time in maximal

schedules when N tends to infinity.

We heuristically derive fluid limits, assuming that qi > 0
for all i ∈ V . When the system has no active node, the next

active maximal schedule is Vj with probability proportional

to
∑

i∈Vj
f(Nqi). Indeed, the latter schedule is determined

by the first node grabbing the channel. To derive fluid limits,

we need to quantify the time τN
j it takes when starting from

maximal schedule Vj for all nodes in Vj to release the channel.

In the following discussion, we consider time intervals whose

durations are small enough so that the queue lengths do not

evolve significantly, and hence can be considered as constant.

Define by TN
j the time spent in schedule Vj between two

successive instants where the system has no active node. We

know from the theory of Markov processes [1] that

E[TN
j ] =

∏
i∈Vj

f(Nqi)/g(Nqi)∑
i f(Nqi)

.

We also have, for large N ,

E[TN
j ] ≈

∑
i∈Vj

f(Nqi)∑
i f(Nqi)

× E[τN
j ],
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and hence

E[τN
j ] ≈

∏
i∈Vj

f(Nqi)/g(Nqi)∑
i∈Vj

f(Nqi)
.

In fact, one can even state that the distribution of τN
j is ap-

proximately exponentially distributed as N grows large. This

is a classical property for exit times of Markov processes with

asymptotically small transition rates. But it can be directly

checked in our specific example as sketched below. We can

prove it by induction on Mj . For Mj = 1, the result is

immediate. Assume that the result holds for Mj = H−1 ≥ 1,

and let us prove it for Mj = H . Label the H nodes in Vj by

1, . . . , H . By induction, the time for the H − 1 first nodes to

release the channel is approximately exponentially distributed,

say with mean 1/r. Once these nodes are inactive, the time it

takes for one of these nodes to be active again is exponentially

distributed with mean 1/s, with s =
∑H−1

i=1 f(Nqi). This hap-

pens before the H-th node releases the channel with probabil-

ity s/(s+ g(NqH)). Similarly after releasing the channel, the

H-th node becomes active again before the H−1 other nodes

release the channel with probability f(NqH)/(r + f(NqH)).
It can be easily verified that when N grows large, 1/r � 1/s
and 1/r � 1/f(NqH). Hence the transitions from a state

where the H nodes are active to a state where no node is

active occur at the instants of a Poisson process, which is

the superposition of two Poisson processes of respective rates

r × g(NqH)/(s + g(NqH)) and g(NqH)× r/(r + f(NqH)).
Thus τN

j is approximately exponentially distributed.

Having characterized τN
j , we can now sketch how to derive

the fluid limits

(i) If limN→∞ E[τN
j ]/N = 0 for all j, then the time to

switch maximal schedules is negligible compared to the time

required for queue lengths to change. We have a separation

of time scales, and the fluid limits are obtained by assuming

that schedule Vj is used a fraction of time equal to the

corresponding stationary distribution, as discussed in Section

IV-A1.

(ii) Assume without loss of generality that M1 ≥ . . . ≥ MK .

Assume that for j = 1, . . . , j0, limN→∞ E[τN
j ]/N = αj > 0,

and that for all j > j0, limN→∞ E[τN
j ]/N = 0. In such

cases, in the fluid limits, the set of active schedules are

V1, . . . , Vj0 , and one switches from one schedule to another

at random epochs. When schedule Vj , j ≤ j0, is used, we

have ξ′i(t) = λi − μi, for all i ∈ Vj , and ξ′i(t) = λi, for all

i /∈ Vj . The switching times between the various schedules

are driven by time-inhomogeneous Poisson processes. That is,

given backlogs qi, the switching time in the fluid regime from

schedule Vj to schedule Vj′ is exponentially distributed with

mean

lim
N→∞

1

N

∏
i∈Vj

f(Nqi)/g(Nqi)∑
i∈Vj

f(Nqi)

∑
i∈Vj′

f(Nqi)∑
i f(Nqi)

.

For example, in a 2-partite interference graph with M1 =
M2 = 2, and f(x) = x, g(x) = 1, the average time to switch

Fig. 6. Deterministic fluid limit for the bipartite interference graph with
M1 = M2 = 1, f(x) = x and g(x) = 1: fast mixing.

from schedule V1 = {1, 2} to schedule V2 = {3, 4} is

q1q2

q1 + q2

q3 + q4

q1 + q2 + q3 + q4
.

This case corresponds to Section IV-A2.

(iii) Assume that limN→∞ E[τN
j ]/N = ∞, and that initially

schedule Vj is used. Then in the fluid regime we have, until

some of the queues in Vj empty, ξ′i(t) = λi−μi for all i ∈ Vj ,

and ξ′i(t) = λi for all i /∈ Vj . Other behavior can occur for

different initial schedules, e.g. if limN→∞ E[τN
j ]/N = ∞ for

all j and initially no node is active, then, with probability∑
i∈Vj′

f(Nqi)/
∑

i f(Nqi) for all j′, ξ′i(t) = λi − μi for all

i ∈ Vj′ , and ξ′i(t) = λi for all i /∈ Vj′ . This case corresponds

to Section IV-A3.

We illustrate the three above possible scenarios through

numerical experiments. That is, to investigate the fluid limit,

we examine the evolution of the number of packets over time

in a network that initially has a lot of packets at each node.

More precisely, we consider bipartite graphs with initially

106 packets at every node. Further, we set λi = 0.4 and

μi = 1 for all i and initially no node is made active. Setting

fi(x) ≡ f(x) = x and gi(x) ≡ g(x) = 1 the empirical fluid

limit for the bipartite graph whose subsets all have cardinality

one is given in Figure 6. For the case where all subsets have

cardinality two the empirical fluid limit is given in Figure 7

and for the case where all subsets have cardinality three the

empirical fluid limit is given in Figure 8. These scenarios give

fast mixing, slow mixing and torpid mixing respectively. Thus

we observe that for the same activation function the three

scenarios can be obtained by changing the topology.

Alternatively, the three different scenarios can be obtained

by changing the activation function, f(x), for the same

topology. Consider the bipartite graph whose subsets all have

cardinality three. In Figure 8 we found torpid mixing for

f(x) = x. Setting f(x) =
√

x we obtain slow mixing as

seen in Figure 9 and setting f(x) = log(x+1) we obtain fast

mixing as seen in Figure 10.

V. CONCLUSION

We have explored the congestion dynamics of wireless

networks with backlog-based CSMA mechanisms. Lower and

upper bounds as well as heavy-traffic approximations were
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Fig. 7. Inhomogeneous Poisson fluid limit for the bipartite interference graph
with M1 = M2 = 2, f(x) = x and g(x) = 1: slow mixing.

Fig. 8. Pseudo-deterministic fluid limit for the bipartite interference graph
with M1 = M2 = 3, f(x) = x and g(x) = 1: torpid mixing.

Fig. 9. Inhomogeneous Poisson fluid limit for the bipartite interference graph
with M1 = M2 = 3, f(x) =

√
x and g(x) = 1: slow mixing.

Fig. 10. Deterministic fluid limit for the bipartite interference graph with
M1 = M2 = 3, f(x) = log(x + 1) and g(x) = 1: fast mixing.

obtained which provide detailed insight into how aggres-

sive/persistent access schemes improve the delay performance.

A key challenge for further research is to establish how fast

the activity functions are allowed to grow, depending on the

topology, while retaining maximum stability. As a first step in

that direction, we have investigated fluid limits, and identified

several distinct qualitative regimes that can arise, as governed

by the mixing properties of the system.
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