
Pipelining Multicast Scheduling in All-Optical Packet

Switches with Delay Guarantee

Zhiyang Guo and Yuanyuan Yang

Department of Electrical and Computer Engineering, Stony Brook University, Stony Brook, NY 11794, USA

Abstract—In this paper, we study multicast scheduling in all-
optical packet switches. First, we propose a novel optical buffer
called multicast-enabled Fiber-Delay-Lines (M-FDLs), which can
provide flexible delay for copies of multicast packets using
only a small number of FDL segments. We then present a
Delay-Guaranteed Multicast Scheduling (DGMS) algorithm that
considers the schedule of each arriving packet for multiple time
slots. We also discuss some desirable features of DGMS in
detail, such as guaranteed delay upper bound and adaptivity
to transmission requirements. To relax the time constraint of
DGMS, we further propose a pipelining technique that distributes
the scheduling tasks among a sequence of sub-schedulers. The
combinatorial logic circuit design of each sub-scheduler, which
further reduces time complexity, is also provided. The perfor-
mance of DGMS is tested extensively against statistical traffic
models and real Internet traffic, and the results show that the
proposed DGMS algorithm can achieve ultra-low average packet
delay with minimum packet drop ratio.

Index Terms—Optical packet switching, multicast scheduling,
optical buffer, delay guaranteed, pipeline, hardware implemen-
tation.

I. INTRODUCTION AND RELATED WORK

Optical networking has been widely adopted to transport

high volume traffic in backbone networks due to the huge

bandwidth of optics. All-optical packet switches are consid-

ered as a very appealing solution for high-throughput, energy-

efficient and transparent forwarding in backbone networks.

During the past few years, as driven by the increasing multicast

applications requiring high-bandwidth transmission from one

source to multiple destinations, such as video conference,

video-on-demand (VoD) and IP-based Television (IPTV) [1],

[2], optical multicast packet switching has attracted much

research effort. A series of all-optical switching architectures

and technologies have been proposed to support multicast at

the switch/router level, such as wavelength-assisted switching

[4], [13], Broadcast-and-Select (BS) switching [3], [9], etc.

Despite of the considerable amount of work on multicast-

capable optical packet switching architectures, however, rel-

atively little attention has been paid on multicast scheduling

in such switches, which is critical for high-speed all-optical

packet switches. Motivated by this observation, in this paper

we consider multicast scheduling in optical packet switches.

A major challenge for multicast scheduling in optical packet

switches is the resolution of output contention [5], which

occurs when multiple optical packets simultaneously go to

the same output. In particular, the fact that multicast packets

usually have more than one destination outputs intensifies

output contention. Since a practical “optical RAM” able to

mimic the buffers used in electronic switches is still not avail-

able currently, various contention resolution techniques have

Research supported by US National Science Foundation under grant num-
bers CCF-0915823 and CCF-0915495.

been proposed. Buffer-less approaches such as wavelength

conversion and deflection routing [5] resolve contentions by

sending conflicted packets to different wavelengths or other

outputs. However, they have been shown to be ineffective

for avoiding packet loss under congested network conditions

and demand a lot of network resources. Electronic buffers

have been considered to be used in OPS, creating “hybrid”

electronic/optical switches [6], [7]. Yet such an approach

requires Optical-to-Electronic-to-Optical (OEO) conversion,

which leads to undesirable power consumption and additional

cost in high speed switching. On the other hand, fiber-delay-

lines (FDLs) [8], a passive device able to delay optical packets

for a fixed period of time, provide a practical resolution for

output contention in OPS, due to its transparency to traffic

bit-rate and low power dissipation.

Multicast scheduling in optical packet switches with FDLs

buffer is significantly different from the well-studied multicast

scheduling in electronic switches [10], [11], for the reason that

all the approaches for electronic switches rely on electronic

RAM to resolve output contention, while FDLs can merely

delay packets for a fixed period of time. Several multicast

scheduling schemes using FDLs as buffer have been proposed

[4], [12], [13]. Among them, a widely adopted scheme is

output buffering [12], in which an output buffer consisting of

an N×B switch and B FDL segments with fixed incremental

delay is placed at each output. During each scheduling cycle,

the scheduler assigns a FDL segment with proper delay in each

output buffer to the packets destined for that output. To achieve

a reasonable packet loss ratio and network link utilization,

the output buffering scheme requires a large amount of FDL

segments to construct output buffers. Since FDLs are bulky,

such an approach is not scalable for large switches. Another

commonly used multicast scheduling scheme is wavelength-

assisted routing [4], [13], in which multicast packets are sent

to multicast modules, a FDL loop device used to generate

copies of the packet and provide necessary delay. However,

wavelength-assisted routing can provide only limited multi-

casting ability and its performance deteriorates quickly under

congested traffic conditions, as each multicast module can-

not be shared by multiple packets simultaneously. Moreover,

wavelength-assisted routing cannot provide delay guarantee

since a packet may have to be recirculated for many times

in the multicast module before being sent out.

In this paper, we propose a Delay-Guaranteed Multicast

Scheduling (DGMS) algorithm for all-optical packet switches

with FDLs buffer. In order to efficiently utilize FDLs, we also

present a novel optical buffer called multicast-enabled FDLs

(M-FDLs) that provides flexible delay for multicast packets

by using only a small number of FDLs. The main features of

the proposed DGMS can be summarized as follows.

174978-0-9836283-0-9 c© 2011 ITC

This paper was peer reviewed by subject matter experts for publication in the Proceedings of ITC 2011

Multicast-capable

Optical Switching

Fabric
.

.

.

M-FDLs

.

.

.

1

2

1

Label

Processor

Scheduler

M-FDLs

M-FDLs

1

2

N

1

2

N

1

2

1

Control plane

Data plane

Configuration

signal

Optical

label

Optical

payload

Destination

information

Electronic

Optical

Fig. 1. The architecture of a single-wavelength, input-buffered N×N optical

multicast packet switch.

• Guaranteed delay upper bound for all transmitted pack-

ets. By considering the schedule of each arriving packets

for multiple time slots, DGMS allows more efficient

packet transmission than scheduling algorithms that re-

solve output contention for a single time slot. When

network is highly congested, DGMS can also immedi-

ately detect it and promptly drop packets with overlong

delay to let upper layer protocols quickly respond to the

network condition. Overall, we show that DGMS is able

to guarantee a fixed delay upper bound for all transmitted

packets regardless of traffic pattern, while keeping packet

drops at a minimum level even under the most congested

network condition. Such a feature is especially desirable

in delay-sensitive multicast applications, such as video

conferences and IPTV.

• Enable pipelined scheduling and simple hardware im-

plementation. DGMS can be pipelined to reduce time

complexity. In addition, certain procedures in DGMS can

be implemented by simple combinatorial logic circuits to

further relax the timing constraints.

• Efficient buffer management. Through extensive simula-

tions, we demonstrate that with only a small number of

FDLs, DGMS can achieve ultra-low average packet delay

with minimal packet loss under various traffic conditions.

The reminder of the paper is organized as follows. Section

II presents the architecture of the adopted optical multicast

packet switch and optical buffer. Section III describes the

details of the delay guaranteed multicast scheduling (DGMS).

Section IV presents a pipelining technique and the correspond-

ing hardware implementation that reduces the time complexity

of DGMS. The performance of DGMS is evaluated through

extensive simulations and the results are presented in Section

V. Finally, Section VI concludes the paper.

II. SWITCH ARCHITECTURE AND BUFFER MANAGEMENT

In this section, we briefly describe the adopted switch

architecture and the operation of the proposed optical buffer

called multicast-enabled FDLs (M-FDLS). We consider a sim-

ple single-wavelength, input-buffered optical multicast packet

switch, the high level view of which is shown in Fig. 1. The

adopted switch consists of optical multicast switching fabric

Optical

mulitplexer

.

.

.

:FDL segment : directional coupler

(1) Bar

(2) Split

(3) Cross

Fig. 2. Multicast-enabled FDLS (M-FDLs). Left: The structure of M-FDLs.

Right: Three possible states of the directional coupler: bar, split and cross.

and M-FDLs as input buffers in the data-plane, and optical

label processors and electronic scheduler in the control plane.

We assume the switch operates in a time-slotted manner

and all optical packets have the same length. Each optical

packet consists of two parts: payload and label (or header).

The optical label contains the destination outputs of the packet,

and is much shorter than the optical payload. When an optical

packet arrives at an input, its label is stripped off and sent to

the label processor, which can be performed passively by the

optical correlation technique. The label processor then converts

all optical headers to the electronic form, and sends them to

the electronic scheduler, which calculates the schedule for each

packet. Note that the optical label can adopt a lower bit rate

than the optical payload to facilitate electronic scheduling [14].

Based on scheduling results, control signals are issued to the

FDL buffers and switching fabric to properly configure the

switch.

Next, we present a novel optical buffer called multicast-

enable FDLs (M-FDLs) that provides flexible delay for each

incoming multicast packet. Fig. 2 shows the buffer structure.

The M-FDLs buffer consists of cascaded couplers and FDL

segments, and each segment can provide a delay of T , the

duration of a time slot. To provide flexible delays ranging

from T to dT , a total of d FDL segments are needed. For each

coupler, there are three states: when it is in “bar” state (the

default state), packets simply go through it and move to the

next FDL segment; when the state is “split,” a copy of packet

will be sent to the switch for transmission though an optical

multiplexer, while the packet continues to move forward in

the M-FDLs; when the state is “cross,” packets will move

out of the M-FDLs completely and be sent to the switch for

transmission. The compensation for the power loss and noise

incurred from optical splitting are not shown in the figure.

Let’s use an example to illustrate how the M-FDLs operates.

Assume that a multicast packet arrives at time slot t, and is

scheduled to deliver a copy of it to some of its destination

outputs in the (t+i)th time slot and to the rest of its destination

outputs in the (t+j)th time slot (i < j ≤ d). At the beginning

of the (t+ i)th time slot, the packet moves to the ith coupler,

and the scheduler sets the ith coupler to “split,” such that a

copy of the packet will be sent to the switching fabrics. At

the beginning of the (t+ j)th time slot, the scheduler sets the

jth coupler to “cross” state, thus the packet moves out of the

M-FDLS and be transmitted completely.

Compared with existing FDL buffers for multicast packet

switching, M-FDLs has some clear advantages. On one hand,

M-FDLs does not have the problem of limited multicast

processing capability in the recirculating loop buffer in the

wavelength-assisted routing scheme [4], [13], since it can be

Proceedings of the 2011 23rd International Teletraffic Congress (ITC 2011) 175

shared by all the incoming multicast packets in a pipelined

fashion. On the other hand, M-FDLs uses much less FDL

segments compared to the output buffer used in the output

buffering scheme [12]. For example, to achieve flexible delays

ranging from 1T to 16T , each output buffer in [12] requires

(1 + 2 + · · ·+ 16 = 138) FDL segments, while each M-FDLs

only requires 16 FDL segments, which is a substantial saving.

Based on the input-buffered optical multicast packet switch

and M-FDLs buffer described above, we will present the delay-

guaranteed multicast scheduling algorithm (DGMS) in the next

section.

III. DELAY GUARANTEED MULTICAST SCHEDULING

A. Preliminaries

In this subsection, we introduce some commonly used terms

in multicast scheduling. In multicast scheduling, the vector

of destinations of a multicast packet is called its fanout. For

clarity, an arriving input packet is usually distinguished from

its corresponding output copies, i.e., the copies of the input

packet destined for the outputs in its fanout.

The most straightforward multicast solution was the use

of copy networks, in which all output copies are delivered

by unicast. However, since optical switching fabrics such as

Broadcast-and-Select (BS) has a intrinsic multicasting capa-

bility, i.e., the ability to transmit packets from one input port

to multiple output ports simultaneously, treating multicast as

multiple unicasts wastes bandwidth and prolongs packet delay.

There are several service disciplines to transmit multicast

packets from input ports to output ports, which can be roughly

divided into two categories: one shot and fanout splitting. With

one shot, all the output copies of an input multicast packet

must be sent to the corresponding output ports in one time

slot, whereas in fanout splitting, a multicast packet could be

delivered to the outputs in multiple time slots, and in each

time slot, only some of the outputs in its fanout receive the

packet copy. It has been shown that one shot discipline may

severely limit the throughput of the switch. Thus, in this paper,

we adopt fan-out splitting discipline.

B. Delay Guaranteed Multicast Scheduling (DGMS)

In this subsection, we describe in detail the delay guaranteed

multicast scheduling (DGMS) algorithm. Consider a switch of

size N ×N as shown in Fig.1, and assume that packets arrive

at the beginning of each time slot.

According to the operations of the adopted switch, the label

of an arriving packet will be sent to the scheduler to be

processed the moment it enters the corresponding M-FDLs,

and its copy can leave the M-FDLs and enter the switch as

early as it reaches the first coupler (i.e., after a delay of T ,

where T is the time slot length). Therefore, the scheduler must

determine the following within a time slot: (1) whether or not

the packet is allowed to be switched in the next time slot; (2) if

it is to enter the switch, which outputs will it be delivered to,

such that no output contention could occur. Likewise, when

the packet reaches the ith coupler, both the corresponding

coupler and the switching fabric should be properly configured

to avoid output contention. Note that all arriving packets will

be delayed for at least a period of T , which is the scheduling

overhead.

DGMS considers the schedule for the next D time slots by

keeping D scheduling vectors, indexed by 1, 2, . . . , D, with

each vector corresponding to the scheduling results in a future

time slot. Note that D cannot be larger than the maximum

delay each M-FDLs can provide. For example, a scheduling

vector of index i is denoted by Si, which is used for keeping

track of scheduling results of the time slot that is i time slots

after the current time slot. S1 is used to record scheduling

results of the next time slot. A scheduling vector has N entries,

indexed by 1, 2, . . . , N , with each corresponding to an output.

The kth entry of Si is denoted by Si(k). If a copy of some

packet for output k is scheduled to be transmitted in the ith

time slot after the current time slot, we say that output copy

k of the packet is assigned to entry Si(k).
Each entry can be represented by a four-tuple

(full, input, location, split), where the one-bit field

full is set to 1 if this entry has been assigned, otherwise it is

0. input is used to record the corresponding input index of

the packet in that entry. location is used to record the index

of the scheduling vector that the copy is assigned to initially.

For example, if a copy is assigned to the ith scheduling

vector, the location field of its entry is set to i. split is used

to configure the state of couplers in M-FDLs. For example,

if a packet is completely scheduled within next D time slots,

and its last output copies are assigned to entries in the kth

scheduling vector, then the split fields in all its entries in the

kth scheduling vector are set to 0 (indicating that the kth

coupler will be set to “cross” and the packet will exit the

M-FDLs), while the split fields in the rest of its assigned

entries are set to 1 (indicating that a copy will be created

while the packet stays in the M-FDLs).

Since the switching fabric can only run as fast as the input

line rate, at most one packet can come out of the same M-FDLs

in one time slot. Also, each output can receive at most one

packet in each time slot to avoid output contention. Therefore,

an entry of index i in a scheduling vector is said to be eligible

for an output copy of some packet from input k if and only

if all the following three conditions are met.

1) The entry is not full, i.e., no packet has been previously

assigned to this entry.

2) The output copy is destined for the ith output.

3) No packets from input k have been previously assigned

to this scheduling vector, such that at most one packet

from the same input is scheduled to be transmitted in

the same time slot.

To ensure that the third condition is satisfied, we use D one-

bit mask vectors of length N , each corresponding to one

scheduling vector. The kth entry of the ith mask vector is

denoted as Mi(k), which is set to 1 if some packet from

the kth input has been assigned to the ith scheduling vector.

The scheduler will check mask vectors before assigning output

copies to make sure no packet from the same input has been

previously assigned to this scheduling vector, and all the copies

with the same input index in each scheduling vector are copies

of the same packet.

The basic operation of the scheduler is to find the earliest

possible eligible entries for arriving packets in each time

slot. For the reason of fairness, the Round-Robin scheduling

176 Proceedings of the 2011 23rd International Teletraffic Congress (ITC 2011)

TABLE I

DELAY GUARANTEED MULTICAST SCHEDULING (DGMS)

Input to DGMS: Arriving packets P , scheduling vectors S,

mask vectors M , priority register pr
// Packet Transmission

Configure couplers and switching fabric according to the 1st scheduling

vector S1

For i = 2 to D Do

Si−1 = Si;

Mi−1 = Mi;

EndFor

Clear SD, MD ;

// find the earliest eligible entries for the arriving packets

For packet Pi from input i,
i = [pr, pr + 1, . . . , (pr + N − 1) mod N + 1]. Do

For scheduling vector Sk, k = [1, 2, . . . , D] Do

For each output Oj in Pi’s fanout, Do

If Sk(j) is empty and Mk(i) == 0
Assign the entry to the output copy of Pi;

EndIf

EndFor

If some copies of Pi get assigned in Sk

set Mk(i) = 1;

EndIf

EndFor

If there are still outputs in Pi’s fanout left undelivered

Drop these output copies of Pi;

EndIf

EndFor

scheme is used to allocate priority to the packets arriving

at different inputs to be scheduled in each time slot. To

indicate which input has the highest priority, a register pr

is used. We update pr according to a cyclic-priority rule,

i.e., the value of pr changes to (pr + 1) mod N at the end

of each time slot. The scheduler checks the optical label of

each packet in the order of their input index [pr, (pr + 1)
mod N, · · · , (pr + N − 1) mod N + 1], and tries to assign

their output copies to the earliest eligible entries among D

scheduling vectors. Only when an output copy cannot be

assigned after searching all D scheduling vectors will it be

dropped by the scheduler. Note that some copies of the packets

arriving later can be scheduled to be transmitted prior to copies

of the earlier packets if there is no output contention, to reduce

the average delay.

At the beginning of each time slot, the scheduler config-

ures the corresponding couplers in the M-FDLs buffers and

switching fabric for packet transmission, according to the

first scheduling vector S1. Next, the scheduler shifts all the

scheduling vectors and mask vectors forward by one position,

i.e., the content of Si is moved to Si−1, i = 2, 3, . . . , D,

and empties the last scheduling vector and mask vector, then

starts the scheduling process for the current time slot. For

example, assume that entry S1(2) has the value of (1, 1, 3, 1),
which indicates that the packet entered the M-FDLs three time

slots ago from the 1st input and now reaches the 3rd coupler

(because the scheduling vectors are shifted forward by one

position each time slot). The scheduler sets the 3rd coupler to

“split,” and connects input 1 with output 2 at the beginning

of the time slot, such that a copy of the packet is delivered

to output 2. The coupler will be reset to the default state

“bar” after the packet goes through. The detailed description

of DGMS is given in Table I.

(1,2)

(3,4)

(2,3)

(3)

(4) (1)

(1) (2,4)

(2,4) (3)

(0,0,0) (1,4,3) (0,0,0) (1,4,3)

(0,0,0) (0,0,0) (0,0,0) (1,1,4)

1

2

3

4

Index

Packets

arrivals

Packets in

M-FDLs

Scheduling vectors Mask vectors

(1,1,3) (1,3,3) (1,4,3) (1,3,3)

(1,3,1) (1,1,3) (1,1,3) (1,2,1)

1T 2T 3T 4T 1 2 3 4 1 2 3 4

1 1 0(2,3)

(4) 1 1 10

1

1

1

0 0 0

0 0 0

(a)

(1,2) (4)

(3,4)

(2,3) (2,4)

(3) (2,4) (3)

1T 2T 3T 4T

(2,3)

(1,4)

(2)

(1,3)

1

2

3

4

Index

(1,1,2) (1,4,3) (1,2,2) (1,4,3)

(0,0,0) (1,3,3) (1,3,3) (1,1,4)

(1,1,3) (1,3,3) (1,4,3) (1,3,3)

1 2 3 4 1 23 4

1 1 10

1

1

1 0

0 1 0

(0,0,0) (1,1,4) (1,4,4) (1,2,4) 1 0

1

1 1

(1)

(b)

Fig. 3. A scheduling example for a 4×4 switch. (a) The initial switch state at

the beginning of the current time slot. (b) The switch state at the beginning of
the next time slot, obtained after the scheduler rotates the scheduling vectors

and mask vectors, then schedules all arriving packets. The schedule for packet

(1, 2) is highlighted.

C. A Scheduling Example

A scheduling example of DGMS algorithm for a 4×4 switch

is shown in Fig. 3. The number of scheduling vectors D is

set to 4. Packets are denoted by their fanouts, e.g., the packet

destined for outputs 3 and 4 is denoted as (3, 4). The packets in

M-FDLs are denoted by the time they have been delayed, and

the maximum delay each M-FDLs provides is 4T , where T is

the length of a time slot. Entries in scheduling vectors shown

in the figure are 3-tuple recording the (full, input, location)
information of the assigned packets. The split field is omitted

here, as it does not participate in the scheduling process.

The initial content of scheduling vectors and mask vectors

at the beginning of the current time slot is depicted in Fig.

3(a). Note that DGMS allows the packets arrived later to be

transmitted before the packets arrived earlier, thus eliminates

the Head-of-Line (HOL) blocking. For example, packet (1)
from input 3 (blue block) arrived one time slot later than packet

(2, 4) (grey block), yet is scheduled to be transmitted earlier.

Such a feature enables more efficient buffer management and

reduces packet delay. However, it is worth mentioning that in-

order transmission of packets from the same flow (i.e., packets

sharing the same input and fanout) is guaranteed in DGMS, as

it is impossible to deliver a later packet prior to its predecessor

in the same flow in DGMS.

The scheduler then configures the switch and M-FDLs ac-

cording to the first scheduling vector, and rotates the schedul-

ing vector and mask vector forward by one position. Packets

transmitted completely will be removed from the buffer, while

those with remaining fanout stay in the M-FDLS and will be

delayed by another T . Assume the current priority indicator pr

is 1. The scheduling results of the arriving packets are shown

in Fig. 3(b). Take packet (1, 2) (yellow block) as an example.

Its two output copies are scheduled for transmission in the

2nd and 4th scheduling vectors, respectively. The packet will

reach the second coupler when the 2nd scheduling vector is

rotated to the front, and accordingly the scheduler will change

the 2nd coupler to “split” and connects input 1 with output 1,

such that a copy of the packet will be delivered to output 2.

Proceedings of the 2011 23rd International Teletraffic Congress (ITC 2011) 177

...

SS2

SS3

SSD

SS1 Remaining

fanout

Dropped

output copies

Initial SS for sequence 1

Initial SS for

sequence 2

Initial SS for sequence 2

Initial SS for

sequence 1

Fig. 4. Ring of cascaded schedulers. The solid line and dashed line indicate
the sequence of sub-schedulers packets go through in different time slots.

The packet will move out of M-FDLs in four time slots when

all its output copies are transmitted.

D. Discussions

We now discuss some useful properties and the time com-

plexity of DGMS. One desirable feature of DGMS is that the

maximum packet delay for any transmitted packets is bounded

by D, where D is the number of scheduling vectors, regardless

of traffic conditions. If output copies of some packets cannot

be scheduled for the next D time slots, the scheduler can

promptly drop them. As will be seen in the performance

evaluation section, packet drop only occurs when network is

highly congested and can be kept at a minimum level with a

reasonable number of scheduling vectors D.

In addition, DGMS is highly adaptive to traffic conditions,

meaning that the trade-off between the packet drop ratio and

the average delay can be easily adjusted by changing the

number of scheduling vectors D. If traffic is delay-sensitive, a

smaller D can filter out packets with long delay and achieve

ultra-low latency, whereas a larger D makes the scheduler

more tolerant to packet delay and prone to reliable packet

transmission.

DGMS can also provide fairness guarantee, since each

arriving packet is assigned according to its input index in a

round robin fashion. Finally, the number of FDL segments

DGMS requires is much smaller compared to existing multi-

cast scheduling algorithms for OPS.

The time complexity of DGMS is O(N2D) in the worst

case, where N is the switch size and D is the number

of scheduling vectors. Next we will introduce a pipelining

technique to further reduce the complexity to O(N).

IV. PIPELINING THE SCHEDULING

In this section, we present a pipelining technique that

distributes scheduling tasks to a sequence of sub-schedulers,

and show that this technique can reduce the time complexity

of DGMS to O(N).
The most time consuming part in DGMS involves a nested

loop of three layers, when the scheduler tries to find the earliest

eligible entries among D scheduling vectors for at most N

arriving packets, each with a fanout of cardinality up to N .

Also, it takes O(ND) time to shift all scheduling vectors. To

schedule packets among D scheduling vectors, we construct D

sub-schedulers (SS), indexed by 1, 2, . . . , D, and concatenate

them to a directional cascaded ring, as shown in Fig. 4.

Each SSi, i ∈ [1, 2, . . . , D], has a built-in scheduling vector

Si and mask vector Mi, and takes the input index and the

remaining fanout of the processed packet as inputs. The pro-

cessing component (COMP) inside each SS is responsible for

the scheduling of the processed packet according to the built-

in scheduling vector and mask vector. Each SS also passes

the input index and the remaining fanout of the processed

packet as outputs to the next SS. In each time slot, the arriving

packets are processed through a sequence of sub-schedulers

along the ring in a pipelined fashion, till all the output copies

of the arriving packets are either scheduled or dropped. We

denote the first sub-scheduler in the sequence as the initial

SS. Starting from the initial SS, the ith SS in the sequence

is responsible for the scheduling for the time slot which is i

time slots after the current time slot.

In DGMS, all the scheduling vectors and mask vectors need

to be shifted forward by one position at the beginning of each

time slot, which involves massive data transfer among the

vectors. To simplifies the operation, we clear the initial SS

then “rotate” clockwise by one position at the beginning of

every time slot, that is, choose the one next to the initial SS as

the initial SS in the next time slot. For example, as depicted

in Fig. 4, assume SS1 is the initial SS for the scheduling

sequence in the current time slot, and the arriving packets go

through the sequence of SS’s along the solid line. In the next

time slot, SS2 is chosen as the initial SS. In this way, SS1

becomes the last SS in the sequence and all other SS’s are

one position closer to the initial SS, indicated by the dashed

line in Fig. 4. The simple rotation avoids massive data transfer

and only takes O(1) time, while producing equivalent results

to that of shifting all the vectors forward.

To relax the time constraints of DGMS, all SS’s operate in a

pipelined fashion. Fig. 5 illustrates the pipeline example for a

4× 4 optical multicast switch with D = 4 scheduling vectors,

in which the time for each SS to process a packet is denoted as

a microslot. Assume SS1 is chosen as the initial sub-scheduler

in the first time slot. The packets arriving from input i in the

kth time slot is denoted as P k

i
. In the first time slot, SS1 starts

to process packet P 1

1
. When it finishes, P 1

1
is passed to SS2

while the packets from input 2 (P 1

2
) is fed to SS1. As shown

in Fig. 5, the scheduling of all the packets arriving in the first

time slot P 1

i
can be completed in 7(= N +D−1) microslots.

However, due to the fact that only the result of the initial SS

needs to be ready for transmission at the beginning of the next

time slot, we do not have to wait till all the scheduling for the

first time slot completes before starting the scheduling for the

second time slot. In other words, the scheduling in consecutive

time slots can also be pipelined. As shown in Fig. 5, it takes

four microslots for SS1 to finish the scheduling for packets

arriving in the first time slot. For packets arriving in the 2nd

time slot, P 2

i
, the initial SS is set to SS2 after rotation, and

the scheduling can begin as early as the 6th microslot (yellow

block) rather than the 8th microslot (grey block). Therefore, it

only takes O(N), instead of O(N+D), microslots to complete

the scheduling process in each time slot with the pipelining

technique.

Each sub-scheduler has to find the eligible entry for the

processed packet in each microslot, which is a non-trivial task.

Therefore, we present a simple combinatorial circuit design

for the processing component (COMP), and show that it only

178 Proceedings of the 2011 23rd International Teletraffic Congress (ITC 2011)

P
1

1
P

2

1
P

3

1 1
P

4

P
1

1
P

2

1
P

3

1

P
1

1
P

2

1
P

3

1

1
P

4
1

P
4

P
1

1
P

2

1
P

3

1 1
P

4

P
1

2
P

2

2

P
1

2

P
1

2
P

2

2

P
1

2

P
2

2

2 3 4 5 6 7 8 91

SS

SS 3

SS 2

SS

microslots

1

4

.....

Fig. 5. Example of the pipeline operation. The microslot when the scheduling
for the 2

nd time slot can begin without consecutive time slot pipelining is
marked in grey, while that with consecutive time slot pipelining is marked in
yellow.

takes O(1) time for each SS to complete the scheduling in

one microslot. The inputs of COMP include following.

1) The destination vector of the processed packet, denoted

by O(i), i = 1, 2, . . . , N , where O(i) = 1 if output i is

in the fanout of the packet;

2) The full bit of the entries in the scheduling vector,

denoted by F (i), where F (i) = 1 if the ith entry of

the scheduling vector is occupied;

3) The mask bit from the mask vector, denoted by M(i),
where i is the receiver index of the processed packet.

M(i) = 1 if the packet from the same input of the

processed packet has been assigned to the scheduling

vector, otherwise it is 0.

The outputs of COMP include following.

1) R(i), the remaining outputs in the fanout that cannot

be scheduled, which is passed to the next SS, where

i = 1, 2, . . . , N ;

2) Q(i), the scheduling results of the destination outputs

of packets, where i = 1, 2, . . . , N and Qi = 1 if the ith

output copy is successfully scheduled in the current SS;

3) M ′(i), the updated mask vector after the scheduling,

where i is the receiver index of the processed packet.

The logic expressions for Ri, Qi and M ′

i
are given below.

R(i) = O(i) ∩ (M(i) ∪ F (i)) ∀i = 1, 2, . . . , N

Q(i) = M(i) ∩ F (i) ∩ Oi ∀i = 1, 2, . . . , N

M ′(i) = M(i) ∪ Q(1) ∪ Q(2) ∪ · · · ∪ Q(N)

From the above logic expressions, we can see that each

SS can complete the scheduling in O(1) time with O(N)
hardware cost (the number of logic gates used). Overall, with

the pipelined scheduling and combinatorial circuit design, the

time complexity of DGMS can be reduced to O(N).
Note that since arriving packets need to be processed se-

quentially, each sub-scheduler needs to compute the schedule

N times faster than the line rate, which may not be scalable

in high speed switching. Therefore, we have also developed

a parallel scheduling technique, which further distributes the

scheduling to a set of processors running in parallel. This way,

each processor only takes O(1) time to perform its task. Due

to limited space, we omit the parallel scheduling in this paper.

V. PERFORMANCE EVALUATIONS

We have conducted extensive simulations to evaluate the

performance of DGMS. In this section, we present the sim-

ulation results. The simulation consists of two parts. In the

first part of the simulation, we evaluate the effect of the

number of scheduling vectors D (i.e., the maximum delay)

on the packet drop ratio, which is defined as the percentage

of dropped output copies among the total output copies of all

packets arrived during the simulation period. In the second

part, we evaluate the average delay performance of the pro-

posed DGMS algorithm, which is calculated by the average

interval between the arrival and departure of all successfully

transmitted output copies.

As mentioned earlier, there has been little previous work

on the multicast scheduling on optical packet switches with

FDL input buffer. On the other hand, there is some similarity

between the adopted switching architecture and the input

queued (IQ) electronic switch. Therefore, we compare the

performance of DGMS with several well-known multicast

scheduling algorithms for IQ electronic switches, including

FIFOMS [10] and MCMS [11] algorithms. The results for

FIFO scheduling on the output queued multicast switch (OQ-

FIFO) are also presented as a performance benchmark. These

algorithms can be briefly described below.

• FIFOMS is an iterative multicast scheduling algorithm.

In an iteration, each unmatched input scheduler selects

the HOL packet in each VOQ with the smallest time

stamp and sends the requests to the corresponding out-

puts. The process continues till there is no possible match

between inputs and outputs. FIFOMS was shown to be

superior to many well-known scheduling algorithms in

terms of packet delay.

• MCMS considers the scheduling of the HOL packet in

each input queue for multiple time slots (the number of

time slots considered is set to 64 in our simulation). It

was demonstrated that the delay performance of MCMS

outperforms most of previous scheduling algorithms such

as WSPLIT, Revision scheme and Windows-based algo-

rithms.

• The output queued switch is known to be superior to

the input queued switch in terms of performance, but

requires N times faster switching ability. Despite its

much stronger hardware requirement, in our simulation,

we include a simple FIFO scheduling algorithm on

the output queued switch (OQFIFO) as a performance

benchmark to show how close our algorithm can be to

the performance of the output queued switch while not

requiring the speed-up.

In each simulation run, there is a sufficient warmup period

(typically one fourth of the total simulation time) to obtain

stable statistics. The simulation runs for a fixed amount of

simulation time (106) unless the scheduling algorithms become

unstable (i.e., the switch reaches a stage where it cannot

sustain the offered load). We have simulated DGMS for

different switch sizes under both statistical traffic models, such

as Bernoulli traffic, mixed traffic, bursty traffic. etc., and real

Internet traffic traces. Due to limited space, we only give some

representative results under the mixed traffic model and the

real Internet traffic traces in the paper.

A. Performance Evaluation under Mixed Traffic

Internet traffic is a mixture of unicast and multicast packets.

In this subsection, we show that DGMS is capable of dealing

with both traffic types efficiently. In the mixed traffic pattern,

arriving packets can be either unicast or multicast. Packets

Proceedings of the 2011 23rd International Teletraffic Congress (ITC 2011) 179

Fig. 6. The effect of the number of scheduling vectors D on the packet drop
ratio under mixed traffic (half the traffic is multicast). (a) 8 × 8 switch; (b)
16× 16 switch.

arrive at an arrival rate λ, which is the probability that there

is a packet arrival in a time slot. The traffic is a combination of

unicast and multicast packets, with a multicast fraction (fm)

and a unicast fraction (fu), where fm = 1− fu. For a unicast

packet, it has an equal probability (1/N) being destined for

each output port, while for a multicast packet, we assume

it has a probability of b being destined to each output port.

When fu = 1, the traffic only consists of unicast packets. The

relationship between output load µ and arrival rate λ can be

expressed as µ = λ(fu + b×N × fm). In our simulation, the

multicast traffic fraction is set to 0.5, i.e., half of the traffic is

multicast.

The effect of the number of scheduling vectors D (maxi-

mum delay) on the packet drop ratio under mixed traffic for

both 8×8 and 16×16 switches is illustrated in Fig. 6. We can

see that for switches of both sizes, packet drop only occurs

under high traffic load (over 0.9) with only D = 16 scheduling

vectors. The packet drop ratio decreases drastically when we

increase D from 8 to 32, but only a slight improvement is

observed when we further increase D to 64, indicating that

most packets can be scheduled for transmission within 32 time

slots. Even under the most extreme traffic condition when the

output load is 1, i.e., one packet is destined for each output in

every time slot on average, 32 scheduling vectors is sufficient

to keep the packet drop ratio at a very low level.

Fig. 7 compares the average delay of DGMS under mixed

traffic with other algorithms for both 8×8 and 16×16 switches.

To demonstrate the effect of the number of scheduling vectors

D on the average delay, we set the value of D to 32 and 64,

and label them as DGMS 32 and DGMS 64 in the figure,

respectively. It is shown that both MCMS and FIFOMS are

saturated before the traffic load reaches 1, which coincides

with the theory that the IQ switch cannot maintain sustain-

ability under all admissible multicast traffic conditions [17].

At the same time, we also find the proposed DGMS algorithm

closely matches the performance of OQFIFO and outperforms

both MCMS and FIFOMS when traffic load is moderate. When

the traffic load approximates 1, DGMS even achieves better

performance than OQFIFO. The reason is that DGMS can

detect and promptly drop output copies with overlong delay

instead of keeping them in the buffer, thus significantly reduces

the average packet delay.

We can see that DGMS 32 generally performs better than

DGMS 64 in terms of average packet delay. The reason is

that more scheduling vectors mean that the scheduler is less

prone to drop packets and more tolerant to packet latency.

For example, an output copy of some packet expected to have

Fig. 7. The average delay under mixed traffic (half the traffic is multicast).
(a) 8× 8 switch; (b) 16× 16 switch.

Fig. 8. The effect of the number of scheduling vectors D on the packets
drop ratio under real Internet traffic. (a) 8× 8 switch; (b) 16 × 16 switch.

a delay of 40 time slots would be dropped by DGMS 32,

while it would be scheduled for transmission by DGMS 64.

Such trade-off between the packet drop ratio and the average

delay can be easily adjusted by changing the number of

scheduling vectors, making DGMS highly adaptive to various

transmission requirements.

B. Performance Evaluation under Real Internet Traffic
Due to the complexity of Internet traffic, it is very difficult,

if not impossible, to completely capture its characteristics

using statistical traffic models. For this reason, we have also

tested the proposed DGMS algorithm under real Internet traffic

traces obtained from the backbone network link monitors.

The anonymized traffic traces used here were obtained from

the CAIDA’s passive OC192 network link monitors [15]. All

trace files consist of one line per IP packet arrival in the form

of <packets index, time stamp, protocol, source IP address,

destination IP address>. As in [16], we feed each input by

a separate trace file. We assume all packets have a fixed size.

Note that due to the lack of traffic regulation, certain outputs

are busier than others in real Internet traffic and it is impossible

to determine the output load. Therefore, different from the

simulation under statistical traffic models, where the traffic is

admissible (no oversubscription at outputs) and the scheduling

algorithms are evaluated against the output traffic load, we test

the algorithms against the packet arrival rate at the inputs in

real Internet traffic. To adjust the arrival rate, we change the

length of the time slot according to the throughput of the trace,

and multiple packets from the same input arriving in the same

time slot are placed in consecutive time slots. For example, if

the throughput of a trace is 500 Mb/s and all packets have a

fixed size of 64 bytes, to achieve the arrival rate of 0.8, the

time slot length is ((64 × 8)/500M)× 0.8 = 0.8192µs.

With the absence of the forwarding table, determining how

to map the destination IP address of packets to output ports

of the switch is not a trivial task. Since forwarding tables in

the routers are updated relatively infrequently, we can assume

that it stays invariable during the simulation period. For unicast

180 Proceedings of the 2011 23rd International Teletraffic Congress (ITC 2011)

Fig. 9. The average delay under real Internet traffic. (a) 8 × 8 switch; (b)
16× 16 switch.

packets, we use a simple hash function to determine the output

port for each packet, which returns the modulus of summation

of the four IP address fields in each destination IP to the switch

size N . For example, a packet with destination IP address

243.124.121.4 will be sent to port (243 + 124 + 121 + 4)
mod N +1. For multicast packets, we uniformly choose from

1 to N output ports with an equal probability. In this way,

all the packets belonging to the same flow (i.e., packets share

the same source and destination IP) will be sent to the same

destination output port(s).

From Fig. 8, we can see that there is a noticeable increase

in the packet drop ratio. The reason is three-fold. First, we use

the packet arrival rate at the input instead of the output load in

this simulation. As real Internet traffic consists of both unicast

flows and multicast flows, the output load is considerably

higher than the arrival rate. Second, the real Internet traffic

consists of many flows, in which packets arrive in consecutive

time slots and share the same output ports. Such traffic bursts

are more likely to cause packet drop. Finally, real Internet

traffic could be inadmissible during the simulation period,

as some output ports could be oversubscribed. Nevertheless,

D = 64 scheduling vectors are sufficient to keep the packet

drop ratio below 1% in the most congested traffic condition

when the arrival rate is 1.

As for average packet delay shown in Fig. 9, both FIFOMS

and MCMS perform considerably worse under real Internet

traffic than under the mixed traffic model. FIFOMS saturates

before the packet arrival rate reaches 0.55 and MCMS saturates

at the arrival rate of 0.8. Meanwhile, we can see that DGMS

manages to achieve ultra-low average delay and exceeds the

performance of all other algorithms under all traffic loads, for

the same reason as that under mixed traffic.

VI. CONCLUSIONS

In this paper, we have studied multicast scheduling problem

for input-buffered optical multicast switches. We first proposed

an efficient optical buffer called multicast-enabled FDLs (M-

FDLs), which can provide flexible delay for output copies of

each multicast packet while requiring only a small number of

FDL segments. We also designed a delay-guaranteed multicast

scheduling (DGMS) algorithm, the main features of which can

be summarized as follows.

• Guaranteed delay upper bound for transmitted packets.

DGMS can guarantee a fixed delay upper bound for all

transmitted packets, while keeping packet drop ratio at

a minimum level even under the most congested traffic

condition.

• Ultra-low average delay. DGMS can detect and promptly

drop output copies with long delay, thus can significantly

lower the average delay.

• Adaptive to varying transmission requirements. DGMS

can easily adjust the number of scheduling vectors D to

balance the trade-off between the packet drop ratio and

the packet delay.

• Require very few number of FDLs. compared to exist-

ing multicast scheduling schemes for all optical packet

switches, DGMS can achieve superior performance using

much less FDLs.

• Fairness. All packet arrivals are scheduled in a round

robin fashion to ensure fairness.

We also presented a pipelining technique and combinatorial

digital circuit design for DGMS, which lowers the time

complexity to O(N). Extensive simulations demonstrate that

DGMS achieves ultra-low average packet delay under both

statistical traffic models and real Internet traffic with a minimal

packet drop ratio.

REFERENCES

[1] Z. Guo, X. Luo, Y. Jin, et al, “Improving Resource Utilization in Hybrid
Packet/Circuit Multicasting for IPTV Delivery,” OFC 2008, 2008.

[2] J. Choi, M. Yoo, and B. Mukherjee, “Efficient Video-on-Demand Stream-
ing for Broadband Access Networks,” IEEE/OSA Journal of Optical

Communications and Networking, vol. 2, no. 1, pp. 38-50, January 2010.
[3] A. Misawa and M. Tsukada, “Broadcast-and-Select Photonic ATM Switch

with Frequency Division Multiplexed Output Buffers,” Journal of Light-

wave Technology, vol. 1 pp.1769-1777, 1997.
[4] Q. Huang, S. Member, W. Zhong and S. Member, “A Wavelength-

Routed Multicast Packet Switch With a Shared-FDL Buffer,” Journal of

Lightwave Technology, vol. 28, pp. 2822-2829, October 2010.
[5] A.G.P. Rahbar and O.W.W. Yang, “Contention Avoidance and Resolution

Schemes in Bufferless All-Optical Packet-Switched Networks: a Survey,”
IEEE Comm. Surveys & Tutorials, vol. 10, no. 4, pp. 94-107, 2008.

[6] L. Liu and Y. Yang, “Packet Scheduling in a Low-Latency Optical Switch
with Wavelength Division Multiplexing and Electronic Buffer” IEEE

INFOCOM 2011.
[7] A.G. Reza and H. Lim, “Hybrid Buffering Architecture for Packet Con-

tention Resolution of an Optical Packet Switch,” International Journal

for Light and Electronic Optics, pp. 3-5, July 2010.
[8] H. Yang and S.J.B. Yoo, “All-Optical Variable Buffering Strategies and

Switch Fabric Architectures for Future All-Optical Data Routers,” Journal

of Lightwave Technology, vol. 23, pp. 3321-3330, Oct. 2005.
[9] Y.K. Yeo, Z. Xu, D. Wang, J. Liu, Y. Wang and T. Cheng, “High-Speed

Optical Switch Fabrics with Large Port Count,” Optics Express, vol. 17,
no. 13, pp. 10990-10997, 2009.

[10] D. Pan and Y. Yang, “FIFO-Based Multicast Scheduling Algorithm
for Virtual Output Queued Packet Switches,” IEEE Transactions on

Computers, vol. 54, no. 10, pp. 1283- 1297, Oct. 2005.
[11] W.T. Chen, C.F. Huang, Y.L. Chang and W.Y. Hwang, “An Efficient

Cell-Scheduling Algorithm for Multicast ATM Switching Systems,”
IEEE/ACM Transactions on Networking, vol.8, no.4, pp. 517-525, 2000.

[12] H. Harai and M. Murata, “High-Speed Buffer Management for 40 Gb/s-
Based Photonic Packet Switches,” IEEE/ACM Transactions on Network-

ing, vol. 14, pp. 191-204, Feb. 2006.
[13] Q. Huang and W. D. Zhong, “An Optical Wavelength-Routed Multicast

Packet Switch Based on Multitimeslot Multiwavelength Conversion,”
IEEE Photonic Technology Letter, vol. 20, no. 18, pp. 1518-1520, 2008.

[14] L.G. Rau and D.J. Blumenthal, “160 Gb/s Variable Length Packet 10
Gb/s-Label All-Optical Label Switching with Wavelength Conversion and
Unicast/Multicast Operation,” Journal of Lightwave Technology, vol. 23,
pp. 211-218, Jan. 2005.

[15] K. Claffy, D. Andersen and P. Hick, “The CAIDA Anonymized 2010
Internet Traces,”
http://www.caida.org/data/passive/passive 2010 dataset.xml

[16] A. Kos, P. Homan and J. Bester “ Performance Evaluation of a
Synchronous Bulk Paket Switch Under Real Traffic Conditions” IEICE

Transactions on Communications, vol. E86-B, May 2003.
[17] M.A. Marsan, A. Bianco, P. Giaccone, E. Leonardi and F. Neri,

“Multicast Traffic in Input-Queued Switches: Optimal Scheduling and
Maximum Throughput,” IEEE/ACM Transactions on Networking, vol. 11,
no. 3, pp. 465-477, June 2003.

Proceedings of the 2011 23rd International Teletraffic Congress (ITC 2011) 181

