
Dispatching Problem with Fixed Size Jobs and

Processor Sharing Discipline

E. Hyytiä, A. Penttinen, S. Aalto and J. Virtamo

Aalto University, School of Electrical Engineering, Finland

email: firstname.lastname@tkk.fi

Abstract—We consider a distributed server system with m

servers operating under the processor sharing (PS) discipline.
A stream of fixed size tasks arrives to a dispatcher, which
assigns each task to one of the servers. We are interested in
minimizing the mean sojourn time, i.e., the mean response time.
To this end, we first analyze an M/D/1-PS queue in the MDP
framework. In particular, we derive a closed form expression
for the so-called size-aware relative value of state, which sums
up the deviation from the average rate at which sojourn times
are accumulated in the infinite time horizon. This result can
be applied in numerous situations. Here we give an example
in the context of dispatching problems by deriving efficient and
robust state-dependent dispatching policies for homogeneous and
heterogeneous server systems. The obtained policies are further
demonstrated by numerical examples.

Index Terms—dispatching problem, task assignment, M/D/1,
processor sharing, sojourn times, MDP

I. INTRODUCTION

Dispatching problems arise in many contexts such as man-

ufacturing sites, web server farms, and other parallel server

systems. Typically one is interested in minimizing the mean

sojourn time. Within each server, the first-come-first-served

(FCFS) discipline is perhaps the most common due to its

nature and ease of implementation. It has also been studied

extensively in the literature since the early work by Winston

[1], Ephremides et al. [2], and others. However, e.g., web

servers are better modelled as processor sharing (PS) queues,

where several clients are served at the same time [3]. The

PS queues [4] have a very convenient insensitivity result,

i.e., the mean sojourn time depends only on the mean job

size, facilitating, e.g., flow level analysis in data networks.

Unfortunately, transient analysis with respect to the expected

sojourn times is difficult, see, e.g., [3], [5], [6], [7].

The optimal dispatching decision with respect to sojourn

time depends on the available information. Often the number

of tasks per server is assumed to be known, cf., e.g., JSQ.

In contrast, in [8], [9] and [10], FCFS discipline is assumed

and that the dispatching policy is aware of the size of the

arriving job, but not about the state of the queues. In this

setting, dispatching policy can be based on job size intervals

(e.g., short jobs to one queue, and the rest to another).

In this paper, we consider a dispatching problem with fixed

size jobs (per server) and processor sharing. The dispatcher is

also aware of the states of each queue, i.e., the tasks and their

remaining workloads. Such a system is illustrated in Fig. 1,

and serves as an abstract model, e.g., for a file servers in a

distributed content delivery network. File servers may have

different link capacities, and the objective is to utilize them

in an optimal manner so as to minimize the mean transfer

time. Additionally, job dispatching in a distributed computing

system with multitasking operating systems can be seen as a

dispatching problem with processor sharing discipline.

First we study a single M/D/1-PS queue in isolation and

derive an important result giving a relative value of state,

which essentially characterizes the value of queue state with

respect to the expected sojourn times in infinite time horizon.

Then we apply these results to some example dispatching

problems, and demonstrate how one can determine efficient

and robust state-dependent dispatching policies in a straight-

forward fashion in Markov decision process (MDP) frame-

work. In particular, starting from an arbitrary state-independent

policy, carrying out the first policy iteration (FPI) step yields

an improved state-dependent policy. The knowledge of the

relative values is a prerequisite to this end. For example, the

so-called least-work-left policy, which chooses the queue with

the least amount of unfinished work, turns out to perform well

in the example cases. However, even better performance is

obtained by an FPI based policy.

Similar approach has been previously used by Krishnan in

the context of routing calls in a telephone network [11] so

as to minimize the blocking probability, and in the context

of a dispatching problem for parallel M/M/s-FCFS servers

[12] so as to minimize the mean sojourn time. With respect

to the mean sojourn time, the traditional M/M/1-FCFS queue

has been also analyzed in [13]. Recently, FCFS and also last-

come-first-served (LCFS), shortest-processing-time (SPT) and

shortest-remaining-processing-time (SRPT) disciplines with

arbitrary service time distribution were analyzed in [14]. The

join-the-shortest (JSQ) queue with processor sharing discipline

has been considered by Gupta et al. in [3], but as mentioned,

transient analysis of a general M/G/1-PS queue is difficult,

and therefore, similarly as in [7], we also limit ourselves to

consider the M/D/1-PS queue.

The rest of this paper is organized as follows. In Section II,

we analyze a single M/D/1-PS queue, and derive a closed form

expression for the so-called size-aware relative value of state

with respect to the sojourn time. In Section III, the theoretical

results are applied to the dispatching problem within the MDP

framework. Section IV contains the conclusions.

190978-0-9836283-0-9 c© 2011 ITC

This paper was peer reviewed by subject matter experts for publication in the Proceedings of ITC 2011

α
λ

Dispatcher

PS−queues

Fig. 1. Dispatching system with processor sharing (PS) queues.

II. ANALYSIS OF AN M/D/1-PS QUEUE

In this section, we analyze a single M/D/1-PS queue with

respect to the sojourn time. The optimization objective is to

minimize the mean sojourn time E[T]. According to Little’s

result, E[N] = λ E[T], and thus defining the cost rate as the

number of tasks in the system, N , gives us an equivalent cost

minimization problem.

Let z = (Δ1; ..; Δn) denote the state of an M/D/1-PS

queue, where Δ1 ≥ Δ2 ≥ . . . ≥ Δn denote the remaining

workloads of the n tasks (measured in time) in the order of

arrival times (task n being the oldest). Our aim is to quantify

the difference in the expected cumulative sojourn times in

infinite time horizon between two states. In particular, we are

interested in to find out the so-called relative values of states,

denoted by vz, which are defined as the expected difference

in infinite time horizon between a system in a given state z,

and a system initially in equilibrium,

vz := lim
t→∞

E[Vz(t) − r · t],
where r denotes the mean cost rate and random variable Vz(t)
the cumulative costs (sojourn time) during (0, t) when system

is initially in state z. In our case, Vz(t) increases at rate Nz(t)
and the mean cost rate corresponds to the mean occupation,

r = E[N]. In a stable system, vz is finite and well-defined, and

vz1
− vz2

characterizes the expected difference in the future

costs (in sojourn time) between two initial states z1 and z2.

Let λ denote the Poissonian arrival rate and d the constant

job size, so that for all states z = (Δ1; ..; Δn) it holds

that Δi ≤ d ∀ i. Moreover, ρ = λ d is the offered load,

ρ < 1, and uz the total remaining workload, uz =
∑n

i=1 Δi

measured in time. The following elementary relation holds for

the difference in relative values between state z and an empty

system:

Proposition 2.1 (M/D/1-PS): The size-aware relative value

of state z with respect to the sojourn time in an M/D/1 queue

with a processor sharing (PS) discipline is given by

v(Δ1;..;Δn) − v0 =
λ

1 − ρ
u2
z
− uz + 2

n∑

i=1

i Δi. (1)

where v0 denotes the relative value of an empty system.

Proof: First, consider an arbitrary state z = (Δ1; ..; Δn)
and assume that no new tasks arrive during their service time

of uz. By definition, the n tasks are in decreasing order, Δ1 ≥
Δ2 ≥ . . . ≥ Δn, and the cumulative sojourn time accrued

during time (0, uz) is given by

τz = Δn · n2 + (Δn−1 − Δn) · (n − 1)2 + . . . + (Δ1 − Δ2),

uzInitial state :z

d

Y

virtual busy periods

Initially empty system:

Fig. 2. Difference in the accrued sojourn times between System 1 initially
at state z, and System 2 initially empty.

which gives

τz =
n∑

i=1

(2i − 1)Δi. (2)

Second, with constant service times, an arriving job has more

remaining workload than those already in the system, and thus

the sojourn time of new arrivals depends only on the total

workload in the queue upon an arrival. Consider next a new

arrival at time t. A direct application of (2) gives that the total

sojourn time already scheduled to be incurred increases by an

amount of

sz = 2uz + d, (3)

where uz denotes the remaining workload just before an arrival

in state z. Consequently, one can say that each arrival has an

immediate cost of 2 uz + d, independently of what type of

tasks the total workload uz consists of, which is somewhat

unexpected in the context of PS queues. For comparison, with

FCFS the immediate cost is uz + d.

Then we refer to Fig. 2, which illustrates the difference in

the accrued sojourn times between System 1 starting from state

z and System 2 initially empty. For each arrival realization,

both systems behave identically once System 1 becomes idle

and thus it is sufficient to consider the remaining busy period

of System 1. The mean number of mini busy periods (shaded

areas) is equal to λ uz. During each busy period, on average

1/(1 − ρ) tasks are served (general result for M/G/1 queues

[15]). Each mini busy period is also stochastically independent

and identical with respect to the total additional workload

(shaded areas). Moreover, the remaining workload Yi upon

a start of mini busy period i is uniformly and independently

distributed on (0, uz), Yi ∼ U(0, uz), (a property of a Poisson

process), and thus for the mean we have E[Yi] = uz/2. Finally,

(3) means that the difference in costs per arriving job during

each mini busy period is two times the offset Yi, i.e., on

average 2 · uz/2 = uz. Therefore,

vz − v0 =
n∑

i=1

(2i − 1)Δi + λuz · 1

1 − ρ
· uz

=
λ

1 − ρ
u2
z
− uz + 2

n∑

i=1

i Δi.

Proceedings of the 2011 23rd International Teletraffic Congress (ITC 2011) 191

Corollary 2.2 (Cost of a new task): The mean cost due to

accepting a new task at state z is given by

cz = v(d;Δ1;..;Δn) − v(Δ1;..;Δn) =
2 uz + d

1 − ρ
. (4)

The above result is surprisingly compact and again indepen-

dent of the underlying constellation of remaining workloads

Δi apart from the total workload uz. The simplicity of the

result basically stems from the assumption of a constant

service time. We note that the known costs (i.e., assuming

that no further task arrives) are 2 uz + d, and the denominator

1− ρ “takes into account” the future arrivals. For an arbitrary

M/G/1-PS queue we have:

Lemma 2.3: The cost in terms of an additional sojourn time

an arriving task brings in to an M/G/1-PS queue is on average

E[S] =
E[X]

1 − ρ
. (5)

where E[X] denotes the mean job size and ρ = λ E[X] is the

offered load.

A proof follows trivially from noting that E[S] = E[T], i.e.,

the mean sojourn time. For an M/D/1-PS, (3) gives E[S] =
2 E[U] + d, which, as a cross-check, can be shown to satisfy

(5) with aid of Pollaczek-Khinchine M/G/1 formula (see, e.g.,

[15], [16]), which gives E[U] = λ E[X2]/(2(1−ρ)). Whereas

the relative value comprises sojourn times of the existing and

future jobs, one may also be interested in the mean conditional

sojourn time of a given job. To this end, we refer to [6].

Finally, we note that the difference of the relative values in

an M/D/1-PS queue, given by (1), has a close resemblance to

that obtained for an M/G/1-FCFS queue: ([14], [13])

v(Δ1;..;Δn) − v0 =
λ

2(1 − ρ)
u2
z

+

n∑

i=1

i Δi.

The fact that in both systems the tasks depart in the same

order as they have arrived naturally contributes to this.

III. APPLICATION TO DISPATCHING PROBLEM

In general, the knowledge of the relative values enables the

first policy iteration (FPI) step of Markov decision processes

[17], [18], [19]. The basic idea is to think that one deviates

once from the default action of the basic policy α, and then

returns back to α for all later decisions. If the sum of an

immediate cost and the relative value of the resulting state is

less than the corresponding quantity with the default action

(note that relative values describe the expected future costs),

then, on average, the alternative action yields a lower cost

and thus improves the policy. Therefore, among the possible

actions, the one with the smallest expected future costs is

chosen. Repeating the same procedure for all states defines

a new improved policy α′, that is often close to the optimal

policy in practice. Indeed, in Section III-B we see how FPI

yields an optimal dispatching policy for identical servers,

while in [14] it is shown that for M/G/1-FCFS and M/G/1-

LCFS queues carrying out the FPI step on the service order

yields the optimal SRPT service order.

A. Policy Iteration with Dispatching Problem

In a dispatching problem, a stream of tasks arrive at a

dispatcher, which then forwards them to one of the servers.

Let m denote the number of servers, and z the system’s state,

z = (z1; ..; zm) where zi = (Δi,1; ..; Δi,ni
), so that the

remaining workload in queue i is ui(z) =
∑ni

j=1 Δi,j .

When minimizing the mean sojourn time, there are no

immediate costs, but instead, the costs are accrued at the state

specific rates equal to the number of tasks in the system.

Consequently, for an arrival at state z, the policy iteration step

reduces to

α′(z) = argmin
z
′∈A(z)

(vz
′ − vz) ,

where A(z) denotes the set of possible destination states from

state z having one additional fixed size task in one of the

m queues. Note that vz on the right-hand side is a common

constant and thus could have been omitted. We have written

it explicitly here, so that the quantity vz
′ − vz corresponds to

the expected increase in the cumulative sojourn time.

B. Dispatching problem with homogeneous servers

Consider first a traditional dispatching system, where a

single stream of tasks is served by a server farm consisting of

m homogeneous servers each with own queue. The constant

size jobs arrive according to a Poisson process with rate λ, so

that the offered load ρ = λ d.

A random basic policy, known as Bernoulli splitting [2],

selects the server independently for each arriving task using a

given probability distribution (p1, . . . , pm). With such a policy,

the arrival process to each server remains Poissonian, and

each server behaves according to an M/D/1-PS queue with

λi = pi ·λ. The random policy is state-independent, by which

we mean that the dispatching decision does not depend on the

state of the queues or past decisions. In this case, as the arrival

process to each queue is a Poisson process, the queues can be

analyzed independently in isolation, (4) gives the relative value

for each queue, and consequently, also for the whole system

(sum of m independent components),

vz =
m∑

i=1

vzi
.

Hence, the first policy iteration step can be carried out for

an arbitrary Bernoulli splitting yielding a new improved state-

dependent policy:

α′(z) = argmin
i=1,..,m

(
v
z
′

i
− vzi

)
,

where z
′
i denotes the new state of queue i if the given task is

assigned to it, z
′
i = (d; Δi,1; ..; Δi,ni

). The quantity v
z
′

i
− vzi

is the expected increase in the cumulative sojourn time accrued

in queue i, while the other queues remain unchanged.

Definition 3.1 (RND-U): The random policy RND-U is

state-independent and assigns tasks uniformly in random to

m queues, pi = 1/m, ∀ i.

192 Proceedings of the 2011 23rd International Teletraffic Congress (ITC 2011)

Definition 3.2 (Least-work-left): Applying the first policy

iteration step on the RND-U policy yields a so-called least-

work-left (LWL−) policy ([20], [3]),

αlwl−(z) = argmin
i

ui(z),

where ui(z) denotes the workload in queue i at state z.

That is, the FPI-U, i.e., LWL−, policy simply chooses the

queue with the smallest workload (backlog), which is obvi-

ously a rational but also the optimal decision with homoge-

neous servers.1 Moreover, by sample path arguments, it is easy

to show that for an initially empty system, the decisions that

LWL− and round-robin make are essentially the same. Note

that ties occur only when two or more queues are empty,

in case of which those decisions are equal. The superscript

”-” stands for a priori workload, i.e., the workload before

the new task enters a queue. Here it makes no difference if

one considers workloads before or after the arrival as the job

size is a common constant d for all servers. However, in a

heterogeneous system this is no longer the case.

C. Dispatching problem with heterogeneous servers

Consider next a dispatching system with m heterogeneous

PS-servers, so that di denotes the fixed service time if a task

is assigned to server i. That is, if x denotes a constant job

size and ci the rate of server i, then di = x/ci, ∀ i. For a

random policy with server selection probability distribution

(p1, . . . , pm), the stability conditions are

pi λ di < 1, ∀ i.

For m = 2 servers, the above reduces to

1 − 1

λ d2
< p1 <

1

λ d1
.

Similarly as with the homogeneous servers, with state-

independent random policies, the arrival process to each queue

remains as a Poisson process and (4) can be applied.

One rational and robust random policy is to assign jobs with

such probabilities that the offered load is uniformly distributed

among the servers:

Definition 3.3 (RND-ρ): The random with uniform load

policy, RND-ρ, balances the load, ρi = ρj ∀ i, j, by assigning

tasks in random using probabilities,

pj =
1/dj∑m
i=1 1/di

.

When di = dj , then pj = 1/m and the RND-ρ policy reduces

to the RND-U policy. For example, for m = 2 we have

p1 =
d2

d1 + d2
, and p2 =

d1

d1 + d2
.

1Costs due to an arrival according to (3) hold with an arbitrary arrival
process. With identical servers, d is a common constant and a dispatching
policy α that is optimal for FCFS, is optimal also for PS, and vice versa.
Moreover, LWL− with FCFS queues is equivalent to an M/G/m multi-server
system with a central FCFS queue [9], from which the optimality of LWL−

with either FCFS or PS queues for fixed size jobs trivially follows.

d1�1

d2�2

d1�1

d2�4

0.0 0.2 0.4 0.6 0.8 1.0
0.6

0.7

0.8

0.9

1.0

Arrival rate Λ

P
ro

ba
bi

lit
y

p 1

Optimal random policy with two servers

Fig. 3. Optimal random policy with two servers when i) d1 = 1 and d2 = 2,
and ii) d1 = 1 and d2 = 4. The y-axis corresponds to probability of choosing
the faster server 1. When λ is small all tasks are assigned to server 1.

RND-ρ policy can sustain the maximal arrival rate,

λmax =
m∑

i=1

1/di.

One can also consider random policies having unequal

loads. Especially when ρ is clearly less than the capacity of

the system, it makes sense to favour the faster server(s). In

particular, a straightforward application of the mean sojourn

time result of M/G/1-PS queues [15],

E[T] =
E[X]

1 − ρ
, (6)

allows one to determine the optimal random policy:

Definition 3.4 (RND-opt): The optimal random policy, re-

ferred to as RND-opt, is defined by a probability distribution

(p1, . . . , pm) that minimizes the mean sojourn time

E[T] =

m∑

i=1

pi · di

1 − pi · λ di

.

For m = 2 servers, with aid of (6), minimizing the sum

p · E[T1] + (1 − p) · E[T2] gives for the p1 of the optimal

random policy RND-opt,

p1 = max{0, min{1, p∗}}, p∗ =

√
d2 −

√
d1 + λ

√
d1d2

λ
√

d1

√
d2(

√
d1 +

√
d2)

.

Fig. 3 illustrates the optimal random routing in two example

cases with m = 2 servers: i) (d1, d2) = (1, 2), and ii)

(d1, d2) = (1, 4). In both cases, when arrival rate λ is small,

the secondary slower server is not used at all, and the faster

the secondary server is, the sooner it is taken into use.

As mentioned, with state-independent random policies, the

resulting arrival process to each queue remains Poissonian, and

thus (4) also holds. Applying the FPI step then immediately

gives a new state-dependent policy:

Definition 3.5 (FPI-ρ): The first policy iteration step on

RND-ρ basic policy yields,

αfpi-ρ(z) = argmin
i

(ui(z) + di/2) ,

which we refer to as the FPI-ρ policy.

Proceedings of the 2011 23rd International Teletraffic Congress (ITC 2011) 193

LW
L
�

FPI�
Ρ LW

L
�

Choose
Queue 2

Choose
Queue 1

0 1 2 3 4
0

1

2

3

4

u1� t �

u
2
�
t�

State�dependent policies: d1�1 and d2�2

Fig. 4. The state-dependent policies LWL−, LWL+, and FPI-ρ are of the
switch-over type, i.e., they are defined by a switch-over curve in (u1, u2)-
plane (2 servers), which in this case is simply a straight line.

Obviously, when di = dj , the FPI-ρ policy reduces to the

LWL− policy, as RND-ρ reduces to RND-U. With heteroge-

neous servers, ties are resolved in favour of a faster server (cf.

an empty system).

In the heterogeneous case, one can also define an LWL

policy by considering a posteriori workloads:

Definition 3.6 (LWL+): The LWL+ (a posteriori) policy

assigns a new task to the server which workload, including

the new task, is the smallest:

αlwl+(z) = argmin
i

(ui(z) + di) .

The LWL+ (a posteriori) policy is different from FPI-ρ, as

the FPI-ρ policy has a half smaller weight on parameter di.

Similarly, LWL− (a priori) can be seen as a weighted sum

with a zero weight on parameter di. Thus, the FPI-ρ policy is

a kind of compromise between the two LWL policies.

It is also worth noting that RND-U, RND-ρ, FPI-ρ, and

the two LWL policies are independent of the arrival rate λ,

which is itself a desired property improving the robustness.

Had we chosen to use, e.g., RND-opt or RND-U as a basis

for the first policy iteration in a heterogeneous case, then the

resulting FPI policy would also depend on the arrival rate,

making it somewhat less practical (the value of λ must be

typically estimated, and it can also vary as a function of

time). Moreover, RND-U has a limited capacity region in case

of heterogeneous servers, which makes it a weak choice for

the FPI. Also the optimal state-independent policy RND-opt

depends on the arrival rate λ.

The state-dependent (but arrival rate independent) policies

LWL−, LWL+ and FPI-ρ, are of the switch-over type. Fig. 4

illustrates the corresponding decision criterion in (u1, u2)-
plane for the case when d1 = 1 and d2 = 2. Both axes

represent the remaining workload in the corresponding queue

measured in time. With known job sizes and state-dependent

policy, one effectively selects a certain subspace of the state

space, where the system will operate. For example, with the

FPI-ρ policy, the Fig. 4 system’s state-space reduces to the area

bounded by two straight lines, u2 ≤ u1 + 2 and u2 ≥ u1 − 1.

D. Numerical examples

Next we illustrate the derived dispatching policies by con-

sidering homogeneous and heterogeneous two server systems.

a) Homogeneous case: Let us start with the most ele-

mentary example and consider a system with two identical

servers with d = 1. In this case RND-ρ and RND-opt reduce

to RND-U. Similarly, LWL and FPI-U are equivalent. Fig. 5

illustrates the resulting performance with i) the optimal state-

indepent policy RND-U, ii) the optimal state-dependent policy

LWL choosing the shorter queue (in terms of processing

time), and iii) an equivalent single server system with the PS

discipline and job size of d = 0.5. Left figure depicts the

absolute performance in terms of the mean sojourn time, and

the right figure, the relative performance against the optimal

state-dependent policy LWL. We can observe, that LWL works

fairly well, and, e.g., at the limit ρ→1, its performance is sim-

ilar to that of the equivalent single server system. Moreover,

the gain from having the queue state information available

increases “linearly” as a function of offered load ρ, and the

mean sojourn time with the state-independent policy is about

2 times higher than with the optimal policy.

b) Moderately asymmetric case: Numerical results with

six policies in a two server system with d1 = 1 and d2 = 2
are illustrated in Fig. 6. The two random policies (RND-ρ and

RND-opt) are stateless and thus preserve the Poisson nature in

the arrival process. The random policy RND-U is a rather poor

choice with heterogeneous servers. In this case, it becomes

unstable as λ → 1 and the queue length in server 2 explodes,

and thus we have omitted it. The other two random policies

have the maximal stability region, λmax = 1.5, which equals

ρ = 1 in the figure. At the limit λ → λmax, RND-ρ and

RND-opt also become identical.

The two LWL policies and the two FPI policies are state-

dependent policies, and assume that the information regarding

the workload in each queue is available. The LWL+ (a

posteriori) policy is somewhat interestingly worse than the

(a priori) variant. However, the best performance is obtained

by the FPI-ρ policy, which offers a slightly better performance

than LWL− (a priori).

We conducted also numerical experiments with the policy

family P(β), defined by cost functions of form

ci(z) = ui(z) + β · di,

where β is a free policy parameter, 0 ≤ β ≤ 1. That is, LWL−

corresponds to β = 0, FPI-ρ to β = 1/2, and LWL+ to β = 1.

It turns out that β = 1/2, i.e., the FPI-ρ policy, is practically

the optimal choice in this case.

c) Strongly asymmetric case: Fig. 7 shows the results

in otherwise same setting except that here d2 = 4, i.e.,

the secondary server is four times slower than the primary.

Here the situation gets clearly more interesting. Both LWL

policies are clearly suboptimal with certain values of λ: with

small values of λ, LWL− is weak, and with higher values

the performance of LWL+ deteriorates. The FPI-ρ policy,

instead, is capable of making very good dispatching decisions

independently of the arrival rate λ.

194 Proceedings of the 2011 23rd International Teletraffic Congress (ITC 2011)

 1

 2

 3

 4

 5

 6

 7

 8

 0 0.2 0.4 0.6 0.8 1

M
ea

n
so

jo
ur

n
tim

e
E

[T
]

Offered load ρ

Dispatching system with 2 servers: d1=1 and d2=1

RND-U
LWL/FPI-U

single server

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 0.2 0.4 0.6 0.8 1

R
el

at
iv

e
pe

rf
or

m
an

ce
 E

[T
]/E

[T
F

P
I]

Offered load ρ

Dispatching system with 2 servers: d1=1 and d2=1

optim
al state-independent: R

ND-U

optimal state-dependent: LWL = FPI-U = round-robin

single server

RND-U
LWL/FPI

single server

Fig. 5. On left, the resulting mean sojourn time with two homogeneous servers. The optimal state-independent policy RND-U splits the arrival stream evenly
between the 2 servers, while the optimal state-dependent policy, LWL− = LWL+ = FPI-U, chooses the queue with a smaller workload. The performance of
an equivalent single server system is also illustrated (the lowest gray curve). On right, the relative performance against the LWL policy is illustrated.

 1

 2

 3

 4

 5

 6

 7

 8

 0 0.2 0.4 0.6 0.8 1

M
ea

n
so

jo
ur

n
tim

e
E

[T
]

Offered load ρ

Dispatching system with 2 servers: d1=1 and d2=2

RND-ρ
RND-opt

LWL+

LWL-

FPI-ρ
single server

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 0.2 0.4 0.6 0.8 1

R
el

at
iv

e
pe

rf
or

m
an

ce
 E

[T
]/E

[T
F

P
I]

Offered load ρ

Dispatching system with 2 servers: d1=1 and d2=2

RND-ρ

RND-opt

LWL+

LWL-

FPI/optimal
single server

RND-ρ
RND-opt

LWL+

LWL-

FPI-ρ
single server

Fig. 6. On left, the resulting mean sojourn time with five policies (from worst to best): random RND-ρ, (i.e., equal load) random RND-opt (i.e., optimal
split), LWL+ (a posteriori), LWL− (a priori), and FPI-ρ based on RND-ρ. The lowest gray curve corresponds to an equivalent single server system with
capacity c = 1.5. On right, the relative performance against the FPI-ρ policy.

 1

 2

 3

 4

 5

 6

 7

 8

 0 0.2 0.4 0.6 0.8 1

M
ea

n
so

jo
ur

n
tim

e
E

[T
]

Offered load ρ

Dispatching system with 2 servers: d1=1 and d2=4

RND-ρ
RND-opt

LWL+

LWL-

FPI-ρ
single server

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 0.2 0.4 0.6 0.8 1

R
el

at
iv

e
pe

rf
or

m
an

ce
 E

[T
]/E

[T
F

P
I]

Offered load ρ

Dispatching system with 2 servers: d1=1 and d2=4

RND-ρ

RND-opt

LWL- LWL+

optimal in P(β)
single

RND-ρ
RND-opt

LWL+

LWL-

FPI-ρ
single server

Fig. 7. On left, the resulting mean sojourn time with the five dispatching policies in relatively asymmetric case with d1 = 1 and d2 = 4. The lowest
gray curve corresponds to an equivalent single server system with capacity c = 1.25. On right, the relative performance against the FPI-ρ policy. The gray
area below reference level y = 1 corresponds to the performance of an optimal policy from the policy family P(β) defined by the cost functions of form
ui(z) + β · di. For each value of ρ, the optimal value for β has been determined.

Proceedings of the 2011 23rd International Teletraffic Congress (ITC 2011) 195

E�T��1.1

E�T��1.25

E�T��1.5

E�T��2

E�T��3

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Policy parameter Β

A
rr

iv
al

ra
te
Λ

Equivalue contours of the mean sojourn time

Two servers
d1�1, d2�4

O
ptim

al region

1.01

1.02

1.05

1.1

1.15

1.2
1.25

1.01

1.02

1.05

1.1

1.15

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Policy parameter Β

A
rr

iv
al

ra
te
Λ

Equivalue contours of the relative mean sojourn time

Fig. 8. On left, the resulting mean sojourn time E[T (λ, β)] for the policy family P(β) in a two server dispatching system with service times d1 = 1 and
d2 = 4. On x-axis is the policy parameter β, and on y-axis the arrival rate λ. The figures on the middle and right illustrate the relative performance defined
by E[T (λ, β)]/ minβ′ E[T (λ, β′)]. The “valley” corresponds to the optimal region where the mean sojourn time is within 1% from the minimum at the
given rate λ. We can observe that with FPI-ρ, corresponding to β = 0.5, the performance remains within 5% from the optimal (within this policy family).

λ2

λ1

α

PS−queues

Dispatcher
λ

Fig. 9. Dispatching system with processor sharing (PS) queues, where each
server also receives a dedicated stream of jobs.

Optimizing within the policy family P(β) yields a marginal

improvement in this case. The gray area under the reference

level y = 1 in Fig. 7 (right) corresponds to the lowest mean

sojourn time achievable with an optimal choice of β = β(ρ).
The highest gain is obtained about ρ = 0.7, where the optimal

policy from P(β) is only about 5% better than the FPI-ρ.

Hence, also in this case FPI-ρ is a very good choice in practice.

Fig. 8 illustrates the situation in more detail with the policy

family P(β). On x-axis is the policy parameter β, and y-

axis corresponds to the arrival rate λ. Left figure depicts the

equivalue contours of the mean sojourn time E[T (λ, β)], and

one can observe how β affects to the performance under

different loads λ. The middle and right figures depict the

relative mean sojourn time defined as

E[T (λ, β)]

minβ′ E[T (λ, β′)]
,

which thus describes how far a given policy parameter β is

from the optimal value (within this policy family) for each

arrival rate λ. One can observe that with β = 0.5 (i.e., FPI-ρ)

the performance remains constantly rather close to the optimal,

as expected. The maximum deviation is about 5% when the

arrival rate is relatively high, about λ = 0.9. However, e.g.,

β = 0.3 does give a slightly better performance in this case,

given that one is inclined to carry out the numerical policy

optimization for each case individually.

E. Dedicated streams

The systems considered so far have been traditional dis-

patching systems, where all tasks arrive to a central node,

which then forwards each task, one at a time, to a suitable

server. However, the chosen approach lends itself directly to

more general scenarios. One such is illustrated in Fig. 9, where

each node receives a dedicated stream of tasks in addition to

those that a dispatcher sends to the queue. In this case, we can

assume that the dispatcher is aware of the mean arrival rates

of the node specific streams.

As the sum of Poisson processes is also a Poisson process, it

is straightforward to see that such an extension to the system

changes essentially nothing. The FPI approach can still be

applied to an arbitrary state-independent policy, yielding a

state-dependent policy that takes into account i) server rates

ci and ii) all arrival rates, λ and the λi. In particular, when

the server specific arrivals dominate, i.e., when λ � mini λi,

the FPI based policy becomes the optimal dispatching policy.

It is also worth noting that in this setting, even with identical

servers ci = cj , LWL− is not generally the optimal policy as

it ignores the dedicated streams λi.

IV. CONCLUSIONS

In this paper, we have studied the processor sharing (PS)

discipline, which is an important concept both in practice and

in theory. Our motivation are various dispatching systems,

where arriving tasks are assigned to one of the available

servers. We have assumed that each server processes the given

tasks in parallel, i.e., the PS discipline. In order to make a good

dispatching decision, one has to take into account also the

future arrivals. We have approached this problem in the MDP

framework, which provides a systematic methodology to find

robust dispatching policies. In particular, we have first derived

an exact formula for the size-aware relative value with respect

to the sojourn time for an M/D/1-PS queue. The knowledge

of the relative values allows one to carry out the first policy

iteration (FPI) step for an arbitrary state-independent policy.

196 Proceedings of the 2011 23rd International Teletraffic Congress (ITC 2011)

As a result, an efficient and robust state-dependent policies can

be obtained. In the example cases, the so-called FPI-ρ policy,

which is also insensitive to the arrival rate, outperformed its

heuristic competitors. A numerical optimization within the

policy family P(β), in which also the FPI-ρ and the heuristic

least-work-left (LWL) policies belong to, yielded only a small

improvement, if any, over the FPI-ρ policy, as expected.

A transient analysis of a PS queue is generally a difficult

task due to the numerous dependencies (e.g., each arriving

tasks affects the sojourn time of the current jobs, and vice

versa). However, in an M/D/1-PS queue, the tasks depart in

the same order as they arrived, which greatly facilitates the

analysis. Due to the nature of PS, one can expect that the

obtained results serve as a reasonable approximation also for a

general case of M/G/1-PS queue when the job sizes do not vary

much. The exact analysis of the relative values with respect to

sojourn time in an M/G/1-PS queue is left as a future work.

REFERENCES

[1] W. Winston, “Optimality of the shortest line discipline,” Journal of

Applied Probability, vol. 14, pp. 181–189, 1977.
[2] A. Ephremides, P. Varaiya, and J. Walrand, “A simple dynamic routing

problem,” IEEE Transactions on Automatic Control, vol. 25, no. 4, pp.
690–693, Aug. 1980.

[3] V. Gupta, M. Harchol-Balter, K. Sigman, and W. Whitt, “Analysis
of join-the-shortest-queue routing for web server farms,” Performance

Evaluation, vol. 64, no. 9-12, pp. 1062–1081, Oct. 2007.
[4] L. Kleinrock, “Time-shared systems: a theoretical treatment,” J. ACM,

vol. 14, pp. 242–261, Apr. 1967.
[5] E. Altman, U. Ayesta, and B. J. Prabhu, “Load balancing in processor

sharing systems,” in The Second International Workshop on Game

Theory in Communication Networks (GameComm), Athens, Greece, Oct.
2008.

[6] K. M. Rege and B. Sengupta, “A decomposition theorem and related re-
sults for the discriminatory processor sharing queue,” Queueing Systems,
vol. 18, pp. 333–351, 1994.

[7] R. Egorova, B. Zwart, and O. Boxma, “Sojourn time tails in the M/D/1
processor sharing queue,” Probab. Eng. Inf. Sci., vol. 20, pp. 429–446,
Jul. 2006.

[8] M. E. Crovella, M. Harchol-Balter, and C. D. Murta, “Task assignment
in a distributed system: Improving performance by unbalancing load,”
in Proceedings of SIGMETRICS ’98, Jun. 1998, pp. 268–269.

[9] M. Harchol-Balter, M. E. Crovella, and C. D. Murta, “On choosing a task
assignment policy for a distributed server system,” Journal of Parallel

and Distributed Computing, vol. 59, pp. 204–228, 1999.
[10] H. Feng, V. Misra, and D. Rubenstein, “Optimal state-free, size-aware

dispatching for heterogeneous M/G/-type systems,” Performance Eval-

uation, vol. 62, no. 1-4, pp. 475–492, 2005.
[11] K. R. Krishnan, “Markov decision algorithms for dynamic routing,”

IEEE Communications Magazine, pp. 66–69, Oct. 1990.
[12] ——, “Joining the right queue: a state-dependent decision rule,” IEEE

Transactions on Automatic Control, vol. 35, no. 1, pp. 104–108, Jan.
1990.

[13] S. Aalto and J. Virtamo, “Basic packet routing problem,” in The

thirteenth Nordic teletraffic seminar NTS-13, Trondheim, Norway, Aug.
1996, pp. 85–97.

[14] E. Hyytiä, A. Penttinen, and S. Aalto, “Size- and state-aware dispatching
problem with queue-specific job sizes,” Dec. 2010, submitted.

[15] L. Kleinrock, Queueing Systems, Volume I: Theory. Wiley Interscience,
1975.

[16] S. M. Ross, Introduction to Probability Models, 7th ed. Academic
Press, 2000.

[17] R. Bellman, Dynamic programming. Princeton University Press, 1957.
[18] R. A. Howard, Dynamic Probabilistic Systems, Volume II: Semi-Markov

and Decision Processes. Wiley Interscience, 1971.
[19] S. M. Ross, Applied Probability Models with Optimization Applications.

Holden-Day Inc., 1970.
[20] A. Sharifnia, “Instability of the join-the-shortest-queue and FCFS poli-

cies in queuing systems and their stabilization,” Operations Research,
vol. 45, no. 2, pp. 309–314, 1997.

Proceedings of the 2011 23rd International Teletraffic Congress (ITC 2011) 197

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

