
1

Paul Congdon
Dept. of Computer Science

University of California, Davis
Davis, California, USA

ptcongdon@ucdavis.edu

Anna Fischer
HP Labs

Hewlett-Packard Company
Bristol, UK

anna.fischer@hp.com

Prasant Mohapatra
Dept. of Computer Science

University of California, Davis
Davis, California, USA
prasant@ucdavis.edu

Abstract — When two virtual machines, residing on the same
physical server, communicate with one another, their network
traffic is not exposed to the external physical switch. For basic
connectivity this is not a problem, but if the network
administrator is attempting to enforce policy within the network,
complications arise. Hypervisor-based virtual Ethernet switches
create a change in packet flow that introduces manageability and
security concerns. They also increase end-point complexity and
reduce I/O performance. To obtain higher performance, the
hypervisor-based software virtual switch is moving into
hardware on the network interface controller (NIC). Resource
and cost constraints on the NIC make it difficult for these
NIC/switch hybrids to keep pace with the ever growing
capabilities of the fully-featured, adjacent Ethernet switch. We
propose a Virtual Ethernet Port Aggregator (VEPA) as a simple,
alternative mode of operation for the embedded switch within the
end-station in order to enable access to the rich set of features
found in the adjacent switch. A VEPA makes it possible to
simplify the management of complex network functions and limit
the cost of NIC hardware while still obtaining the visibility and
control of network traffic desired by network administrators. To
support a VEPA the adjacent switch only requires the addition of
a simple ‘hairpin’ mode of forwarding. We developed a software
prototype of a VEPA and the adjacent ‘hairpin’ switch that only
required a few lines of code within the Linux bridge module.
The prototype demonstrates the simplicity and elegance of the
solution. Performance measurements of the prototype show that
VEPA is 12% more efficient than the traditional software virtual
switch in environments with features enabled.

Keywords-component; Virtualization, Ethernet, Packet
Switching, Network Interface Controller, Data Center, Ethernet
Bridging

I. INTRODUCTION

The complexity of data center Ethernet networking is
growing due to evolving standards, new proprietary features,
and the adoption of hypervisors with embedded switches.
Since the original Virtual LAN standard was completed in
1998, 19 new specifications have been completed and 16 more
are under development with new projects being proposed each
year [1]. Beyond IEEE 802.1 specifications, there are also
many IETF and vendor proprietary features that are included in
a run-of-the-mill Ethernet switch.

With the advent of virtualization technology, the number of
Ethernet switches has exploded and the deployment scenario
has changed. The switch has moved into the end-station either
in the form of a software embedded virtual switch [2] or as a
low-cost hardware component on the network interface
controller (NIC) [3]. A key difficulty with this approach is that

traditional data center network tools lose visibility and control
of network traffic as certain packet flows are no longer exposed
to the traditional network infrastructure devices. Consequently,
manageability and security issues arise.

The need for performance is driving a change to the switch
embedded in the hypervisor. While current software-based
Ethernet switches in hypervisor environments such as Xen,
KVM, VMWare and Microsoft Hyper-V suffer from poor
performance seen in virtual systems I/O [4, 5], direct I/O
approaches [6-9] allow virtual machines to obtain efficient
access to the hardware by bypassing the hypervisor. However,
this direct path to hardware also bypasses the ability to
implement Ethernet switching and other features in software.
As a result, network interface controllers are faced with the
challenge of implementing the embedded switching and inline
features in a constrained and cost sensitive environment or
simply not providing them at all.

The latest generation of standardized virtualization-aware
PCI NICs (i.e. devices that conform to [10]) only incorporate a
limited L2 switching feature set and lack other features like
basic address learning, IGMP snooping, access control lists,
port access control or anomaly detection. While these features
are all possible to implement in software on the hypervisor
virtual switch, they compound the existing performance issues
and consume additional CPU cycles that were presumably
purchased to support applications and not network functions.
Meanwhile, all of the above features exist within the adjacent,
traditional Ethernet switches. Commodity switches from
Hewlett-Packard and Cisco Systems have ASIC
implementations of a rich set of wire-speed networking features
that are available to all ports of the device.

The current trend towards server virtualization introduces
further challenges for data center networks that impede security
and ease of administration. Administrators attempting to
secure the data center network experience different behavior
from the hypervisor-based switches. Certain packet flows are
no longer exposed to the physical adjacent network devices.
This results in a lack of visibility and control that introduces
manageability and security concerns for network tools.
Traditional network security tools lose the ability to, for
example, enforce admission control, detect virus propagation,
perform traffic monitoring and diagnosis, or obtain
measurements. While it is theoretically possible to extend
software embedded virtual switches to work with existing
network security tools by implementing more advanced
network policies, such an approach is costly and does not
provide ideal performance as we will show in later sections.
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Within the data center, the general management and
configuration of traditional Ethernet switches, as well as the
management of traditional servers and storage, is typically
performed by departmentalized IT staff with the appropriate
domain expertise. The advent of virtualization blurs
responsibility across departmental lines and brings additional
management complexity. For example, virtual switches are
often configured by the server administrator whereas the
external physical Ethernet switches are in the domain of the
network administrator. The two devices, however, are both
part of the same network infrastructure and must be configured
consistently to assure stable and reliable operation. Network
management tools depend upon consistent visibility and access
to all network infrastructure devices. The sheer number of
networking devices now needing to be managed expands
dramatically with virtualization, thus pushing the limits of
existing tools. As a consequence, vendors are developing
architectures and solutions to assist in the adoption of
increasingly interdependent roles for data center administrators
and their toolsets [10]. One approach is to unify the
management of virtual and physical machine traffic and regain
widened control over data center network communication by
exposing all packet flows to the external network and
simplifying the capabilities within the hypervisor itself.

This paper proposes a Virtual Ethernet Port Aggregator
(VEPA), a new device with a new method of forwarding
network traffic between the virtualized server and the adjacent
network switch. The new method of forwarding meets the low
cost objectives of NICs while providing access to a rich set of
networking features in the adjacent physical switch. A VEPA
simplifies forwarding within the end-station by diverting all
outbound traffic to the adjacent switch and thus allows for a
clear division of labor between network management tasks and
virtual machine management tasks. A VEPA also allows
administrators to choose between high performance
configurations involving local switching, but with a restricted
feature set, and feature rich configurations that coordinate
traffic flow with high-function external switches.

This paper builds the case for VEPA by offering the
following benefits over current solutions:

1. Improves virtualized network I/O performance and
eliminates the need for complex features in software
hypervisor virtual switches.

2. Allows NICs to maintain low cost circuitry by
leveraging advanced functions on the adjacent switch
such as TCAMs, packet processors and software
management subsystems.

3. Enables a consistent level of network policy
enforcement by routing all network traffic through the
adjacent switch with its more complete policy-
enforcement capabilities.

4. Provides visibility of inter-VM traffic to network
management tools designed for physical adjacent
switches.

5. Reduces the amount of network configuration required
by server administrators, and as a consequence,
reduces the complexity for the network administrator.

This paper is organized as follows; Section II describes the
details of VEPA operation. Section III describes a prototype
implementation. Section IV provides an evaluation of the
prototype implementation. Section V describes related work
and Section VI discusses possible future work. Section VII
provides a conclusion.

II. VEPA PROPOSAL

A Virtual Ethernet Port Aggregator (VEPA) is a capability
within a physical end-station that collaborates with an adjacent,
external, Ethernet switch to provide frame relay services
between multiple virtual machines (VMs) and the external
network. A VEPA collaborates by forwarding all VM-
originated frames to the adjacent switch for frame processing
and by steering and replicating frames received from the
adjacent switch to the appropriate VM destinations. A VEPA
takes advantage of a special ‘hairpin’ forwarding mode on the
adjacent switch to support communication between two virtual
end-stations within the same physical host. Fig. 1 shows the
components of a VEPA solution within a physical end-station.

The VEPA is connected to the adjacent switch by a single
uplink. While it is possible to connect multiple uplinks
between the VEPA and the adjacent switch, the links must be
bonded or aggregated together to create a topology including
only a single, direct, high-speed connection. That connection is
attached to a VEPA-enabled port on the adjacent switch which
supports the ability to forward frames in ‘hairpin’ mode (i.e.
allow forwarding back out the port a frame was received).
Clause 8.6.1 of Standard IEEE 802.1Q-2005 [11] states that
when a switch reception port is in the forwarding state, each
switch port in the forwarding state, other than the reception
port itself, is a potential transmission port. A VEPA requires
an exception to this rule in order to allow virtual machines on
the adjacent host to communicate with one another over the
single uplink. This exception distinguishes the port attached to
a VEPA uplink as a VEPA-enabled port which supports
forwarding in ‘hairpin’ mode.

The VEPA itself may be implemented in hardware or in
software on the physical end-station. Each virtual machine
instantiates a virtual NIC attached to a VEPA virtual station

Figure 1. VEPA Components
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interface (VSI). Virtual machines may have more than one
virtual NIC and they may be associated with different VLANs
as indicated by the shading in Fig. 1. In a hardware
implementation of a VEPA, the VSIs are actual I/O interfaces
within the physical machine, such as PCI virtual or physical
functions as defined by the PCI-SIG [8]. They may support all
of the standard features of a modern NIC including accelerators
such as TCP offload, iSCSI offload, receive side scaling,
interrupt coalescing, etc.

Each VEPA has an address table that holds the MAC
addresses of the virtual machines attached to the VSIs. The
table also holds entries for the broadcast address, specific
multicast addresses and information on how to forward frames
with unknown destination addresses. The table is used to
determine which VSIs should receive a copy of a frame
received on the uplink. Table I shows an example VEPA
address table for a configuration such as in Fig. 1 where there
are two VLANs and six MAC addresses associated with the six
VSIs directly connecting four virtual machines.

Each entry of the VEPA address table holds a destination
MAC address plus VLAN ID combination to be used as the
search key. The result of an address lookup is a ‘Copy To’
mask that indicates which VSIs are to receive a copy of the
frame received on the uplink.

The VEPA address table is populated through hypervisor
configuration. While it is possible for a VEPA to dynamically
learn addresses received on VSIs, it is not necessary because of
the unique deployment scenario within the physical end-station.
A critical distinction between a VEPA and a traditional,
adjacent, Ethernet switch is that the VEPA VSIs are connected
to virtual machines through a system I/O interface and, as a
result, have additional information about the virtual machines
themselves. The configuration of the virtual NIC by the guest
operating system can be communicated to the VEPA via the
hypervisor. Configuration parameters such as the MAC
address, desired multicast addresses for reception, QoS
settings, VLAN configuration and the intention to listen to the
network promiscuously, are all available to the VEPA through
a hypervisor configuration interface.

The total number of VSIs made available to virtual
machines may be scaled by cascading VEPAs in a tree as

shown in Fig. 1. A VSI on a root VEPA connected to a leaf
VEPA higher in the topology is known as an expander port,
shown on the far right. A root VEPA will forward all frames
with an unknown destination address to the expander port.
This eliminates the need for the root VEPA to know all of the
MAC addresses of every virtual machine in the physical
station.

A. VEPA Forwarding Behavior

The purpose of a VEPA is to multiplex the virtual station
interfaces and forward their traffic to the adjacent switch for
feature rich processing. As a consequence VEPAs do not
forward frames directly between VSIs. If a VEPA has multiple
uplinks, it will not forward frames between the uplinks. The
uplinks are aggregated to form a single logical link to avoid
forwarding between them. A VEPA may also be partitioned
into multiple logical VEPAs, each associated with its own
independent uplink.

Virtual Ethernet Bridges (VEBs) are similar to VEPAs
except they allow the local forwarding between VSIs. A VEB
is the general term used in this paper for a frame relay service
within a physical end-station that supports local bridging
between multiple VMs and optionally the external network. A
VEB may be used to create an internal private virtual network
between VMs or it may be used to connect VMs to the outside
world. The software virtual switches within hypervisors and
the more recent NIC/switch hybrids are examples of VEBs in
use today.

Fig. 2 compares the forwarding behavior for both VEPA
and VEB. The slashed-circles indicate forwarding paths that
are not allowed. Both will forward VM traffic to the adjacent
switch as needed, and neither will forward between uplinks. A
VEPA does not allow local VM-to-VM communication to
occur directly, and instead forces this traffic to the adjacent
switch. A VEB allows local VM-to-VM communication
without the assistance of the adjacent switch.

Since VEPAs do not need to learn as explained in the
following sections, the egress and ingress operations can be
optimized and the resources required for the address table can
be minimized.

B. VEPA Egress

VEPA egress is defined as the set of operations required to
transfer a frame from a virtual machine to the VEPA uplink.
Since all frames received through VSIs are forced to the uplink,
there is no need for learning MAC addresses and this operation
is simple. The frame is simply moved from the VSI to the
uplink for transmission as fast and as efficiently as possible. A
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Destination MAC VLAN ID Copy To (vPort Mask)

A 1 1000000

B 1 0100000

C 2 0010000

D 2 0001000

E 1 0000100

F 2 0000010

Bcast 1 1100101

Bcast 2 0011011

MulticastC 1 1000100

Unk Mcast 1 1000101

Unk Mcast 2 0011011

Unk Ucast 1 0000001

Unk Ucast 2 0000001

TABLE I. VEPA ADDRESS TABLE

Figure 2. VEPA verse VEB forwarding
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VEPA may take advantage of existing direct I/O approaches on
egress since the packet is passed directly to the hardware. It is
not necessary to search the VEPA address table for the VEPA
egress operation. Indeed, the ‘Copy To’ mask from the address
table in Table 1 does not include a bit for the physical uplink.

A number of optional operations may be performed on
egress to enhance the VEPA solution, but these are not
necessary to support the basic function. For example, the
source MAC address of the virtual machine could be validated
against the configuration of the VSI to prevent MAC address
spoofing. Similarly the frames could be checked for proper
VLAN formatting (tagged or untagged) before being admitted.
It may be desirable to enforce simple QoS policies or
bandwidth limits at the VSI as well.

The objective of the VEPA is to get the frames to the
adjacent switch for advanced processing as quickly as possible.
The adjacent switch, however, will only have the contents of
the packet to work with, and in this basic VEPA mode of
operation, will not actually know which VSI the frame had
originated. The adjacent switch must use the source MAC
address to identify the origin of the frame. An enhanced
VEPA scheme that adds an explicit tag to the packet will be
discussed in Section II.E.

C. VEPA Ingress

VEPA ingress is defined as the set of operations required to
steer and transfer a frame received on the uplink to the
appropriate VSI or set of VSIs. The VEPA must make use of
the address table to perform this operation correctly. Similar
to any standard switch, the destination MAC address is
searched in the address table to locate a set of potential
destination VSIs. If no entry is found, a special unknown
address entry is used for either an individual address (unicast)
or a group address (multicast). At the end of the address table
search, the VEPA has a ‘Copy To’ mask that indicates which
VSIs should receive a copy of the ingressed frame.

At this point, a standard switch implementation would
simply use the ‘Copy To’ mask to deliver the frame to the
appropriate VSI or set of VSIs. However, because of the
‘hairpin’ forwarding in the adjacent switch, a VEPA has an
additional step to perform. In the case of broadcast or
multicast, it is possible that one of the VSIs may have actually
been the originator of the frame before the adjacent switch
reflected it back. In this case, the VEPA must perform a
further filtering operation to avoid delivering the frame to its
originator. This step gives rise to number of considerations in
the VEPA solution, but the operation is no more complex than
a source address look-up required for learning.

To assure that the originator of a frame on VEPA egress
does not receive a copy of the frame on VEPA ingress, the
VEPA performs a source address look-up and removes any of
the VSIs associated with the source address from the original
‘Copy To’ mask associated with the destination address. The
final ‘Copy To’ mask can be determined as follows:

Copy To = (Dest Copy To) AND !(Source Copy To) (1)

D. The Challenge with Promiscuous VSIs

If the VEPA did not properly filter the reflected frames, a
transmitting virtual machine might see its own transmitted
frames, thus experiencing a different level of service when
operating over a VEPA, as compared to a VEB. The VEPA
must remain transparent and virtual machines must not be
required to know which type of device is providing network
service. In order to remain transparent, the filtering must be
guaranteed to work, and the VEPA must have the MAC
address of all transmitting virtual machines connected to VSIs
in its address table. This poses a challenge for VSIs that are
configured in promiscuous mode and potentially sourcing
packets with MAC addresses not contained in the VEPA
address table.

Promiscuous mode ports are used today by virtual machines
that offer transparent inline services such as intrusion
prevention (IPS) or content filtering. In order to remain
backward compatible, a VEPA must have a way to support
promiscuous ports. There are two possible solutions to this
problem. The first is to require VEPAs to learn the association
of source MAC addresses to VSIs as frames are received from
virtual machines. This approach would require the VEPA to
have sufficient address table space to hold all outstanding
entries for the time it takes to reflect a frame through the
adjacent switch. The second approach is to require all MAC
addresses to be statically configured and validated on use –
effectively prohibiting transmissions by promiscuous NICs
attached to VSIs.

1) Option 1: VEPA Learning
There are several disadvantages to requiring a VEPA to

learn. First, it increases the amount of memory required and
thus challenges the cost and complexity of the simple VEPA
forwarding behavior. Since all source addresses used by virtual
machines must pass through the VSI before being reflected by
the adjacent switch, the VEPA has the opportunity to learn.
However, to guarantee that all recently used source addresses
remain in the table once learned, the VEPA address table must
be large enough to accommodate the worst case scenario. Let
R be the maximum rate, in terms of packets per second, on the
uplink. Let Dp be the propagation delay over the uplink and Db

be the standard worst case bridge transit delay as specified in
[12]. If each address table entry is S bytes in length, then the
total address table size (T_size) guaranteeing that all VSI
source addresses can be held long enough to properly filter the
frames reflected by the adjacent switch is given by:

T_size ≥ SR(2Dp + Db) (2)

If an address table entry is 10 bytes, a 10 Gbps uplink is a
100 meters and the standard maximum bridge transit delay is 1
second, then the address table size would need to be on the
order of 148 Mbytes in order to guarantee the VEPA could
always filter reflected frames properly. While this is a worst
case scenario it does demonstrate that learning puts an
undesirable burden on a VEPA.

2) Option 2: Static Address Table Only
If the only source addresses that are allowed to pass

through a VSI are those registered statically with the VEPA,
then it is possible for the VEPA to always properly filter the
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frames. While this may seem like a limitation, it supports the
most common configuration where virtual machines are
operating as individual end-stations and not promiscuous
forwarding devices. The source MAC addresses can be
statically configured because the hypervisor knows the
configuration of the virtual machines directly connected to the
vNICs. To assure that only registered MAC addresses are used
as source addresses on VSIs, the VEPA would need to perform
a source address check. If a VM wishes to operate in a
promiscuous mode and use unregistered source MAC
addresses, the VM’s VSI must be isolated from the other
VEPA VSIs that are receiving reflected frames.

E. Multi-Channel Link with VEPA and VEB

Isolating VSIs can be achieved by integrating multi-channel
support on the VEPA uplink. IEEE Std. 802.1ab-2005 [13]
defines a bridge component called an S-VLAN component that
enables the multiplexing of multiple virtual channels on a
single physical link. The S-VLAN component recognizes,
inserts and removes service VLAN tags (S-Tags) to enable
multiple channels in the bridged network. Adding an S-VLAN
component to an end-station allows VEPAs, VEBs and
individual ports to operate independently and simultaneously.
Each VEPA, VEB or individual port operates over its own
virtual uplink instantiated by a pair of S-VLAN components;
one in the adjacent switch and one on the end-station. Fig. 3
shows the inclusion of an S-VLAN component into the solution
to achieve the necessary isolation to support VEPAs, VEBs and
isolated promiscuous ports.

The virtual uplinks created by the end-station’s S-VLAN
component are effectively connected over a multi-channel
uplink to virtual ports created by the S-VLAN component on
the adjacent switch. Each frame traversing the physical multi-
channel uplink will all have an S-Tag inserted by the first S-
VLAN component it encounters and removed by the second S-
VLAN component as it reaches the far side of the multi-
channel link. The S-Tag inserted by the end-station identifies
the particular source virtual uplink and the S-Tag inserted by
the adjacent switch identifies the destination virtual uplink.

Any frames that must be broadcast or flooded to more than one
virtual port are replicated by the adjacent switch and delivered
across the multi-channel uplink as many times as needed, each
with the proper S-Tag inserted.

Adding the multi-channel capability to the end-station
solves the problem of supporting virtual machines needing
promiscuous ports by isolating such ports in a separate channel.
By doing so, normal learning and forwarding behavior is
pushed to the adjacent switch, isolating it from the simple
forwarding of the VEPA. It also allows the server
administrator to choose how virtual machines are connected to
the network. A group of virtual machines that require direct
connectivity between each other for high performance and low
latency can be attached to a VEB. Another group that requires
traffic visibility, firewall inspection or other services on the
adjacent switch can be attached to a VEPA. Finally any
individual virtual machine that requires an isolated
promiscuous port can be attached directly to a virtual uplink.

III. PROTOTYPE IMPLEMENTATION DETAILS

The Linux kernel provides built-in bridging functionality
that allows configuring the operating system to act as a network
switch. To prototype and test a VEPA solution, we have
extended the bridge kernel module with two capabilities: it can
be configured to act as a VEPA, and it can be configured to run
with bridge ports being set to ‘hairpin’ mode. Both
configurations are independent of each other and can be
switched on and off independently.

The prototype implementation shows that VEPA mode only
requires very minimal changes. Overall 118 lines of code have
been added or modified to implement VEPA, and out of this
only 37 lines of code are on the mainline data path. One
significant change we have made to the forwarding path is for
VEPA egress. When a frame enters any bridge port that is not
the uplink port, then that frame is forwarded to the uplink port.
The code accomplishing this is shown below and is located in
the br_handle_frame() function which is the main entry point
into the Linux kernel bridging code.

The function br_vepa_deliver() works similar to the usual
bridge forwarding operation in the kernel in that it first passes
frames through the netfilter subsystem so that frames can be
filtered (e.g. to enforce some Ethernet-level firewalling) before
they are finally transmitted on the outgoing port.

The second major extension is to enable VEPA ingress.
The most significant change is on the inbound data path when a
multicast or broadcast frame is received on the uplink port. The
following code is an extract from the br_flood() function that
handles the flooding of frames to multiple bridge ports while in
the VEPA mode of operation.

if ((br->flags & BR_VEPA_MODE) && p != br->uplink) {

br_vepa_deliver(br->uplink, skb);

goto out;

}

Figure 3. Multi-Channel Support
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If the bridge is operating in VEPA mode then it needs to
find the bridge port that originally sent this frame (e.g.
assuming that frame has been reflected by the adjacent switch
configured in ‘hairpin’ mode), and then ensures that when the
frame is flooded, it is not delivered to that particular port. The
VEPA does a lookup for the port using the source Ethernet
address located in the frame header. The function
br_vepa_find_src() uses the default bridge forwarding table to
find the mapping of an Ethernet address to a bridge port. The
function __packet_hook() takes care of the actual frame
delivery to the bridge port(s).

The example code snippets show that the VEPA extensions
mostly use existing bridge functionality. The minimal changes
to implement VEPA, demonstrate that VEPA has low
complexity and therefore is ideal for an implementation that
can be realized in silicon (e.g. provided on NIC/switch
hybrids).

The remaining code changes have been minor extensions to
the existing bridge SYSFS interface, so that user-level tools can
easily enable or disable VEPA capabilities. Adding the
‘hairpin’ mode to the bridge only required 19 lines of code to
be modified with only two lines of code in the mainline data
path.

Implementing a VEPA prototype as an extension to a
standard Linux kernel module allows running a VEPA in a
variety of application scenarios and enables easy integration
with Linux-based virtualization technologies. We have
published kernel patches for Linux 2.6.30 [14], which allows
VEPA to be used with Linux and KVM (Kernel-based Virtual
Machine) [15]. We have published patches for the Xen Kernel
2.6.18 [16]. We have furthermore posted code patches for the
user-space bridging utilities [17] as well as for the user-space

network configuration tools under Xen [18].

IV. EVALUATION

To evaluate the efficiency of the VEPA implementation,
measurements of the throughput, delay and CPU utilization
were taken while communicating between two virtual machines
under the KVM virtualized environment.

The experimental setup used to evaluate performance of the
VEPA proposal and prototype consisted of two physical
servers based on 2.4GHz quad-core Intel Xeon X3220
processors with 4MB L2 cache. Each server was configured
with six Intel e1000 Gigabit Ethernet network cards. The
systems were running Fedora 10 Linux 2.6.27.24 kernels with
version 74, release 10.fc10 of KVM. We used the thrulay [19]
network performance testing tool under Linux to measure
throughput and latency. CPU utilization was recorded using the
Linux tool top.

Fig. 4 shows the four basic configurations we have
evaluated to demonstrate the characteristics of the VEPA
proposal. In the VEB configurations, pictured on the left,
virtual machine traffic is handled on each virtual switch within
the physical server, while in the VEPA configurations, on the
right, network processing is offloaded to the adjacent switch.
We compare VEB and VEPA configurations in two
deployment scenarios: internal and external. In the internal
case, the two virtual machines that communicate with each
other are hosted on the same physical server. In the external
case the two communicating virtual machines reside on
different physical servers and their traffic must traverse two
ports of the adjacent switch. We obtained a total of eight
different configurations by testing the performance of VEB and
VEPA for both deployment scenarios; first for simple network
operations (e.g. frame forwarding) and then also for heavier
network processing (e.g. frame forwarding + firewalling).

Fig. 5 details the performance measurements of these eight
basic configurations. The first configuration of internal VM-to-

if (br->flags & BR_VEPA_MODE)
sp = br_vepa_find_src(br, eth_hdr(skb)->h_source);

prev = NULL;
list_for_each_entry_rcu(p, &br->port_list, list) {

if (should_deliver(p, skb) && p != sp) {
if (prev != NULL) {

struct sk_buff *skb2;
if ((skb2 = skb_clone(skb, GFP_ATOMIC)) == NULL) {

br->dev->stats.tx_dropped++;
kfree_skb(skb);
return;

}
__packet_hook(prev, skb2);

}
prev = p;

}
}

internal external internal external

VEB configurations VEPA configurations

Figure 5. Performance Comparison of Basic Configurations
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VM communication shows the greatest difference in
performance because network traffic flows differently between
a VEB and a VEPA. In these scenarios, VEB communication
remains local within the physical server and VEPA
communication must traverse the external link twice. Hence,
additional overhead is incurred in the VEPA deployment,
which most importantly, includes accessing the physical
network device (e.g. interrupt processing and data copies to and
from the NIC) and actually transmitting on the wire. As a
result, throughput is reduced by 11.7% and latency is increased
by 30.5%. However, as we enable rich inline features, like
firewalling within the network path, the VEPA outperforms the
VEB as it offloads these functions to the adjacent switch where
rich network policies are implemented in silicon. This shows in
significantly lower CPU utilization for VEPA on the server-
side due to simpler frame processing operations on the machine
itself. For VEB the software firewalling implementation causes
increased load on the CPU resulting in an 18% reduction in
throughput and a 35.6% increase in latency. As the required
network processing becomes heavier, the difference in
complexity and resource utilization on the server will show
more clearly, and VEPA will benefit even more from
leveraging services of the adjacent switch.

External VM-to-VM communication has a similar traffic
flow between the VEB and the VEPA approach (e.g. both
solutions now incur the previously mentioned overhead of
accessing the physical network), however, VEPA achieves
slightly higher throughput and uses slightly fewer CPU cycles
for basic network communication. This is expected as frame
handling is less costly for a VEPA than for a VEB, mainly
because the VEPA does not do address learning and quickly
passes frames to the external switch via the uplink port. For
the configurations that additionally deploy firewall functions,
the results show an even greater performance difference with
throughput being 9.7% higher and latency being 20% lower for
a VEPA. Here the VEPA benefits from firewalling functions
being carried out in hardware on the adjacent switch, while for
the VEB scenarios, firewalling is implemented in software on
both virtualized servers. VEPA furthermore shows a reduced
CPU load on the server for these tests, which is again, due to
the VEPA only providing simple forwarding of network traffic
to the adjacent switch. This means that compute resources on
the server can be freed up for applications rather than being
used up for network operations.

Fig. 6 shows the ratio of CPU cycles used to achieve a
particular throughput as a measurement of efficiency for all the
eight test scenarios. It demonstrates that VEB outperforms
VEPA for internal VM-to-VM communication when only basic
network functions are deployed while VEPA is more efficient
than VEB for all other use cases. From these measurements we
can conclude that while for internal VM-to-VM
communication, the VEB approach is the preferred solution,
from a performance point-of-view, the VEPA proposal
improves virtualized network I/O performance significantly
when communicating VMs reside on different physical servers
or when rich inline network features are desired.

In a second series of performance tests, we evaluate real
world scenarios where rich inline features (for example,

firewalling) are required. For VEPA configurations, the
adjacent switch implements these in silicon or a shared module,
so the network traffic flow is still the same as shown in Fig. 4.
For VEB configurations, these functions are implemented
within a dedicated firewall VM.

Fig. 7 shows the two additional, advanced VEB test cases
that we have deployed and compared to the equivalent VEPA
test cases. In the first VEB test case, as pictured on the left, the
firewall VM is located on the same physical server as the
communicating VM. In the second VEB test case, as shown on
the right, the firewall VM is located on a different, dedicated
physical server. Both these scenarios can be found frequently
in typical virtualized data center deployments where network
applications (e.g. firewall, network monitoring or IDS/IPS
components) are often deployed as virtual machine appliances.
Well-known virtual machine network appliances for these
applications are provided by vendors such as Altor Networks,
Vyatta, Check Point or Astaro. In the experiments, the firewall
is lightly configured to permit only a small set of protocols, to
verify the correctness of those protocols, and to validate the
mapping of IP address to MAC address on each packet.

Fig. 8 shows the measured results from these three test
scenarios. Most significantly, it shows that, for the first VEB
with the firewall VM test case, throughput is very low and
latency is very high compared to the other two test cases. This
significant drop in performance is due to the server having to
run an additional VM that carries out heavy network operations
and so traffic flows into and out of that VM passing through
two VEBs. This adds additional overhead of I/O virtualization
and packet switching and results in increased latency and
reduced throughput. Furthermore, this means that the
virtualized server will have fewer resources available to serve
other VMs it is hosting. The VEPA configuration, on the other
hand, has low CPU utilization because the same network
processing is offloaded to the adjacent switch.
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The second VEB test case runs the firewall VM on a
dedicated server, so the overhead measured on the other server
running the communicating VM is similar to the VEPA
configuration. However, the VEPA is slightly more efficient
due to less complexity in frame processing compared to the
VEB. Perhaps more importantly, the VEPA uses fewer
physical resources to get traffic to and from the firewall. To
get traffic from multiple VMs on a separate server to the VM
based firewall appliance on another server multiple physical
links or creative use of VLAN isolation is required. The VEPA
test case lends itself to a more optimal topology and achieves
9% higher throughput and 4.5% lower latency than the VEB
approach with a dedicated firewall VM as network processing
is offloaded to the attached high-function network switch.

Fig. 9 compares efficiency measurements of the three
advanced test scenarios by evaluating the achieved throughput
per used CPU cycles. This final chart validates that the VEPA
proposal is most efficient if rich network functions are
required, while running a firewall VM imposes significant
overhead on a virtualized server. The VEPA approach ensures
that the server can make more compute resources available to
applications as heavy-weight network processing is moved to
the adjacent switch which already provides rich network
functions. Additionally, the VEPA configuration uses less
physical resources, such as switch ports and cables, to obtain
the same treatment of network traffic.

V. RELATED WORK

An approach most similar to VEPA is the VN-Tag proposal
to the IEEE 802 working group [20]. This approach defines a
new frame format that includes a tag to identify a specific
virtual port within the hypervisor. Each frame traversing the

link between an Interface Virtualizer (IV) and a controlling
bridge contains an explicit indication of the ingress and egress
virtual ports for the frame. A unique tag is created to represent
a group of ports for broadcast or multicast frames and the IV is
responsible for replicating the frame and delivering it to each
virtual port. A VEPA is different from an IV because a VEPA
contains a MAC address table and easily supports the
simultaneous operation of both a virtual Ethernet bridge (VEB)
and the new mode of forwarding defined by a VEPA on a
single end-station. In essence, a VEPA is an additional mode
of operation for an existing VEB that is a natural extension of
what already exists. An IV is a new type of network device
that forwards based upon a new frame tag and defines a new
address space for that tag. Combining a VEB and an IV will be
a burden for NIC vendors. Support for an IV on the controlling
bridge also requires the creation of a large number of virtual
ports and a new mechanism for identifying multicast
groupings.

Other related work [21, 22] from HP Labs investigates
distributing virtual networking across all endpoints within a
data center. Here a software-based component resides on every
server and implements network virtualization and access
control for virtual machines while network switches are
completely unaware of the endpoints being virtualized. The
distributed software components collaborate with each other
and collectively form a virtual switch [21] or virtual router [22]
respectively. Network virtualization is achieved by either frame
encapsulation or frame header rewriting. Both approaches
differ from VEPA in that they enforce network functions in
software on the endpoints and do not take advantage of rich
features in the adjacent network devices. This results in
significant complexity on the server side and thus lower I/O
performance for virtual machines.

Virtual Distributed Ethernet (VDE) [23] is a general
purpose tool for interconnecting virtual environments via
virtual Ethernet switches and virtual plugs. VDE operates
more along the lines of a layer-2 VPN that is connected to a
virtual switch. It is a pure software environment and a LAN
emulation approach that does not lend itself to the optimized
hardware implementations of VEPA. One could imagine
connecting virtual machines to a distributed virtual switch by
using the virtual plug concept, but this topology was not
discussed in the paper. Each virtual plug represents an
individual virtual port on the switch and no common sharing of
the port through the use of the ‘hairpin’ bridging mode is
provided.
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The NBAN approach described in [24] is similar to the
multi-channel approach. A modified version of the standard
VLAN header is used to represent a remote port where a cable
modem is attached in a subscriber’s home. The router at the
head-end of the cable service is aggregating and routing
between all of the remote ports. Since individual homes are
typically not allowed to communicate directly with one
another, the packet flow is similar to VEPA. However, with
NBAN, the homes are also separated by layer-3 subnets. The
NBAN architecture does not describe how multicast traffic is
handled, but the assumption is that the head-end router
replicates and routes multicast packets to each remote port.
NBAN does not support the VEPA mode of forwarding at the
subscriber’s home and uses a redefinition of the C-VLAN tag
instead of the S-VLAN tag.

VI. FUTURE WORK

Since the time of this writing, VEPA has been proposed to
the IEEE 802.1 working group for standardization. A critical
component to the solution that is not described here is the
method to coordinate the configuration of the adjacent bridge
with the VEPA and multi-channel capability. Protocols to
discover, establish and enable multi-channeling, ‘hairpin’
mode, VEB and VEPA mode from the network side are needed
to further reduce complexity on the server side. Early
proposals for automating virtual bridging are being made by
others [25].

VII. CONCLUSION

We have proposed VEPA as a new way to network virtual
machines with the adjacent network. VEPA is simple and
efficient. Our prototype implementation demonstrates that only
minor changes are required to existing bridge architectures to
support VEPA. Measurements demonstrate that VEPA is a
more efficient way to apply rich networking features to the
traffic generated by virtual machines. By closely collaborating
with the adjacent network switch, VEPA lends itself to a
network management model that empowers network
administrators and relieves server administrators of complex
network coordination.

VEPA can be combined with VEB through the use of
physical link multi-channeling and provides administrators
with additional choices on how to network virtual machines.
No additional hardware resources are required to add VEPA to
an existing hardware VEB so the incremental cost is minimal.
Since VEPA is a natural extension of the existing VEB, it will
be simple for NIC vendors to augment their NIC/switch
hybrids with a VEPA mode of operation as an alternative to the
inclusion of expensive and complex features.
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