

Abstract— Managing the Ethernet switches is a complex task in
today’s Data Centers, as a lot of network stateA is manually
created, applied and maintained. The complexity increases
further with server virtualization, where a single switch port can
connect 10s of Virtual Machines to the network. These issues
multiply when a virtual machine (VM) migrates from one server
node to another, as the network states are not migrated along
with VM.

This paper will describe several use cases for managing network
state in today’s networks. It will then describe how protocol
contributions to the IEEE 802.1Qbg Edge Virtual Bridging
(EVB) working group can be used to enable new, more
automated network state management use cases.

Index Terms—Virtual Servers, Virtual Machines (VMs),
Single-Root IO Virtualization (SR-IOV), Virtual Ethernet
Bridging (VEB), Automated Port Profile Migration, Ethernet
Virtual Bridging (EVB)

I. INTRODUCTION
Today’s Ethernet switches use network element

management tools to manually apply and maintain network
state to one or more ports on each switch. The network state
includes VLAN Identifiers, port access controls, port traffic
controls and possibly security flow control rules. The
complexity increases further with server virtualization,
because a single physical switch now connects multiple
Virtual Machines (VMs), each with network state that must be
maintained in the physical switch. These VMs may use virtual
Ethernet switches, which also contain network state.
Additionally as a VM migrates from one server to another, the
network state associated with the VM must migrate with it.

This paper starts with a description of today’s usage models

for automating the application of network state to switches
and the migration of that state as necessary to support VM
migration. It will also describe some of the issues associated
with today’s approaches.

The paper provides a brief overview of proposed Ethernet

Virtual Bridging (EVB) protocols from IEEE 802.1Qbg1
contributors. This includes several options for how the
proposed EVB protocols can be implemented. Finally, it
describes use cases for how these proposed protocols enable
automation of network state creation and maintenance.

A Network state represents one or more of the following: Access controls

(e.g. IP address filters, MAC address filters), Quality of Service controls (e.g.
rate limits) and/or security flow rules (e.g. Firewall and Intrusion Detection
and Prevention, IDP, flow rules).

II. TODAY’S EVB USE CASES

Virtual Ethernet Bridging (VEB2,3,4), a.k.a. Virtual
Switching, has been around for decades (e.g. zVM,
PowerVM). Virtual switching provides efficient VM to VM
Communications. In most of today’s Hypervisor VEB
implementations (such as PowerVM’s Virtual Switch,
VMware’s vSwitch and the Nexus 1000v5,6) the network state
associated with a VM migrates with the VM. The network
state may include: a VLAN Identifier, port access controls,
port traffic controls and security flow controls. However, one
of the major challenges with today’s virtualization approaches
is automating the association of external network state to a
VM and migrating that network state during VM migration.

Following are the use cases that exist today, each with its

own set of limitations.

A. Homogeneous tenant network state

Under this use case all VMs have the same network state.

The typical usage model for this use case is one where all
VMs are running the same tenant (a.k.a. application) type.
For example, all VMs run the same Web Serving application.

Figure 1 below depicts an example of this use case. As

shown in the figure a network manager is used to configure
the same network state on each port used by servers to access
the switch. All VMs are associated to the same network state
(1) in the Physical Switch. Under this use case, when a VM
migrates (2) below, no network state needs to migrate,
because the network state associated with the VM is already
resident in the external switch.

Figure 1: Homogeneous Tenant Use Case

Ethernet Virtual Bridging Automation Use Cases
Renato Recio, Sivakumar Krishnasamy and Rakesh Sharma

Network
Manager

Server 1

Physical Switch 1
(a.k.a. Bridge)

VM1 VM2 VM3

VEB

Network State ANetwork State A

Server 2

Physical Switch 2
(a.k.a. Bridge)

VM4 VM5

VEB

L2 net(s)

11

2

For large enterprises, this use case can be applied to several
racks of servers, where all servers are running the same
application type. If one of those servers becomes over
utilized, one or more of the VMs running in that server can
migrate to another server.

The major limitation associated with this use case is that if

the tenant type becomes over utilized and server hosting a
different tenant type are under utilized, the VMs cannot
migrate from the over utilized to the under utilized server,
because each tenant type has different network state. For
example, if servers hosting Web Serving VMs become over
utilized, and servers hosting e-mail VMs are under utilized,
the Web Serving VMs cannot be migrated to the server
hosting the e-mail VMs, because their network state is not the
same.

B. Post VM migration of heterogeneous tenant network state

Under this use case VMs host different tenant types. For
example, some VMs run a Web Serving application and
others an e-mail application. Network state is associated
with each tenant (application) type and this network state
resides in both the Hypervisor VEBB and the external
switch. When a VM hosting a specific tenant type
migrates, the associated network
state must also migrate.

There are two approaches for how to satisfy this

requirement today. The first is to use MAC Addresses to
identify tenant types and automatically associate the network
state to the MAC Address after migration. The second is to
manually configure the network state prior to starting or
migrating a VM, which is not automated. This section will
describe the first approach.

Under this use case, the network manager is used to create

network state that is unique for each tenant. The Hypervisor
manager is used to manage (create, start-up, shut-down and
destroy) the VMs, including the assignment of a MAC
Address and VLAN Identifier for each virtual network
interface used by the VM. Under this use case, the network
manager creates network state for each tenant type. There are
two possible ways to propogate the VM’s tenant type, VLAN
identifier and MAC addresses to the network manager:

1. Manual association
When a MAC Address is assigned to a VM, the VM’s
tenant type and MAC Address assignment along with
associated VLAN identifier is made known to the
network manager manually. The network manager then

B VEB4 - Virtual Ethernet Bridging, a.k.a. virtual switch (vSwitch).

distributes this information to the access switches. When
a VM begins communicating to an access switch, the
switch automatically applies the network state associated
with the VM’s MAC Address.

Figure 2 below depicts an example of VM migration

for this use case. In step 1, the network state is associated
to the VM using the approach described above. In step 2,
the Hypervisor performs the VM migration, including the
network state migration for the Hypervisor’s virtual
switch. In step 3, when the VM begins to use the MAC
Address on server 2, the switch will automatically apply
the network state associated with that MAC Address.

Figure 2: Post VM migration of heterogeneous tenant

network state

2. Automatic association through an API
To automate the association and migration of network
state to a VM’s virtual network interface, this use case
requires an API between the Hypervisor and network
manager to communicate the: VM’s tenant type, VM’s
MAC Addresses and the VLAN Identifier associated with
each MAC Address. More importantly, without such an
interface there is a risk that the switch will not be able to
distinguish between a re-incarnatedC and a migratedD
MAC Address. This approach requires a per Hypervisor
API investment.

In addition to the caveats above, this approach either

requires switches to:
• Store the network state of all tenant types, which

consumes switch memory resources;
• Allow the VM to communicate, while the switch

retrieves the network state after a VM begins
communication with a pre-configured MAC Address,

C A re-incarnated MAC Address is one that was previously in use by a

recently destroyed VM and is now in use by a different VM, which may
require completely different network state.

D A migrated MAC Address is one that is associated with a VM that has
been migrated across two physical servers in the fabric and retains the same
network state association after the VM migration.

Network
Manager

Server 1

Physical Switch 1
(a.k.a. Bridge)

VM1 VM2 VM3

VEB

Network State ANetwork State A

Server 2

Physical Switch 2
(a.k.a. Bridge)

VM4 VM5

VEB

L2 net(s)

11

2

2

3

which creates an access control exposure window
(i.e. where the VM can access the network without
the switch applying the access/traffic controls
defined by the network state associated with the VM
tenant type); or

• Disallow the VM to communicate, while the switch
retrieves the network state, resulting in lost VM
packets, which can be detrimental for storage traffic.

C. Open access for heterogeneous tenant network state

Under this use case VMs host different tenant types and

network state resides solely in the Hypervisor. That is, all
physical access switch ports are configured as trunk ports and
the Hypervisor’s VEB is solely responsible for applying the
necessary access and traffic controls.

The issue with this approach is all physical servers must be

in the same security domain, which has the similar VM
movement limitations as the “Homogeneous tenant network
state” option. For example, a physical server cannot be
managed by tenant A in the same layer-2 LAN as a physical
server that is managed by tenant B.

D. Summary of today’s EVBE Use Cases

Several use cases exist today for migrating the network

state associated with a VM’s virtual network interface.
Unfortunately each of today’s use cases comes with
limitations that either cause security exposures (II.B and II.C)
or migration restrictions (II.A)

III. ETHERNET VIRTUAL BRIDGING PRINCIPLES OF OPERATION

To automate the creation and migration of networking state,
we need a control plane protocol that associates and de-
associates a VM’s virtual interface with state in nearest
neighbor bridge adjacent to the physical network interface
controller (NIC) used by the VM. This section provides a
brief overview of the proposed EVB technologies used to
provide this association. The final section of this paper will
describe uses cases for how the EVB protocols automate the
network configuration management.

A. Defining network states and capabilities

The Figure 3 depicts an example of a Server connected to

an Adjacent Bridge (a.k.a. Switch). In this example the Server
has two Virtual Machines (VMs), each VM has two virtual
NICs (vNIC). Each vNIC connects to the Hypervisor virtual

E EVB – Ethernet Virtual Bridging

switch (vSwitch) through a Virtual Station Interface (VSI).
The vSwitch can be implemented as a Virtual Ethernet Bridge
(VEB) or as a Virtual Ethernet Port Aggregator (VEPA). A
single Hypervisor instance may contain one or more such
vSwitches. A VEB performs VSI to VSI packet forwarding, as
well as VSI to adjacent bridge forwarding. A VEPA
collaborates with an advanced bridge for all packet
forwarding, including VSI to VSI packets. VEB and VEPA
semantics are described in the version 0, Edge Virtual Bridge
Proposal7 to the IEEE 802.1Qbg PAR. Note, similar to the
CEE Authors8 version 0 Data Center Bridging capability
eXchange (DCBX) protocol proposals9,10,11, it is expected that
vendors will implement the version 0, EVB proposal.

Figure 3: Virtual Station Components

The vSwitch shown in Figure 3 can also be implemented in
physical NIC. An example of such an implementation is
provided in Figure 4 below, which depicts a Single Root
Input/Output Virtualization NIC. In this example, the SR-
IOV FNIC supports one physical function (PFs) and a set of
virtual functions (VFs). Each of these functions is connected
to the SR-IOV NIC’s vSwitch through a VSI. Similar to the
Hypervisor based vSwitch, the SR-IOV NIC’s vSwitch can be
implemented as a VEB or VEPA and a single SR-IOV NIC
may contain multiple such vSwitches.

Figure 4: NIC based vSwitch

F SR-IOV - Single-Root IO Virtualization

vSwitch

VM A VM B

vNIC

Server

 Adjacent Bridge
Switch
Port

pNIC
Link

VSI

Hypervisor

VMVM VM

SR-IOV
NIC

Enet Port

PF VF VF:VF

…

vSwitch

vSwitch

We next describe the proposed EVB protocols for
automating the configuration of the VSIGs used by vSwitches.

B. Ethernet Virtual Bridging Protocols

This section provides a very brief overview of the proposed
EVB protocols used in conjunction with Virtual Station
Interface Discovery and Configuration Protocol (VDP). The
detailed description of these proposed protocols is provided in
the version 0, Edge Virtual Bridge Proposal to the IEEE
802.1Qbg PAR.

There are three proposed protocols that are required to
associate and de-associate a VSI with network state: Ethernet
Virtual Bridging Type, Length and Value (EVB TLV)
mechanism; Edge Control Protocol (ECP); and Virtual Station
Interface Discovery and Configuration Protocol (VDP). The
version 0, Edge Virtual Bridge Proposal also defines an S-
Channel Discovery and Configuration Protocol (CDCP),
which is used by the station (a.k.a. server or system) to
support more than one VEB, VEPA or 2-Port VEB
simultaneously. However, this protocol is not necessary if the
station supports a single VEB, VEPA or 2-Port VEB.

The proposed EVB TLV is to be exchanged between station

and bridge as part of the Link Layer Discovery Protocol
(LLDP). The purpose of the EVB TLV is to enable the
discovery and configuration of the station and bridge’s EVB
capabilities, including:

• The station’s forwarding mode (i.e. VEB or VEPA).
• The ability of the station and bridge to use the Edge

Control Protocol (ECP).
• The ability of the station and bridge to use the Virtual

Station Interface Discovery and Configuration
Protocol (VDP).

• If the station and bridge support VDP, the number of
VSI Instances each is able to support and each has
currently configured.

• The retransmission exponent used to calculate the
minimum Upper Level Protocol Data Unit (ULPDU)
retransmission time.

As noted above, EVB is used to determine if ECP and VDP

are supported by both station and the adjacent bridge. If both
are supported, then VDP modules are activated at the station
and bridge to enable the seamless automation of network state
configuration prior to starting up a VM’s vNIC.

The proposed ECP is a control plane discovery and

configuration protocol that provides acknowledgements,
which are used by the receiver to signal to the sender that a
ECP Upper Level Protocol (ULP) buffer is available for the

G VSI – Virtual Station Interface

reception an ECP Data Unit. The use of acknowledgements
enables the sender to transmit discovery and configuration
operations more frequently than possible with timer
approaches, such as LLDP. The intent is to have the server’s
virtualization infrastructure (e.g. Hypervisor or a privileged
guest VM) implement ECP, versus having the NIC implement
ECP.

The proposed VSI Discovery and Configuration Protocol

(VDP) is used to associate and de-associate a VSI Instance
with a VSI Type Identifier (VTID), VSI Type Version, VSI
Manager Identifier and one or more MAC Address and VLAN
Identifier pairs. The VSI Type Identifier is used by the
Adjacent Bridge to request a specific VSI Type from the VSI
Type Database (VTDB) contained in the VSI Manager that is
referenced by the VSI Manager Identifier. The version 0 EVB
Proposal leaves the contents of a VSI Type opaque (i.e. to be
standardized by another organization, such as the Distributed
Management Task Force, DMTF, or left as vendor unique).
That said, the contents of a VSI Type is expected to contain
the network state of a VSI, such as access controls (e.g. IP
Address filters), Quality of Service controls (e.g. rate limits)
and/or security flow rules (e.g. Firewall and Intrusion
Detection and Prevention, IDP, flow rules).

As shown in Figure 5 below, a network administrator uses a

VSI Management user interface to create, change and destroy
VSI Types in the VSI Manager’s VTDB. The VSI Manager is
expected to be a part of edge switch’s Network Change and
Configuration Manager (NCCM). A network administrator
can create single VSI Type in the VTDB and use the VSI
Type Version field to further refine the VSI Type’s controls.
Example uses cases for using the VSI Type Version will be
provided in the next section.

Figure 5: Virtual Station Components

The S-Channel Discovery and Configuration Protocol
(CDCP) is a control plane protocol used to construct an S-
VLAN for each VEB, VEPA or 2-Port VEB that will be used
simultaneously by the station. The station and bridge must
support an IEEE 802.1Qbc Port-mapping S-VLAN
component. In the data plane, each S-channel carries an IEEE
802.1Qbc Port-mapping S-VLAN Tag, which identifies the S-
Channel used by a specific VEB, VEPA or 2-port VEB
instance. CDCP enables multiple virtual channels to be
isolated and multiplexed over a single physical link.

--

--

--

--

--

VTID=10
Version 2

Network
Administrator

 VTDB

IV. ETHERNET VIRTUAL BRIDGING USE CASES

This section describes use cases associated with the version

0, Edge Virtual Bridge Proposal to the IEEE 802.1Qbg PAR.
This section will start with use cases for managing the VSI
Manager and its associated VSI Type Database (VTDB),
including models for how an access switch (a.k.a. adjacent
bridge) can collaborates with a VSI Manager. It will then
describe several use cases for performing network
configuration operations between the server virtualization
manager, the VSI Manager, the server’s virtualization
infrastructure and the access switch.

A. VSI Manager Use Cases
The VSI Manager can be implemented as a vendor specific

tool or as a holistic tool, which spans multiple vendors. If the
VSI Manager is implemented using a vendor specific tool, the
virtualization infrastructure must know which VSI Manager
Identifier to use in the VDP exchange. If a holistic tool is
used, a single VSI Manager Identifier is used for all switch
types.

If a vendor specific VSI Manager is used, the virtualization

infrastructure can determine which VSI Manager Identifier is
associated with the local switch through a management or
control plane mechanism. Figure 6 depicts a high level
overview of the management plane mechanism.

Figure 6: VSI Manager Selection via Management Plane

In figure 6, step 1 a Network Discovery Manager is used to

determine the topology of the physical network, including
what switch each NIC is connected to. In step 2, a
management interface is used to inform the Hypervisor
manager what VSI Manager Identifier must be used in

conjunction with each NIC discovered by the Network
Discovery Manager. In step 3, the Hypervisor manager
informs the Hypervisor’s VEB or VEPA control plane which
VSI Manager must be used for each vNIC. In step 4, when
the Hypervisor’s VEB or VEPA control plane performs the
VDP exchange, it then uses the VSI Manager Identifier passed
from the Hypervisor and in step 5 the switch uses the VSI
Manager Identifier passed through the VDP exchange to
retrieve the VSI Type information.

Figure 7 depicts a high level overview for selection of a

VSI Manager via a control plane mechanism. It’s worth
noting for this approach to work, the NIC must discover the
VSI Manager Identifier from the adjacent switch. That is, a
mechanism is needed for the switch to communicate its VSI
Manager to the NIC. This type of mechanism would need to
be added to the version 0, Edge Virtual Bridge Proposal to the
IEEE 802.1Qbg.

Figure 7: VSI Manager Selection via Control Plane

Following are the steps associated with a control plane

mechanism depicted in figure 7. In step 1 a Network
Discovery and Configuration Manager is used to determine
the topology of the physical network and configure the VSI
Manager Identifier and location on each switch used by
servers to access the network. In step 2, a control plane
protocol (e.g. EVB) is used by the server’s virtualization
infrastructure to discover the VSI Manager Identifier that must
be used in a subsequent VDP exchange. In step 3, for each
NIC, the Hypervisor’s VEB or VEPA control plane reports to
the Hypervisor manager the VSI Manager Identifiers it has
discovered and the Hypervisor Manager returns the rest of the
VSI state to use for the VDP exchange. In step 4, the
Hypervisor’s VEB or VEPA control plane performs the VDP
exchange and in step 5, the switch uses the VSI Manager
Identifier passed in the VDP exchange to look retrieve the

Server 2Server 1

VM

App

VM

App

VM

App

VM

App

VEPAVEB

L2 net(s)
VSI Type

Database A

VSI
Manager A

VSI Type
Database A

VSI
Manager A

Switch BSwitch A

Retrieve VSI
Type from VSI

Manager B

Retrieve VSI
Type from VSI

Manager A

Hypervisor
Manager

Report Switch A,
Select VSI Manager A

Report Switch B,
Select VSI Manager B

VSI
Mgr A

3 3

Network
Discovery
Manager

VSI Type
Database B

VSI
Manager B

VSI Type
Database B

VSI
Manager B

114 4

5 5

2
VSI
Mgr B

2 2

Server 2Server 1

VM

App

VM

App

VM

App

VM

App

VEPAVEB

L2 net(s)
VSI Type

Database A

VSI
Manager A

VSI Type
Database A

VSI
Manager A

Switch BSwitch A

Retrieve VSI
Type from VSI

Manager B

Retrieve VSI
Type from VSI

Manager A

Hypervisor
Manager

Report Switch A,
Select VSI Manager A

Report Switch B,
Select VSI Manager B

Discover
VSI Mgr A

Discover
VSI Mgr B

3 3

Network
Discovery
Manager

VSI Type
Database B

VSI
Manager B

VSI Type
Database B

VSI
Manager B

114 4

5 5

VSI Type information.

An alternative to the approach described in Figures 6 and 7

is to use a holistic Network Manager to host the VSI Manager,
as well as the discovery and configuration management
functions. That is, the network manager is capable of
providing VSI Types to all the switches used in the network.
In this case, the network manager loads the same VSI
Manager Identifier on all the switches in the network and
when each server’s virtualization infrastructure performs the
VDP exchange, the adjacent switch retrieves the VSI Type
information from the same (single) VSI Manager.

B. VSI Type Database Use Cases

As described in the version 0, Edge Virtual Bridge Proposal

to the IEEE 802.1Qbg PAR, the VSI Type Database (VTDB)
can use any combination of the VSI Type Identifier, VSI Type
Version and VSI Instance Identifier to retrieve a VSI Type
from the database. This enables a very flexible set of database
schema use cases.

A simple VSI schema is to just use the VSI Type field as an

index into the VTDB. Using this approach, a VSI Type can
be associated to a VSI class. Figure 8 is an example of this
use case, which depicts three VM types: Web Server,
Application Server and Database Server. In this example, a
specific VSI Type corresponds to each of these VM types,
where the VSI Type contains the access, traffic and security
controls that must be associated with each of these VM.

Figure 8: VSI Type schema

An alternative is to use the VSI Type to define a base set of

access, traffic, and security controls and the VSI Type Version
to define deltas from the base set of controls. For example,
two types of web server application may be needed, where the
only difference between the two is in the traffic rate limiting
control. In this case, the same VSI Type can be used for both
web server types and the VSI Version can be used to define
the delta, rate limiting control. Figure 9 depicts this example

Figure 9: VSI Type Version, Delta schema

The VSI Type Version can also be used as a temporal

attribute, where each VSI Type Version reflects a more recent
version of the VSI Type. This allows network administrators
to change a VSI Type’s access, traffic, and security controls
and use the VSI Type Version to roll out the change to new
VMs. The change can also be attempted on existing VMs, by
having each server’s virtualization infrastructure re-execute a
VDP Associate using the new VSI Type Version. If the
adjacent switch is able to make the changes, the new VSI
Type Version is used. Otherwise, the previously bound VSI
Type Version remains in use.

Finally, the above use cases can be combined with the use

of the VSI Instance as an index into the VTDB. This use case
allows the VSI Manager to assure the VSI Instance can indeed
be associated with the specific VSI Type and VSI Type
Version.

C. Push Based VSI Type Use Cases

A VSI Type push model can be used if the amount of

network state is small. For example, the VSI manager can
push the network state onto all the switches if the set of VSI
Types & Versions is small or if each VSI Type has a very
small amount of access, traffic and security controls. This use
case model essentially caches all the VSI Type state on each
access switch for use during the VDP. Figure 10 on the next
page depicts a high level use case for this model.

In Step 1, the VSI Manager creates a set of VSI Types. If

VSI Versioning is used, each VSI Type version is assigned a
VSI Version, which allows to the Network Manager to deploy
one or more VSI Versions at any given time. As stated
previously, the VSI Manager may be component of a larger
networking function, such as a Network Change and
Configuration Manager.

In Step 2 the VSI Manager discovers the access switches in

the network to determine if they support a push model. If the
switches support the push model, then the use case described

VEB or VEPA

Physical End Station

Adjacent Switch

VM

Web

VM

Web

VM

DB

VM

App
Server

L2 net(s)
VSI Type
Database

VSI
Manager

VEB or VEPA

Physical End Station

Adjacent Switch

VM

Web

VM

Web

VM

DB

VM

App
Server

L2 net(s)

VSI Type
Database

VSI
Manager

in figure 10 can be used. The VSI Manager pushes the VSI
Types and VSI Versions to all access switches, which may be
physical (e.g. top-of-rack of embedded blade switches) or
virtual (e.g. Hypervisor VEB or IOV NIC’s VEB).

Figure 10: Push based VSI Management - VM
Association

In step 3 the Hypervisor Manager queries the VSI Type

Database to determine the usage of available Version Type
IDs (VTIDs). For each NIC virtual port, the Hypervisor
Manager selects a VSI Type, and if VSI versioning is used, a
VSI version from the VTDB. The Hypervisor manager
assigns a VSI Instance ID for each NIC virtual port. The
Hypervisor manager may register the VSI Instance Identifier
with the VTDB, including what VSI Type and VSI Version
the Hypervisor plans to associate to the VSI Instance. If the
Hypervisor registers the VSI Instance Identifier with the
VTDB, the VSI Manager can check a pre-associate or
associate VDP handshake to assure the correct combination
are used.

In step 4, the Hypervisor manager creates a new Virtual

Machine (VM) instance and pushes the VM’s state into the
server targeted to host the new VM. Part of the state the
Hypervisor manager passes to the server virtualization
infrastructure (Hypervisor or Hypervisor agent, such as a
control partition), includes the VSI Type, VSI Version and
VSI Instance Identifier.

In step 5 before VSI Instance (VM) activation, the VDP

Module performs the VSI Discovery and Configuration
Protocol exchanges that associate the VSI instance with a
VTID, VSI Version, MAC Address and VLAN Identifier.
The VDP Module is intended to be implemented as part of the
server’s virtualization infrastructure (e.g. in the Hypervisor or
a service VM guest running on top of the Hypervisor). The
VDP Module is also implemented in the adjacent bridge.

The VDP Module may use a Pre-Associate, Pre-Associate
with Resource Reservation or Associate to begin the
association process. The Pre-Associate enables the
Hypervisor to probe a set of access switches prior to
determining where a new VM (or set of VMs) is to be hosted.
The first set of access switches to respond with a successful
completion to the Pre-Associate can then be used for a
subsequent Associate. However, the Pre-Associate operation
doesn’t reserve any resource on the access switches, so a
subsequent Associate may completely unsuccessfully. The
successful completion of a Pre-Associate with Resource
Reservation guarantees the access switch has sufficient state
for an Associate, while the VSI is kept alive.

In step 6, after the Associate VDP exchange has completed

successfully the VM can start-up and the virtual NIC can be
begin to use the virtual port associated the VSI Instance
Identifier.

Figure 11 below describes the migration of a VM from the

Source Server on the left to the Target Server on the right.
Following are the associated steps. Note, this example
assumes steps 1 and 2 of Figure 10 preceded the steps below.

Figure 11: Push based VSI Management - VM Migration

In Step 1, the VSI Manager pushes either a Pre-Associate

with Resource Reservation or Associate to assure the target
server is attached to an access switch with sufficient resources
to perform the VSI Association. Note, the VM being migrated
from the source server is still associated to its access switch.
The semantics in the version 0, Edge Virtual Bridge Proposal
to the IEEE 802.1Qbg PAR allow for the same VSI Instance
to be associated on two switch ports simultaneously, for
example during migrations. This dual residency can be
eliminated by using a Pre-Associate with Resource
Reservation on the Target server, which is the process that
will be described in the remaining steps.

VSI Type
Database

System Admin

Network
Admin

Query available VSI types
Obtain a VSI instance

Push VM & VSI state to
server’s virtualization
infrastructure (may take
more than one step)

Physical End Station

Switch (a.k.a. Bridge)

VM

App

VM

App

VM

App

VM

App

VSI
Manager

VM
Manager

1 Create set of
VSI Types

3

VEB or VEPA
4

5
VSI Discovery and Configuration
Protocol (VDP) - pre-Associate
or Associate

L2 net(s)

6

VM is brought on-
line after VDP
completes

Push VSI Type,
VSI Version, and
possibly VSI
Instance
Identifier 2

Target Server

Target Switch
(a.k.a. Bridge)

VM

App

VM
Manager

VEB or VEPA

2

L2 net(s)

Source Server

Source Switch
(a.k.a. Bridge)

VM

App

VM

App

VEB or VEPA

5

3

14

7

6

VM

App

8

In step 2 the target’s server virtualization infrastructure
performs a Pre-Associate with Resource Reservation. If it
completes successfully, the server virtualization infrastructure
lets the Hypervisor manager know the target switch is capable
of completing the migration. Otherwise the Hypervisor
manager would have to select a different target switch,
possibly on another server.

In step 3 the Hypervisor Manager begins the VM migration

process by moving VM state from the Source to the Target
Server. In step 4, when this process reaches completion, the
Hypervisor Manager requests the server virtualization
infrastructure to perform the shut down process on the Source
Server. This process includes shutting down the VM on the
Source Server and after the VM has been shutdown,
performing a De-Associate, step 5 in Figure 10.

In step 6, once the De-Associate completes, the Hypervisor

Manager requests the server virtualization infrastructure to
perform the start up process on the Target Server. This
process first performs an Associate VDP operation, step 7.
After that operation completes successfully, the VM is started
up on the Source Server, step 8. In the case of a fault on the
switch that prevents the Associate from completing
successfully, the Hypervisor Manager would have select either
a different port, switch or server.

D. Pull Based VSI Type Use Cases

The version 0, Edge Virtual Bridge Proposal to the IEEE

802.1Qbg PAR provided a high level overview of a VSI Type
pull model, see Figure 12 below.

Figure 12: Pull based VSI Management - VM Association

The model shown in figure 12 enables switches to use less

memory for VSI state (i.e. VSI Type and Version content),
because each switch pulls only the VSI state in use by pre-

associated or associated VSI Instances on that switch. For the
case where a holistic VSI Manager is being used, this model
also enables access switches from different vendors to pull
VSI network state from the vendor’s accompanying VSI
Manager.

In Step 1 the VSI Manager discovers the access switches in

the network and loads the VSI Manager Identifier as defined
in the version 0, Edge Virtual Bridge Proposal to the IEEE
802.1Qbg PAR. The VSI Manager also loads its location, e.g.
IP Address, so the access switch knows what how to reach the
VSI Manager.

In Step 2, the VSI Manager creates a set of VSI Types. If

VSI Versioning is used, each VSI Type version is assigned a
VSI Version, which allows to the Network Manager to deploy
one or more VSI Versions at any given time. As stated
previously, the VSI Manager may be component of a larger
networking function, such as a Network Change and
Configuration Manager.

In step 3 the Hypervisor Manager queries the VSI Type

Database to determine the usage of available Version Type
IDs (VTIDs). For each NIC virtual port, the Hypervisor
Manager selects a VSI Type, and if VSI versioning is used, a
VSI version from the VTDB. The Hypervisor manager
assigns a VSI Instance ID for each NIC virtual port. The
Hypervisor manager may register the VSI Instance Identifier
with the VTDB, including what VSI Type and VSI Version
the Hypervisor plans to associate to the VSI Instance. If the
Hypervisor registers the VSI Instance Identifier with the
VTDB, the VSI Manager can check a pre-associate or
associate VDP handshake to assure the correct combination
are used.

In step 4, the Hypervisor manager creates a new Virtual

Machine (VM) instance and pushes the VM’s state into the
server targeted to host the new VM. Part of the state the
Hypervisor manager passes to the server virtualization
infrastructure (Hypervisor or Hypervisor agent, such as a
control partition), includes the VSI Type, VSI Version and
VSI Instance Identifier.

In step 5 before VSI Instance (VM) activation, the VDP

Module performs the VSI Discovery and Configuration
Protocol exchanges that associate the VSI instance with a
VTID, VSI Version, MAC Address and VLAN Identifier.
The VDP Module is intended to be implemented as part of the
server’s virtualization infrastructure (e.g. in the Hypervisor or
a service VM guest running on top of the Hypervisor). The
VDP Module is also implemented in the adjacent bridge.

In step 6, the access switch uses the VSI Manager Identifier

VSI Type
Database

System Admin

Network
Admin

Query available VSI types
Obtain a VSI instance

Push VM & VSI
info to server’s
virtualization
infrastructure

Physical End Station

Switch (a.k.a. Bridge)

VM

App

VM

App

VM

App

VSI
Manager

VM
Manager

2 Create set of
VSI Types

3

VEB or VEPA
4

5

Retrieve VSI
Information

6

L2 net(s)

Push VSI
Manager ID and
Address 1

VM

App

7

VM is brought on-
line after VDP
completes

VSI Discovery and Configuration
Protocol (VDP) - pre-Associate
or Associate

passed in the VDP exchange (step 5) to determine which VSI
Manager contains the VSI state referenced in the VDP
exchange. The access switch uses the VSI Type Identifier and
VSI Version to retrieve the VSI Type from the VSI Manager.
In step 7, after the Associate VDP exchange has completed
successfully the VM can start-up and the virtual NIC can be
begin to use the virtual port associated the VSI Instance
Identifier.

Figure 13 below describes the migration of a VM from the

Source Server on the left to the Target Server on the right.
Given the similarity between the push and pull model, we’ll
just describe the delta between the two models, which is to
perform steps 2.A & 2.B in the figure. In Step 2.B, the access
switch uses the VSI Manager Identifier passed in the VDP
exchange, step 2.A, to determine where to go for the VSI
state. The access switch uses the VSI Type Identifier and VSI
Version to retrieve the VSI Type from the VSI Manager.
Note, if in step 7 any of the VDP variables are different from
those use in the pre-Associate, the access switch should go
back to the VSI Manager to determine if the change is
appropriate. Again, the rest of the steps are the same as in
Figure 11 above.

Figure 13: Pull based VSI Management - VM Migration

E. Secure VSI Type Control Use Cases

Today’s server virtualization infrastructure does not

provide a mechanism for assuring that a given Hypervisor has
the authority to associate a given MAC Address to physical
network state. Similarly, there is no way of assuring a non-
virtualized server has the authority to associate a given MAC
Address to physical network state.

The version 0, Edge Virtual Bridge Proposal to the IEEE

802.1Qbg PAR can be used in conjunction with IEEE
802.1AE MAC Security to assure the Hypervisor, or OS for
non-virtualized servers, has the authority to perform a VDP
operation.

F. Cross-Data Center VSI Instance Migration Use Cases

The version 0, Edge Virtual Bridge Proposal to the IEEE

802.1Qbg PAR can be used in conjunction with layer-2
extension technologies, such as Virtual Private LAN Service
(VPLS) over a Multi-Protocol Label Switching service
provider infrastructure. The intended usage model is planned
workload migrations or workload redundancy.

Figure 14: Cross Data Center VSI Migration

Figure 14 depicts two Data Centers, with a total of 11 VMs

in 3 Affinity Groups. In this paper an affinity group
represents a set of VMs that have frequent communication
between VMs in the group. The colors in Figure 14 are meant
to depict different VLANs. The disk cylinders are meant to
represent storage associated with each affinity group.

The following considerations should be taken into account

when architecting a cross Data Center (cross-DC) use case
using the version 0, Edge Virtual Bridge Proposal and
MPLS/VPLS:

• To keep multicast domains within a single Data Center,
each VLAN should be kept within a single DC. That is,
cross-DC migration should not split a VLAN multicast
domain across Data Center boundaries. This can be
accomplished by moving all VM in a VLAN together.

• To keep communications between VMs in an affinity
group local, each affinity group should be kept within a

Target Server

Target Switch
(a.k.a. Bridge)

VM

App

VM
Manager

VEB or VEPA

2.A

L2 net(s)

Source Server

Source Switch
(a.k.a. Bridge)

VM

App

VM

App

VEB or VEPA

5

3

14

7

6

VM

App

8

VSI Type
Database

VSI
Manager

Retrieve VSI
Information

2.B

Store 4

Store11

Store 7

VPLS

VM 8

Web

VM 9

Web

VM11

DB

VM 10

App
Server

VM 1

Web

VM 2

Web

VM 4

DB

VM 3

App
Server

VM 5

Web

VM 7

DB

VM 6

App
Server

Affinity Group 3

Affinity Group 1

Affinity Group 2

Data Center 2

Data Center 1

Store 7
Copy

single Data Center. That is, cross-DC migration should
not split an affinity group across Data Center
boundaries, because VM-VM communications within
the affinity group would then have to travel across Data
Center boundaries. This can be accomplished by
moving all VMs in an affinity group together.

• The migration of an affinity group across Data Centers,
requires affinity group’s storage to also be migrated.
For example, this can be accomplished by using a
remote site synchronous copy combined with dual
active-active access to the remote site’s synchronous
copy. For example, in figure 13 a remote synchronous
site copy mechanism is used, between Data Center 1
and Data Center 2, to maintain a copy of affinity group
2’s store 7 in Data Center 2. Additionally, all the VMs
in affinity group 2 that need to access store 7, would
also have access to store 7’s copy in Data Center 2. If
affinity group 2 is migrated to Data Center 2, the VMs
that access store 7 would switch over to store 7’s copy
in Data Center 2.

V. CONCLUSION
The version 0, Edge Virtual Bridge Proposal to the IEEE

802.1Qbg PAR is used as the basis for this paper. The use
cases described in this paper enable the automation of network
state configuration, such as port access, traffic and security
flow controls. They also enable VM migration to include the
automated migration of all the network state associated with a
VM. In summary, the Ethernet Virtual Bridging use cases
covered in section IV of this paper enable network state, as
shown in Figure 15, to essentially be “moved” before the VM
is moved. The version 0, Edge Virtual Bridge Proposal
enables dynamic multi-tenant environments, with per tenant
type network controls that automatically migrate in
conjunction with tenant migration.

Figure 15: Cross Data Center VSI Migration

It is also worth noting that the Edge Control Protocol (ECP)

and the Virtual Station Interface Discovery and Configuration
Protocol (VDP) are complimentary to the IEEE 802.1Qbh
Port Extender protocol. For example, IEEE 802.1Qbh may be

able to use ECP and VDP to associate a VM virtual NIC’s
virtual port VSI Instance to a MAC Address, VLAN Identifier
and VSI Type. However, such a proposal has not been
brought forward at this time.

What’s next? In our view, a key research focus area is

liberating VM migration from layer-2 networking nuances.

VI. ACKNOWLEDGEMENTS
We are grateful to Daya Kamath, Vivek Kashyap, Jay

Kidambi, Srikanth Kilaru, James Macon, Daniel Martin, Vijoy
Pandey, Paul Congdon, Anoop Ghanwani, Pat Thaler, Chait
Tumuluri, Manoj Wadekar and Yaron Haviv, for their
insightful comments.

VII. REFERENCES

1 IEEE 802.1Qbg - Edge Virtual Bridging,
http://www.ieee802.org/1/pages/802.1bg.html.
2 Integrated Virtual Ethernet Adapter Technical Overview and
Introduction,
www.redbooks.ibm.com/redpapers/pdfs/redp4340.pdf.
3 Ko, Mike; Recio, Renato; Virtual Ethernet Bridging,
www.ieee802.org/1/files/public/docs2008/new-dcb-ko-VEB-
0708.pdf
4 Recio, Renato and Cardona, Omar; “Automated Ethernet
Virtual Bridging”, http://i-
teletraffic.org/fileadmin/ITC21_files/DC-CAVES/DC-
CAVES_-_AutomatedEthernetVirtualBridging.pdf;
9/14/2009.
5 Cisco Nexus 1000V Virtual Switch Data Sheet,
“http://www.cisco.com/en/US/prod/collateral/switches/ps9441
/ps9902/data_sheet_c78-492971.pdf” Cisco 3/2010
6 Cisco, Virtual Networking Features of the VMware
vNetwork Distributed Switch and Cisco Nexus 1000V Series
Switches,
www.cisco.com/en/US/prod/collateral/switches/ps9441/ps990
2/solution_overview_c22-526262.pdf.
7 HP, IBM, et. al.; ”version 0, Edge Virtual Bridge Proposal”,
http://www.ieee802.org/1/files/public/docs2010/bg-joint-evb-
0410v1.pdf; April 23, 2010.
8 CEE Authors, Yahoo Group,
http://tech.groups.yahoo.com/group/cee-authors/
9 Priority Based Flow Control, CEE Author version 0 proposal
to IEEE 802.1Qbb,
http://www.ieee802.org/1/files/public/docs2008/bb-pelissier-
pfc-proposal-0508.pdf
10 Enhanced Transmission Selection, CEE Authors version 0
proposal to IEEE 802.1Qaz,
http://www.ieee802.org/1/files/public/docs2008/az-wadekar-
ets-proposal-0608-v1.01.pdf
11 Data Center Bridging eXchange Protocol, CEE Authors
version 0 proposal to IEEE 802.1Qaz,
http://www.ieee802.org/1/files/public/docs2008/az-wadekar-
dcbx-capability-exchange-discovery-protocol-1108-v1.01.pdf

Network
Manager

Server 1

Physical Switch 1
(a.k.a. Bridge)

VM1 VM2 VM3

VEB

Network State
(e.g. VSI Type)
Network State
(e.g. VSI Type)

Server 2

Physical Switch 2
(a.k.a. Bridge)

VM4 VM5

VEB

L2 net(s)

11

2

1

1

