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Abstract—In datacenter networks routing is key to applica-
tions’ performance, stability and reliability. IEEE Data Center
Bridging Task Group is standardizing essential components of
Converged Enhanced Ethernet (CEE) for use as universal data-
center technology. As the first adaptive routing proposal for CEE,
the recent introduction of Switch Adaptive Routing (Switch AR)
has the potential to enable new CEE applications from the realms
of Cloud and High Performance Computing (HPC). We compare
its performance versus the current state of the art in routing
algorithms. We assess three most representative deterministic and
load-oblivious schemes, as well as a rate limiter-enhanced version
of Switch AR – all customized for CEE networks.

Using HPC application traces and synthetic benchmarks
borrowed from the InfiniBand and the 802.1Qau test suites,
we evaluate the performance benefits and drawbacks of each
scheme. We prove that Switch AR achieves better performance
than deterministic and load-oblivious when asymmetric loads can
be encountered on different alternative paths. On the other hand,
when the loads are uniform, oblivious load-balancing algorithms
deliver the best performance.

I. INTRODUCTION

Nowadays datacenter networks and HPC installations are
composed of multiple disjoint networks: (i) a Local Area
Network – Ethernet or Gigabit Ethernet, (ii) a System Area
Network – Myrinet, Quadrics or InfiniBand, and (iii) a Storage
Area Network – FibreChannel or InfiniBand. The convergence
of all these networks into a single one is the solution to reduce
cost, complexity and power consumption.

The technology recently promoted by the industry and
standardized by IEEE as universal network fabric is the
Converged Enhanced Ethernet. CEE provides a unified Layer 2
network that carries all the traffic generated by the applications
running in a datacenter using a single physical infrastructure.
Essential components of CEE are currently being standardized
by the IEEE 802 Data Center Bridging Task Group defining
the specifications for per-priority link-level flow control (LL-
FC) and traffic differentiation (802.1Qbb), Quantized Con-
gestion Notification (QCN) congestion management mecha-
nism (802.1Qau), and Enhanced Transmission Selection (ETS)
(802.1Qaz).

As the first adaptive routing proposal for CEE, the recent
introduction of Switch Adaptive Routing (Switch AR) has
generated interest, together with the potential to enable new
CEE applications from the realms of HPC and Cloud. To
fully realize this potential we must comprehensively answer a
performance question: (Q1) How does Switch AR compare

against the state of the art routing schema, currently used
in HPC and Cloud? Whereas Switch AR’s merits versus
QCN have been previously established [1], [2], here we shall
conduct a more exhaustive comparison, including most, if not
all, of the competing schema, using a wider set of bench-
marks. Contingent to Q1 is the related question: (Q2) Which
are Switch AR’s primary counter-candidates? To answer this
question we begin with a brief survey of routing for HPC and
datacenter interconnects.

Network topologies used for datacenters typically provide
path redundancy for fault resilience and higher bisection band-
width. Datacenter routing schemes exploit this path redun-
dancy to minimize congestion, increase throughput and lower
latency. Deterministic routing algorithms aim to distribute the
load statically from different sources/destinations over differ-
ent paths. Oblivious load-balancing routing algorithms exploit
path redundancy by distributing the flows from each source
across the alternative paths without considering network state
or traffic load. Switch AR enables the CEE switches to select
alternative paths by snooping the congestion notifications that
pass through them. Thus the load is dynamically distributed
in response to congestion feedback.

We analyze these routing algorithms and reveal their specific
benefits and drawbacks compared to Switch AR. Given the
limitations of the available analytical and NS-2/3 models, we
use the Venus-ZRL event-based simulation environment [3]
for modeling. For evaluation we use HPC application traces
and synthetic benchmarks previously employed for 802 and
InfiniBand simulations. We focus on fat-trees and standard
10Gbps Converged Enhanced Ethernet.

We make the following contributions: In SECTION II we
review the main features of CEE datacenter networks by
presenting the topology, the LL-FC, QCN and ETS mecha-
nisms. First contribution is a brief survey; in SECTION III we
introduce the routing algorithms under evaluation. As second
contribution, we enhance the original Switch AR by adding
QCN-compliant rate limiters. SECTION IV describes our sim-
ulation environment and the traffic benchmarks. Finally, as
our third contribution, we perform a rigorous quantitative
evaluation of all the routing schema presented and analyze the
results in SECTION V. We present related work in SECTION
VI and conclude in SECTION VII.
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Figure 1. Multi-tiered datacenter with edge, aggregation and core switches.

II. DATACENTER NETWORKS

Future datacenters will typically consist of 1K-100K pro-
cessing nodes connected by a converged network fabric. The
classical topology for datacenter networks follows a tiered
approach as in FIGURE 1. The processing nodes are connected
to edge switches that provide the connectivity between the
nodes collocated in the same rack. The edge switches in turn
are connected to an intermediate layer of aggregation switches
that connect different racks together in a cluster. The clusters
can be further linked through another layer of core switches
[4], [5].

The packets generated by one of the processing nodes
have to traverse a few levels of switches before reaching the
destination nodes. A common multi-stage interconnect is the
fat-tree [6]; hence we will focus on this topology in this paper.

A. Topology: Fat-Trees

A k-ary n-tree consists of N = kn processing nodes and
n · kn−1 switch nodes. The switch nodes are organized on n
levels, each level having kn−1 switches. All switches have the
same arity 2k, excepting the top switches, which have arity
k. This type of network has constant bisection bandwidth and
path redundancy [7].

The k-ary n-trees and their slimmed versions belong to the
family of extended generalized fat-trees as explained in [6].
An example of a 2-ary 3-tree can be seen in FIGURE 2.

A deadlock free path in a fat-tree is computed by selecting
an intermediate switch from the set of Nearest Common
Ancestors (NCA) of the source and the destination node [8]. A
NCA is a common root of both the source and the destination
located at the lowest possible level. Packets are following an
up-phase from the source to the NCA, and then a down-phase
from the NCA to the destination node.

For example in FIGURE 1, to send data from source P0 to
source P7, there are two NCAs: the two switches on level 3.
Packets leaving source P0 travel upward until they reach one
of the level 3 switches, then downward to destination P7.

B. Converged Enhanced Ethernet (CEE)

CEE comprises the following improvements made to the
traditional Ethernet: (i) per-priority link-level flow-control and

Figure 2. Saturation tree formation in a fat-tree network. End-node P7 is slow
in processing incoming packets sent from nodes P0 ... P3. In the first step,
congestion appears on the edge link connecting P7 with the corresponding
level 1 switch. In the second step, the dashed links from level 2 to level 1
are affected. In the third step, congestion propagates up to root level. Other
flows that do not even target P7 are now potentially affected (e.g. P3 → P4).
If the initial hotspot persists long enough, the domino effect created by the
LL-FC continues and the congestion propagates further back to level 2 and
level 1 (not drawn). The network experiences a catastrophic loss of throughput
affecting all the nodes.

traffic differentiation (802.1Qbb) [9], (ii) congestion manage-
ment (802.1Qau) [10], (iii) enhanced transmission selection
(802.1Qaz) [11]. New virtualization efforts are on the way in
802.1.

1) Link-Level Flow-Control (LL-FC): In order to improve
performance and reliability, the CEE networks are specifically
designed to prevent frame losses, by using the LL-FC mech-
anism. It works by pausing the transmission on an input link
when the corresponding buffer occupancy exceeds a certain
threshold, here called high watermark. The transmission is
paused using a special control frame sent to the upstream
device. There are two effects to this approach. The desired
effect is that the congestion information is propagated from the
congestion point to the upstream devices. Hence, eventually
the core congestion is pushed to the network edge.

On the other hand, when a link is paused, the buffers of the
upstream device fill up and new upstream links will have to be
paused. This has the potential to continue recursively affecting
more and more devices. Therefore if the congestion persists,
it can spread from one network device to another forming a
congestion tree [12], [13]. Previous studies [12] showed that a
congestion tree can fill all the buffers in only a few round-trip
times, too fast for software to react. An example about how a
congestion tree can form in a network is shown in FIGURE 2.

This undesired effect of LL-FC can cause a catastrophic
loss of throughput of the entire network. To make the situation
worse, after the original congestion subsides, the congestion
tree dissipates slowly, because all the buffers involved must
first drain [14].

The LL-FC mechanism was extended to support multiple
priority classes, i.e., Priority-based Flow Control (PFC): each
priority class has its own buffer and LL-FC. The traffic is
differentiated in 16 priority classes. Congestion generated by
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Figure 3. QCN load sensor mechanism. The sampling rate Ps is a function of
the measured feedback Fb. For low congestion levels, one every 100 received
frames is sampled. Sampling rate increases linearly with the severity up to
one every 10 received frames.

a priority class does not influence the other priority classes.
2) Quantized Congestion Notification protocol (QCN):

QCN is a congestion management mechanism defined in the
IEEE standard 802.1Qau [10]. The final version of the standard
provides a set of protocols and procedures for congestion man-
agement of long-lived data flows. QCN-compliant switches
can detect and signal congestion to the end-nodes. The QCN-
capable end-nodes respond to the congestion information by
limiting their transmission rate.

QCN consists of two algorithms:
(i) Congestion detection: This is a mechanism used to

observe the state of the network and to detect congestion.
Each switch samples the incoming frames with a variable and
randomized sampling rate (see FIGURE 3). For each frame
sampled, the switch measures the output queue occupancy
and computes a feedback value Fb. The feedback value is
computed as Fb = −(Qoff + w · Qdelta). Qoff is the dif-
ference between the measured queue occupancy Qlen and an
equilibrium queue occupancy Qeq , considered normal during
the operation: Qoff = Qlen − Qeq . Qdelta is the change
of the queue occupancy from the preceding sample instant:
Qdelta = Qlen − Qold. If the computed Fb is negative,
the switch generates a congestion notification message, sent
back to the end-point that generated the sampled frame, i.e.,
culprit source. Hence the congestion notification informs the
source about the hotspot, essentially conveying its location
via the Congestion Point ID, whereas the feedback value
Fb provides a 6-bit quantitative indication of how severe
the bottleneck is. When a higher precision is required, the
congestion notification also entails two 16-bit values, i.e., the
raw queue offset and delta.

(ii) Source reaction: This is a mechanism by which the

Figure 4. Enhanced Transmission Selection bandwidth allocation for a
10Gbps link with three priorities: low, medium and high. The offered traffic
intensity for the low-priority is constant: 7Gbps. Before T1, the intensity of
the medium and high-priority traffic allows the low-priority to receive the
required bandwidth of 7Gbps. After T1, the intensity of the medium and
high-priority traffic increases gradually, thus reducing the capacity left to the
low-priority. The low-priority traffic encounters a bottleneck.

source limits its transmission rate in response to the conges-
tion notifications received from the QCN-enabled switches.
When a notification is received, the source instantiates a Rate
Limiter (RL) that adjusts the transmission rate according to
the feedback received: the higher the feedback, the higher the
rate reduction. The RL also provides a way to recover: if no
congestion notification has been received for a certain number
of sent frames, it can be assumed that congestion has vanished
and the source can increase its transmission rate.

The above description shows that the QCN algorithm
matches the transmission rate of an end-node with the available
bandwidth in the network. Unlike in earlier proposals (Ethernet
Congestion Management – see [15] for a full description) there
is no positive feedback in QCN. Hence, the source has to
recover the bandwidth autonomously. This rate recovery is
performed in three phases. In the first phase (Fast Recovery),
a few binary increase steps are performed similar to BIC-
TCP [16]. In the second phase (Active Increase), several linear
increase steps take place, followed by an optional superlinear
increase regime (Hyper-Active Increase) in the third phase.

3) Enhanced Transmission Selection (ETS): The enhanced
transmission selection mechanism provides a framework to
support bandwidth allocation to traffic classes. This is needed
because different applications have different bandwidth and
latency requirements. For time-sensitive applications requiring
minimum latency, a strict priority scheduling is needed. Active
priorities that generate bursty traffic can share bandwidth.
When a priority is not using its allocation other priorities can
use the bandwidth. An example of the operation of ETS in a
datacenter with three priority classes is depicted in FIGURE
4. Note how the low-priority traffic bandwidth slice shrinks
under the pressure of the high-priority traffic.

III. DATACENTER ROUTING ALGORITHMS

Routing involves choosing a path from a source node to
a destination node. The path is chosen in order to optimize
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a metric such as hop-count, latency or cost. In fat-trees, due
to the high path redundancy, there are multiple shortest paths
from source to destination. In this case it is desirable that the
routing algorithm also performs the load-balancing between
these alternative shortest paths.

According to whether the routing algorithm uses the load
status information generated in the network, the routing
schemes can be classified as oblivious (ignore state) or adap-
tive (use state) [17], [18].

In the following paragraphs we will describe the selected
routing schemes. We assume that the network has a k-ary n-
tree topology.

A. Deterministic routing

Deterministic routing always uses a single fixed path from
a given source S to a given destination D. The choice of
paths is done such that the load is distributed evenly across
the switches that act as Nearest Common Ancestors (NCA)
between different sources/destinations.

An extensively studied deterministic routing technique is the
modulo-based D-mod-k routing [19], [20], [21] also know as
Stage And Destination Priority - SADP [22], [23]. To establish
a path S → D, the algorithm chooses the parent

⌊
D

kl−1

⌋
mod k

at the level l in the upwards phase of the routing until a NCA is
reached. An example of D-mod-k routing is given in FIGURE
5. The NCA choice is dictated by the destination address.
Consequently flows with different destinations use different
NCAs and the traffic sent to different destinations is distributed
statically over alternative paths.

Another approach uses the source address in the choice of
the NCA. This is accomplished by the modulo-based S-mod-
k routing that chooses the parent

⌊
S

kl−1

⌋
mod k at every level

l in the upwards phase. Using this algorithm the flows with
different sources use different NCAs.

Various studies [22], [24] proved that D-mod-k is one of the
best performing deterministic routing algorithms. Additionally
it has the advantage of in-order delivery, hence no need
for resequencing buffers at the destination. Nonetheless, its
throughput can suffer because of resource conflicts and head-
of-line blocking. It is always possible to find particular traffic
patterns under which two or more flows contend on the same
link. Such conflicts are unavoidable owing to the static nature
of the algorithm [24], [23].

B. Random routing

Random routing [25], [26], [27] uses all available paths from
S to D with equal probability. This approach distributes the
loads across the different links and switches.

The Valiant routing algorithm [25] states that, in a network
with an arbitrary topology, for each packet from S to D, a
random intermediate node R must be selected and the packet
is then routed along the path S → R → D. In fat-trees the
role of the intermediate nodes is taken by the NCAs. To route
a packet from S to D, a random NCA is chosen and the packet
sent through that NCA. The choice of NCA can be done at

Figure 5. D-mod-k routing in a 2-ary 3-tree (k = 2). Source P0 sends
a packet for destination P6 (D = 110). The packet arrives at switch S1 at
level 1, which computes

⌊
D
k0

⌋
mod k = 0 and selects parent #0. Then the

packet arrives at switch S2 at level 2, which computes
⌊

D
k1

⌋
mod k = 1 and

selects parent #1. The packet reaches the root switch S3, which is NCA for
P0 and P6. From the NCA, there is a single downward path available to the
destination P6.

the source, as in [26], or at each step of the upward phase as
in the Connection Machine CM-5 [27].

Misordering is possible, hence any traffic type that requires
in-order delivery needs a resequencing buffer at the destina-
tion. The throughput may be reduced by uneven loading of
the alternative paths. If one of the NCAs is loaded more than
others, still it will receive the same amount of traffic, because
the division is statical.

C. Hashed routing

Hashed routing is a special case of Equal-Cost Multi-Path
routing detailed in [28]. In hashed routing, each flow from
S to the D is characterized by a flow identifier. The source
uses a hash function that takes as input a flow identifier and
outputs a path selected from the set of alternative paths to
the destination. The flow is usually identified by a 5-tuple
containing the source and destination address (Layer 2 or 3),
the source and destination port, and the protocol number.

For fat-trees, the number of alternative paths is determined
by the number of NCAs. Hence the hash function has to select
an NCA for each flow identifier given as input. This distributes
the flows evenly over different links. Since all packets of a
flow follow the same path, as in deterministic routing, no
resequencing is required. Care is still needed for a flow level
ordering.

Hashed routing performs similar to random routing for
sources that generate a large number of “mice” flows, which
will select different paths because of hashing, thus the load is
distributed across the network. On the other hand, if the num-
ber of flows between S and D is small, hashing degenerates
into deterministic routing and a single path will be used.

D. Switch-based adaptive routing (Switch AR): The Original
and the RL-enhanced Version

Switch AR [1], [2] uses the QCN congestion information to
steer the traffic. Switches are QCN-enabled and continuously
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monitor the status of their outbound queues. If congestion
is detected in one of these queues, the switch generates a
congestion notification that travels upstream from the conges-
tion point to the originating source of the packets deemed as
culprits.

Congestion notifications are snooped by the upstream
switches, which thus learn about the downstream congestion.
When a switch detects congestion, it can reroute the traffic
to alternative paths, to avoid the hotspots, and to allow the
congested buffers to drain. In this way, the path diversity
is exploited, theoretically better than by the load-oblivious
schemes.

If the new path, however, is also congested, the Switch AR
algorithm will revert to the original path, hence oscillations are
possible. These are likely to appear in networks with multiple
hotspots or, when multiple flows contend as observed in [29].

The switch uses the snooped congestion information to
annotate its routing table with a congestion level for each
port through which a given destination is reachable. When
a frame for this destination arrives, it will be routed through
the port with the minimum congestion level. By marking the
ports as congested with respect to each destination, the switch
reorders its routing preferences to favor the uncongested ports.
The algorithm must ensure that all the upstream switches
learn about congestion. Congestion notifications are routed
randomly towards the culprit source. Thus all the upstream
switches of all the alternative paths can detect the hotspot.

The Switch AR algorithm is using binary route split ratios.
When congestion is detected on one path, the entire traffic
flow is switched to an alternative path. The advantage is in
simplicity and low-cost. The resources required are minimal
because only some additional per-port data needs to be stored
[1], [2]. Another advantage is that the switch forwarding logic
is unchanged. Only the routing table is updated in response to
congestion notifications.

One can argue that the binary split can lead to oscillations.
In order to avoid oscillations, fractional route split ratios can be
used: in response to congestion only a fraction of the traffic is
rerouted to an alternative path. However, this comes at a higher
cost, as the switch will have to store per-flow information.
Extensive changes to the forwarding logic are required. For
example, in order to divert 20% of the traffic to an alternative
path, every 10 packets, 2 packet have to be rerouted.

We are currently working to improve Switch AR’s stability
by a less aggressive load re-routing decision while keeping the
hardware requirements as low as possible.

Since Switch AR is a route-only scheme, we also want to
test its coupling with a congestion management scheme such
as the QCN. Therefore we devise a new version, called Switch
AR with Rate Limiters, whereby QCN compliant rate limiters
can be instantiated at each source, for each “culprit” flow.
These flows are identified solely using the destination address
carried by the congestion notifications. When a congestion
notification is received, a rate limiter is instantiated at the flow
source. The algorithm used for rate limitation is identical with
the one described in the 802.1Qau standard.

Figure 6. The structure of the Venus-ZRL simulation environment. The MPI
applications are run on a real parallel machine. Traces of the MPI calls are
stored in files, which are replayed by the Dimemas simulator. Venus-ZRL
initializes the simulation using the provided topology, routes, mappings and
configuration file. The messages generated by Dimemas are transported by
the network simulated in Venus-ZRL and eventually returned to Dimemas.
Both simulators output statistics that can be visualized with specific tools and
used for analysis and validation.

IV. EVALUATION METHODOLOGY

A. Simulation environment

To replay network traces and to study the routing effects
on the application performance, we used two simulators cou-
pled in an end-to-end simulation environment: Dimemas and
Venus-ZRL [3].

Venus-ZRL is an event-driven simulator developed at IBM
Research – Zürich, capable of flit level simulations of process-
ing nodes, switches and links. It is based on OMNeT++ [30],
an extensible, C++ simulation library. It was developed as an
extension of the Mars-ZRL network simulator [31].

Venus-ZRL supports various network topologies such as fat-
trees, tori, meshes, and hypercubes. It can simulate different
network hardware technologies, such as Ethernet, InfiniBand,
and Myrinet. Additionally, it can also model irregular networks
topologies and new types of hardware.

Dimemas is a Message Passing Interface (MPI) simulator
that models the semantics of the MPI calls. The two simulators
communicate through a co-simulation interface. When an MPI
message is produced, Dimemas passes the message to Venus-
ZRL, which models the segmentation, buffering, switching,
routing, reassembly and eventually delivers the message back
to Dimemas.

A brief scheme of the simulation environment is shown in
FIGURE 6; a more detailed description can be found in [3].

Moreover, Venus-ZRL can operate as a standalone simula-
tor; in this case the traffic is generated by synthetic traffic
sources used to simulate various traffic patterns, such as
Bernoulli, bursty, on/off or Markov traffic. Also we can simu-
late communication patterns ranging from simple permutations
to more complex sweeping hotspot scenarios.

The simulation environment has already been tested in
InfiniBand, Myrinet and 802/CEE simulations.
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Figure 7. Permutation traffic relative total throughput. As reference we consider the total throughput achieved by the same traffic pattern on an ideal crossbar.
Deterministic routing generates conflicts on multiple links. Because of its static nature it cannot avoid them, hence looses up to 70% of the throughput. Switch
AR with RLs looses around 40% because sources can not decide whether the received congestion notifications were already used for traffic steering or not;
hence, all of them are fed into the rate limiters.

B. Network model

The network we are modeling in Venus-ZRL has the fol-
lowing components:

(1) Processing nodes – The processing nodes are the sources
and destinations of the network traffic. They are assumed to
have an infinite bandwidth link with the network adapters. In
the processing nodes, we gather statistics such as the delay.
They are computed as the difference between the time the
packet was generated at the source and the time it was received
at the destination. Thus we make sure the simulator also
accounts for the time spent by the packets waiting before
entering the network.

(2) Network adapters – The network adapters are respon-
sible for link-level flow control and the source reaction al-
gorithm for congestion management. Out-of-order arrivals are
resequenced in the receive buffer.

(3) Switches – The switches are network devices that
transfer packets from their input links to the output links. They
are responsible for link-level flow control, contention reso-
lution and congestion detection. In switch-controlled routing
schemes, also the routing decisions are made by the switches.

Switches are modeled as ideal input-buffered output-queued
switches (IBOQ). When a packet arrives on an input link,
it is buffered in the input buffer associated with that link.
Simultaneously, an output port is selected according to the
routing algorithm in use. The incoming packet is enqueued in
the output queue associated with the output port selected. If the
output queue is empty, the packet will be sent out immediately.
If there is contention on the output port, the packets will be
sent out in FIFO order. The switch we model implements a
cut-through switching policy.

There are two main differences between the ideal switch we
are using and a real switch:

• The input bandwidth in each switch output queue is N
times the line rate. Hence, it is possible for all input ports
to simultaneously enqueue a packet in an output queue.
In a real system, for a high arity switch, this is unrealistic
because of physical limitations.

• The size of each switch output queue is only bounded
by the sum of all the input buffers for all ports. In a
real system, the size of the output queue is bounded to
a smaller value than the sum of all the buffers capacities

in the device. Hence a single output queue can not use
the entire buffer memory in the device.

C. MPI Traces

We have selected nine different MPI applications. Five of
them (BT, CG, FT, IS, and MG) are part of the NAS Parallel
Benchmark [32] developed by NASA, targeting performance
evaluation of highly parallel supercomputers. The other four
applications (WRF, NAMD, LISO, and Airbus) are used by the
research community for weather prediction and fluid dynamics
parallel simulations.

The applications were first run on the MareNostrum su-
percomputer of the Barcelona Supercomputing Center. While
the application was running, the MPI calls were recorded in a
trace file. Afterwards, the traces are replayed in our simulation
environment.

D. Simulation parameters

As previously explained, the congestion notifications are
generated by the QCN-enabled switches. The algorithm used
for congestion detection and reaction is QCN 2.2.

The network technology is 10Gbit Ethernet with 1500B
maximum transmission unit. TABLE I contains the most im-
portant parameters for our simulations.

Table I
SIMULATION PARAMETERS

Parameter Value Unit Parameter Value Unit
link speed 10 Gb/s sample interval 150 KB
frame size 1500 B buffer size/port 100 KB
min. rate 100 Kb/s fast recovery thr. 5
Qeq 20 KB byte count limit 150 KB
Wd 2 active incr. 5 Mb/s
Gd 0.5 hyperactive incr. 50 Mb/s
quantization 6 bit min. decr. factor 0.5
RL timer 15 ms extra fast recovery enabled
AR timer 250 ms LL-FC enabled

V. RESULTS

All the routing schemes described in SECTION III were
implemented in Venus-ZRL. These schemes are a represen-
tative set of common load-oblivious and deterministic routing
algorithms.

From the load-oblivious class, we assess random (Random)
and hashed routing (Hashed). From the deterministic class, we
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Figure 8. Input generated hotspot at edge links: victim flow throughput. The ideal throughput is 95% of link speed (1187MB/s). Random and switch adaptive
schemes without RLs generate large congestion trees. Consequently, the victim flow’s throughput drops during the congestive pattern. Deterministic routing
limits the expansion of the congestion tree.

evaluate D-mod-k routing (Deterministic). Finally we assess
the switch-based adaptive routing algorithm (Switch AR). For
all these algorithms, we consider one version with rate limiters
and one version without rate limiters. The rate limited version
will bear the suffix ”RL“.

To begin with, we measure the performance using a few
synthetic benchmarks, as is typically done in this field. Next,
we continue with trace-driven simulations.

A. Synthetic traffic

Some of the synthetic traffic patterns we use in the following
subsections are part of the Hotspot Benchmark used by IBM
Research and 802 Task Groups. One or more sources can
generate a hotspot at a given location in the network by
injecting a predetermined amount of (in)admissible traffic for
that location. Flows that pass through the hotspot are referred
as hot flows, while the others are referred as cold flows.

Hotspots are classified using the following criteria:
• Type

– Input Generated – The inputs (sources) require more
bandwidth than available in the network. Typical exam-
ples are the patterns when flows from different sources
converge into the same link exceeding its capacity.
– Output Generated – An output (network device) is
slow in processing incoming packets. For example, a
traffic destination can be slowed down because of a
CPU overload. Another possible cause can be a switch
servicing traffic from different priorities. In this case,
output generated hotspots can appear because a part of the
available bandwidth is reserved for the higher priorities.

• Severity – measures the ratio between offered and ac-
cepted traffic (the drain rate of the bottleneck link during
congested phase).
– mild – smaller than 2
– moderate – between 2 and 10
– severe – higher than 10

• Degree – the fan-in of the congestive tree at the hotspot
(i.e. the percentage of all sources that inject hot flows
into the hotspot).
– small – less than 10%
– medium – 20% to 60%
– large – more than 90%

We use a network with 32 processing nodes connected by a
2-ary 5-tree network. This network has the round-trip time
and average hop count of a large datacenter interconnect. In
an average datacenter, the number of nodes is on the order of
10K, but also the arity of switches is much higher (32 to 64
ports). Because of these factors, a large interconnect will still
have a small number of levels (3-5), as in our simulation.

1) Permutation Traffic: We evaluate the routing schemes
using both uniform and permutation traffic. All processing
nodes inject traffic into the network at 90% of the link capacity.
FIGURE 7 shows the results of this evaluation. For each
routing scheme, we display the relative total throughput of
all the flows in the simulation. As reference we consider the
throughput achieved by running the same traffic pattern on an
ideal crossbar network, with the same number of processing
nodes. A description of the permutation patterns employed can
be found in [17] CHAPTER 3.2 or [18] CHAPTER 9.2.

We also applied uniform traffic, which does not generate
congestion. All routing schemes can successfully handle it, as
the reference does. We omit these results as trivial.

On the other hand, permutation traffic is difficult for the
deterministic schemes. Because of its static nature the de-
terministic routing cannot reroute the traffic if two flows
collide. For some permutations this generates massive losses
of throughput. Also, switch-adaptive routing with rate limiters
suffers a loss of throughput. This happens because in permu-
tation traffic multiple hotspots are generated. Therefore it can
happen that a flow that is being rerouted to avoid a congested
link is routed to another congested link. Eventually this will
activate the rate limiters.

The permutation traffic pattern is the quasi-worst-case sce-
nario, because we do not always expect in normal datacenter
operation that the nodes start communicating in synchronized
manner – except some HPC and special applications.

2) Input-generated hotspot at the edge links: The objective
of this test is to check whether the routing algorithms are
generating congestion trees. We create an input-generated
hotspot of mild severity and small degree. To achieve this,
we direct 45% of the traffic from 4 different nodes to a single
destination node for 20 ms. The entire simulation lasts 50
ms. The congestion tree evolution can be directly visualized
by inspecting the length of the queues for different switches
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D with different congestion levels.

Figure 9. Output-generated congestive pattern at root links. The ideal throughput is 90% of link speed (1125MB/s). Random routing (a) drops to 40%
(500MB/s) because of head of line blocking in switch S1 (f). For random routing queues are unevenly loaded (d) producing out-of-ordering and jitter. Switch
adaptive routing achieves on average 60% (750MB/s) and oscillates (b); its queues are more uniformly loaded (e). Deterministic routing uses only Path1,
hence reaches only 25% (312MB/s) (c).

during simulation, or indirectly by measuring the throughput
of a cold flow.

We adopt the second method; in FIGURE 8 we show the
throughput of the ”victim“ cold flow when using different
routing schemes. The hot flows converge only on the edge
link connecting the destination with the network. The cold flow
does not pass through that link, hence its throughput should
not be affected by the bottleneck. However, when a congestion
tree is formed, many other links can saturate, as shown in
FIGURE 2. Hence the cold flow can be indirectly affected by
the secondary hotspots belonging to the same congestion tree.

As seen in FIGURE 8(a) and FIGURE 8(b), both random
routing without RL and switch adaptive routing without RL
can generate congestion trees. On the other hand, activation of
rate limiters will eliminate this issue. We observe from FIG-
URE 8(c) that deterministic routing is less strongly affected.
This is because random routing and switch adaptive use of
all the available alternative paths. Hence, they tend to spread
the congestion. Deterministic routing uses a single path all the
time, hence congestion is limited to that path. These results
confirm the observations from [23] about the undesired effects
of adaptivity.

3) Output-generated hotspots at root links: The objective
of this test is to study the effects of multiple hotspots with
different severities on the routing algorithms. Multiple hotspots
can appear in datacenters running different applications on
different priority levels which might employ different routing
strategies. We simulate this scenario by reducing the service
rate of some links situated at the root level in the fat-tree.
At a higher level, this is equivalent to having multiple paths
between a source and a destination, each path having a

different available bandwidth. As depicted in FIGURE 9(f),
there are four paths between the source and the destination; on
each path there is a congestion point. The available bandwidths
on each path are 25%, 10%, 10% and 50% of the maximal
link bandwidth, respectively.

The source injects packets at 90% of the link capacity,
and FIGURE 9(a,b,c) shows the throughput at the destination.
Deterministic routing, FIGURE 9(c), achieves 25% of the
link throughput (312MB/s) because the path selected happens
to be the Path1. Random routing, FIGURE 9(a), achieves
40% throughput (500MB/s) owing to head-of-line blocking.
Initially the packets are uniformly distributed between the four
flows. The severely congested paths slow down the mildly
congested ones, and the total throughput stabilizes at approx.
40%. This is confirmed by inspecting the queue lengths at
the congestion points in FIGURE 9(d). The queues for Path2

and Path3 are the most congested ones, whereas the other
two queues are almost empty. The activation of rate limiters
induces no significant changes.

Switch-adaptive routing oscillates between the four paths.
This is visible by inspecting the throughput graph in FIGURE
9(b). The oscillation causes a large number of packets to be
received out of order. When switch adaptive routing selects a
path, the queue associated with the hotspot fills. The switch
starts to generate congestion notifications and the upstream
switches reroute the traffic on a different path. However,
there are still packets that are in the queue of the previous
path, which has to drain. This out-of-ordering generates the
throughput oscillations.

Switch AR reaches ca. 60% throughput (750MB/s) on
average. The 60% throughput is obtained because immediately
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(a) Without high-priority traffic. Random routing produces the shortest execution times. Switch adaptive routing looses throughput because of frequent
oscillations. Deterministic and hashed routing lack adaptivity. Hashed is strongly affected by the large messages generated by applications such as CG.

(b) With high-priority traffic. Switch AR has the shortest execution time. Adaptive routing can detect the hotspot and avoid it, while random routing
continues to send packets through the congested link. Deterministic routing does not use the congested link for half of the connections, on average. Hence
it outperforms the random scheme.

Figure 10. Relative slowdowns of HPC workloads (smaller is better). The reference is the runtime needed to execute the trace on a single-hop ideal crossbar.
Results are sorted by their average slowdown. In (a) the HPC applications can use the full bandwidth of each link. In (b) we simulate the impact of high-priority
traffic by reducing the bandwidth of a single link to 33% (by 66%).

after a flow is rerouted to a new path the buffers along the
previously used path are still draining. Hence for a limited
time period, multiple paths are in use. Since in FIGURE 9(b)
path changes are frequent the average throughput achieved
by Switch AR is higher than when using only the least
congested path, i.e. 50%. Oscillations here actually increase
the throughput, although introduce jitter and misordering.

However, we observe that the queues utilization is quite
equal (FIGURE 9(e)). Switch AR manages to partly discover
the severity of each hotspot, albeit it is penalized by oscilla-
tions.

Subject of ongoing research, Switch AR’s instability could
be improved by adopting fractional split ratios, instead of
switching the full load from a path to another.

B. HPC Workloads

In this subsection we evaluate the routing schemes using
the HPC application traces presented in SECTION IV-C. The
results of the evaluation are plotted in FIGURE 10(a) and
FIGURE 10(b). To facilitate the comparison, we display the
relative slowdowns of each routing scheme. The reference
is the runtime needed to execute the trace on a single-hop
ideal crossbar network. We simulate a datacenter with 128/256
processing nodes connected by a 2-ary k-tree network.

We considered two scenarios. In the first one, we run the
application on an empty network, with no other traffic present.
The application can use the entire bandwidth of each link.

In the second scenario, we apply a reduction of the band-
width on a single link. We believe that the second scenario is
more realistic. The motivation of this approach is to test how
the routing algorithm works for low-priority traffic, assuming

Priority Flow Control and Enhanced Transmission Selection
are implemented in the real datacenters. The high-priority
traffic has a guaranteed fraction of bandwidth allocated. The
low priorities can freely use this fraction only when there is
no high-priority traffic. On the other hand, when there is high-
priority traffic, the low-priority traffic will act as if the links
have lower and variable capacities, as modulated by the high
priorities active above (see FIGURE 4 for an example).

In all simulations, we employed random task placements. In
a virtualized datacenter it is realistic to assume that the tasks
are usually assigned to processing nodes in an arbitrary way,
depending on various parameters such as node load or task
priority.

From FIGURE 10(a) we can see that the oblivious random
routing algorithm delivers the shortest average execution time.
On the other hand, when we introduce an imbalance in the link
bandwidth caused by the execution of a high-priority applica-
tion, the situation changes and the Switch AR provides the
shortest execution time (FIGURE 10(b)). The load-oblivious
solutions always balance the load evenly between the available
paths. When the slightest imbalance appears, they suffer a loss
of throughput due to head-of-line blocking: the busy links will
slow down the free links.

In FIGURE 10(b) even the deterministic algorithms can
sometimes perform better than the oblivious routing. This
is also confirmed by the results in [24], which showed that
random routing in some cases performs worse than deter-
ministic schemes. The intuitive cause of this behavior is that
deterministic schemes can be ”lucky“ for some flows and
completely avoid the hotspot, whereas random routing, which
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(a) Without high-priority traffic.

(b) With high-priority traffic.

Figure 11. Relative slowdowns of scaled HPC workloads (smaller is better). The reference is the runtime needed to execute the trace on a single-hop ideal
crossbar. Results are sorted by their average slowdown. In (a) the HPC applications can use the full bandwidth of each link, while in (b) we simulate the impact
of high-priority traffic by reducing the bandwidth of a single link to 33% (by 66%). Same observations as for FIGURE 10 apply. The rate-limited versions or
random routing and Switch AR, respectively, produce the shortest execution times because they avoid the end-point congestion generated by scaling.

uses all paths at the same time, is forced to always pass
through the hotspot.

The deterministic routing provides long execution times
because of the lack of adaptivity and load-balancing. This is
particularly visible when running applications that generate
long messages such as the CG benchmark that produces
750KB messages. A single conflict between two long mes-
sages and the execution time can be substantially increased.
From the same reason hashed routing also slows down the
application.

C. Scaled HPC Workloads

For some of the applications listed in SECTION IV-C, we
observed that they do not put pressure on the communication
network. For others such as IS or LISO, the differences ob-
served between the routing schemes were minor. This was due
to the fact the applications rarely exchanged small messages.
For such applications, contention was infrequent, hence the
adaptive routing algorithms could not provide any benefit. This
is confirmed by previous work. In [23] the authors showed that
the adaptivity does not provide any improvement for some
categories of workloads.

To stress the communication network more and to empha-
size the differences between the various routing schemes, we
scaled the trace files. When a trace is scaled the size of all
the messages generated by its execution is multiplied with a
given scale factor. We used different scale factors to ensure
that the communication demands of the application are high
enough to generate contention. TABLE II lists the scale factors
used and the average and maximum message size the scaled
application uses. For most of the applications the maximum
message size is on the order of MB.

Table II
TRACE SCALING FACTORS

Trace Scale factor Mean size Max size
BT 10x 69.4 KB 1.23 MB
CG 10x 1.61 MB 7.5 MB
FT 30x 1.31 MB 3.9 MB
IS 1000x 158 KB 2.06 MB

LISO 10x 40 KB 121 KB
MG 100x 2.96 MB 13.5 MB

WRF 100x 0.93 MB 9.7 MB

The results are in FIGURE 11(a) and FIGURE 11(b). Scaling
of traces does not radically changes the ranking of the routing
schemes, but will accentuate the differences between them. For
empty network the random routing is still the best followed
by the Switch AR, deterministic and hashed routing. As in the
previous section, for a network where high-priority traffic is
present, the Switch AR provides the shortest execution time
followed by the random, deterministic and hashed routing.

We can notice that the rate-limited versions of random rout-
ing and Switch AR perform better than the versions without
RLs. As a side effect of trace scaling end-point congestion is
generated in workloads like MG or WRF. The adverse effects
of this end-point congestion are eliminated by the use of RLs
as explained in SECTION V-A2.

VI. RELATED WORK

For an extensive overview of routing mechanisms, the reader
is referred to CHAPTERS 8 to 11 of [17] and CHAPTER 4 of
[18].

Deterministic routing was analyzed in [19], [20], [21] and
[22], [23]. Random routing was studied in [25], [26], [27].
In [33], an algorithm that attempts to randomize the set of
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messages chosen for delivery is presented. Hashed routing
is presented in [28] as a special case of Equal-Cost Multi-
Path routing described in [34]. Switch adaptive routing was
introduced in [1], [2].

In [15] an overview of the proposed schemes for CEE
congestion management is given. An alternative delay-based
congestion management scheme is introduced in [14] and
proved to be efficient.

In [35], a connection scheduling algorithm for fat-trees
is introduced. It needs a central controller for all switches
situated on the same level, which makes it impractical for
large datacenters. A better idea comes from [36], where
the authors introduce a pattern-aware routing scheme. Their
solution applies to HPC environments where the workloads are
known in advance and an offline optimization of the routing
can be done before the application is launched.

VII. CONCLUSIONS

We have presented the main features of a CEE-based
datacenter network and have performed a comparative analysis
of the operation of the current state of the art deterministic,
load-oblivious and adaptive routing schemes, including the
recently proposed Switch AR. To quantitatively evaluate their
benefits and drawbacks, we have simulated them in detail
using synthetic and trace-driven traffic.

The output-generated hotspot scenarios, as well as the HPC
workloads, have revealed a drawback of the deterministic
schemes, namely the lack of adaptivity to the load conditions.
Meanwhile the input-generated hotspot scenarios, and the
scaled-up traces, have confirmed the benefits of QCN-like rate
limiters when applied to Switch AR, as well as to the other
schemes, in preventing saturation trees.

Next, output-generated hotspot scenarios, when combined
with HPC traces – with multiple priority traffic – have proved
that the Switch AR algorithm achieves better performance on
asymmetrically loaded networks. When the loads, however,
are symmetrically distributed on all the available paths, the
random routing has outperformed the other schemes.

Albeit Switch AR performs well, neither of its two current
versions wins across all the benchmarks. Hence, our two
guiding questions from SECTION I have generated a rather
nuanced answer, without revealing yet a clear single winner
or loser amongst the schemes investigated.

Besides cost, ultimately the decision depends on the traffic
patterns expected to prevail in the datacenter. For uniform
traffic distributions, the D-mod-k deterministic remains the
simplest and best performing routing. Its in-order delivery,
without resequencing buffers, further lowers the implemen-
tation costs. Next, for many Cloud and HPC applications,
random and hashing-based schemes deliver a sensible trade-
off between load-balancing, latency, throughput, and cost –
which may justify their popularity.

Finally, for complex federated datacenters simultaneously
using multiple virtual lanes/priorities, with high burstiness and
margins for the unknown future applications, the adaptive
method outperforms the other schemes. Its higher cost is

partially alleviated by the increased deployment of QCN-
compliant switches, which readily provide congestion status
information for a relatively low cost, expressed in congestion
notification traffic overhead. This somewhat unexpected fringe
benefit of the 802.1Qau congestion management represents
an additional payoff for the efforts invested by academia and
industry in standardizing QCN.

As future work, we plan to stabilize the oscillations inherent
to the switch-based adaptive scheme, which we primarily
attribute to the binary route split ratios. Additionally, we are
exploring the merits of source-based adaptive routing, as the
counter-part of Switch AR. Finally, we plan to gather more
benchmarks and datacenter network patterns and use them for
a more comprehensive study.
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