What QoS for the future Internet?

Jim Roberts INRIA

ITC 21 Paris, September 2009

1

QoS research and the future Internet

- a future Internet for enhanced security, mobility management and QoS
 - addressed diversely in research projects throughout the world
- major innovations are emerging like
 - content-centric networking
 - network virtualization
- but do we have a clear idea about enhancing QoS?
 - implement the models that have already been defined
 - or invent a new paradigm?

- perform effective traffic management
 - to meet diverse application requirements
 - for delay, jitter, loss, throughput,...
- create a viable business model for the network operator
 - a range of differentiated services
 - to maximize revenue and avoid commoditization
- a source of some confusion!

Performance in the transparent regime

- predictable packet level performance
 - negligible delay at normal load
 - performance is insensitive to detailed traffic characteristics
 - not true if overall rate can exceed capacity!
- utilization can be high when peak rates are relatively small
 - not on access links
 - not when some flows have a very high rate

Controlling bandwidth sharing

- TCP realizes approximate fair sharing
 - but relies on end user cooperation
 - and new high speed TCPs are too aggressive
- apply economic incentives for congestion control?
 - eg, a "self-managed Internet" (F. Kelly, 2000)
 - but congestion pricing is unacceptable!
- or implement fair sharing in the network
 - difficult flow identification
 - but only rare flows are "elastic" in the core...

- processor sharing models are unstable ($\rho > 1$)
 - number of flows in progress increases indefinitely
 - flow throughput tends to zero
- in practice, quality degradation is mitigated
 - by adaptable applications, user impatience
 - by the slow onset of congestion for heavy tailed flow sizes
 - by the presence of non-elastic flows that suffer loss
- but some safeguard seems essential
 - admission control or selective flow termination

- Traffic and congestion
- Myths and mystification
- Managed or unmanaged Internet

Class of service differentiation

- myth
 - methods exist to realize SLAs of designated classes
- mystification
 - three colour token bucket traffic classifiers...
 - complex class-based schedulers in routers...

Differentiation <u>is</u> useful to preserve the quality of priority traffic

- priority traffic sees a transparent regime
- implement differentiation by
 - priority queuing, loss priorities, class-based queuing, etc.
- but how is the priority traffic determined?
 - what criterion: application performance or application owner?
 - who decides: user or network operator?

Limited scope for performance guarantees

- can effectively distinguish latency critical and throughput critical applications
 - e.g., conversational & streaming vs interactive & background data
- but no scope to distinguish degrees of guaranteed latency or throughput
 - excellent quality at normal load, too bad in overload
- who can drive the complex class-based router schedulers?
 - a source of mystification!
- no way to reconcile conflicting priority criteria
 - eg, conversational services of low resilience users
 - eg, managed VoD download services

An alternative to class-based: resource allocation and per-flow QoS guarantees

- the principle of ATM (and Intserv, and IMS):
 - user declares the flow "profile"
 - network performs admission control and allocates resources
 - network polices user traffic

An alternative to class-based: resource allocation and per-flow QoS guarantees

- the principle of ATM (and Intserv, and IMS):
 - user declares the flow "profile"
 - network performs admission control and allocates resources
 - network polices user traffic
- was this ever viable? is it viable for the future Internet?
 - for individual flows or traffic aggregates (eg, for virtual networks)
 - how do we describe the traffic profile?
 - how do we perform admission control?

- traffic isolation can be achieved by reserving constant rate pipes and implementing scheduling
- but is this satisfactory?
 - for private networks
 - or for service isolation
- seek rather an illusion of isolation based on intelligent, controlled statistical resource sharing via a new QoS paradigm!

- Traffic and congestion
- Myths and mystification
- Managed or unmanaged Internet

QoS in IPX

- six QoS classes distinguished by DiffServ codepoints
 - conversational, streaming, interactive 1/2/3, background
 - distinct values of delay, jitter, packet loss
- an SLA per class
 - performance is guaranteed and is integral to the business model
- "achieving the QoS specified for the service in the SLA is a matter for the IPX provider"

QoS in an <u>unmanaged</u> Internet

- the best efforts Internet works very well most of the time ("thanks to over provisioning")
 - the transparent regime ensures excellent quality for all
- and classical QoS models don't work
 - so much "myth and mystification"
 - driven by the fear of commoditization?
- seek therefore to enhance the best efforts architecture
 - control sharing to prevent abuse and facilitate rate control
 - prevent congestion collapse in overload
- and allow end users to control sharing of last mile resource

Network controlled bandwidth sharing

- impose per-flow fair sharing in router queues
 - using fair queuing (or just fair dropping?)
- this realizes implicit differentiation
 - no loss for flows of rate < fair rate, i.e., all streaming flows
- fair queuing is scalable (cf. Kortebi, et al., 2005)
 - only $O(10^2)$ flows (with a packet in queue) need scheduling
- overload control is necessary (exceptionally)
 - flow admission control or selective flow termination to maintain the fair rate high enough
- of course, users can disguise high rate flows! (cf. Briscoe, 2007)
 - but we only need to identify the very high rate flows

User control over last mile resources (DSL, wireless, fibre,...)

- in current networks, the operator dictates its own priorities, even upstream in the user's home gateway
 - e.g., priority to managed services that earn revenue!
- but only the user knows its own preferences
 - based on the application but also on the end user, time of day,...
- proposal: user signals priority for each flow, access node implements (same as for upstream traffic in gateway)
 - e.g., priority to Skype, priority to Dad,...

- operators would seek to create a service-based Internet with architectures like IPX and IMS
 - for added value services and vertical integration
- but these architectures rely on QoS models built on "myth and mystification" rather than sound engineering
 - neither class-based differentiation nor per-flow guarantees make much sense as traffic controls
- prefer a neutral, flow-aware future Internet
 - network controlled sharing of high capacity links for implicit differentiation and flexible congestion control
 - implement controls to avoid congestion collapse in exceptional overloads
 - user controlled sharing of last mile resources, upstream and downstream
- towards communications networking as a utility?