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Overview of talk

• Motivation for large networks

• Stochastic knapsacks and the Multirate-Erlang loss model -

scaling

• QoS for packet switched networks

• Main mathematical insights

• Results

• Scalability and connection acceptance control

• Networks

• Conclusions
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Current trends

• Response times are going up. Too many users with too many

high-bandwidth peer-to-peer connections: Internet is victim of

its success!

• The best-effort paradigm is not attractive for real-time services

– leads to lack of willingness to pay for services

• Increasing pressure to provide performance guarantees (Quality

of Service (QoS))

• Future is uncertain but unlikely that the best-effort model is

going to attract paying users

Hence, the network must evolve into one capable of providing QoS
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QoS Issues

• QoS is not a new issue – Well studied in the context of ATM

and 1000’s of papers.

• Best-effort not suited to provide hard QoS - we must allocate

resources

• Solutions must be simple and yield substantial efficiency gains

over simple resource reservation based on peak requirements

• Solutions must be scalable
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Classical telephone networks

Circuit-switched: a call is allocated one circuit which it holds for

the (random) duration. Calls arrive as a Poisson process.

Main performance measure: blocking probability i.e., the

probability that on arrival a call cannot find a free circuit.

Solution: Erlang’s formula (1917)

E(λ, C) =
λC

C!

[ C
∑

n=0

λn

n!

]−1

C = Total number of circuits

Mean holding time of a call: 1 unit
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Stochastic Knapsack

Stochastic Knapsack problem:

Given a knapsack (or container) of a given size and M objects of

random size {Sk}.
How many objects can we fit in the container with minimal left

over volume?

In our context, a link of rate C and connections with differing

bandwidth requests that arrive randomly and stay for a random

time.

In our context find out the probability that an arriving connection

cannot be accommodated.
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A more complicated model: Multi-rate loss model

C bandwidth units

A_1 bandwidth units

A_3(t) bandwidth units

Overflow

Source 1

Source 2

Source 3

XXXXX

A_2 bandwidth units

Source 3 denied admission in circuit switched system
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Occupancy distribution

Let n = (n1, n2, ..., nM ) be the vector of the number of sources of

each type being carried. Then the stationary distribution has a

product form given by

P (n1, n2, ..., nM ) =
1

G

M
∏

k=1

λnk

k

nk!

for n ∈ S where:

S
.
= {n : nk ∈ Z;

M
∑

k=1

Aknk ≤ C}

and the normalization constant G is given by

G =
∑

n∈S

M
∏

k=1

λnk

k

nk!
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A source of type k gets blocked if upon arrival less than Ak

bandwidth units are available. Therefore the blocking probability

for type k is given by

Pk =
1

G

∑

n∈Xk

M
∏

i=1

λni

i

ni!
; k = 1, 2, ..., M

and

Xk = {n : C − Ak <
M
∑

m=1

nmAm ≤ C}

When M, C are large this is extremely computationally intensive.

Order of calculations O(CM). Difficult if CM is large. Thus we

seek approximations for Pk.

Turns out that when the system is large then we can actually

obtain explicit closed form expressions that are remarkably.
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Notion of a large system

The notion of a large system is obtained by scaling both the

capacity and arrival rates by a factor N . Define C(N) = NC and

λk(N) = Nλk. Note this notion extends to networks

In other words the large system can be seen as a N fold scaling of a

nominal system where connections arrive at rate λk, require Ak

units of bandwidth, and the server capacity is C.
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Main results

Let Pk(N) denote the blocking probability of class k in the scaled

system. We have to re-define the regions S(N), Xk(N) and the

corresponding normalization factor G(N).

We consider the following 3 cases:

(Light Load)
∑M

1 λkAk < C

(Critical load)
∑M

1 λkAk = C

(Heavy load)
∑M

1 λkAk > C
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Main results for the multi-rate loss system

• Light load

Pk(N) = exp(τCdǫ)
exp(−NI(C))(1 − exp(τCAk))√

2πNσ(1 − exp(τcd))

(

1 + O(
1

N
)

)

• Critical load

Pk(N) =

√

2

πN

Ak

σ

(

1 + O(
1√
N

)

)

• Heavy load

Pk(N) = (1 − exp(τCAk))(1 + O(
1

N
))
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The parameters I(C), τC , ǫ, σ, δ and d are defined as

• d is the GCD of {A1, A2, ..., AM}

• ǫ = NC
d

− int(NC
d

)

• τC is the unique solution to
∑M

1 λkAk exp(τCAk) = C

• I(C) = CτC − ∑M

1 λk(exp(τCAk) − 1)

• σ2 =
∑M

1 λkA2
k exp(τCAk)
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Networks more difficult due to dependencies between link flows.

However, if we study networks when they are large (in a scaled

regime) we can explicitly compute the blocking along any route and

moreover we can show:

• Independence of blocking (i.e., single-link computations) holds

if error of the order O( 1
N

) is required under light-to-critical

loading

B(N )r = 1 −
∏

Aj,r 6=0

(1 − Bj(N))

where Bj is the blocking formula for a single link j and

Aj,r = 1 if route r uses link j and is 0 otherwise.
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NUMERICAL RESULTS

C2=22N

C9=14N

C11=15N

C3=14N
C4=8N C7=7N

C1=15N

C5=8N

C10=15N

C8=10N

C6=15N

C13=20N

C12=25N

Figure 1: Typical network with scaling parameter N
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Ar r νr Simulation Knapsack Formula

1 1,2 4 (7.0-8.0)e-5 7.0e-5 7.23e-5

2 5,8,12 3 (4.0-4.3)e-4 4.4e-4 4.50e-4

3 6,9,12,13 2 (5.1-5.4)e-4 5.5e-4 5.57e-4

2 10,11,12,13 3 (3.5-3.7)e-4 3.9e-4 3.89e-4

1 3,4,6 6 < 1e-5 < 1e-5 2.01e-6

1 2,3,7,9 4 (7.0-8.0)e-5 7.0e-5 7.23e-5

2 8,11 1 (8.0-9.0)e-5 1.0e-4 1.11e-4

4 11,12,13 1 (7.3-7.7)e-4 8.1e-4 8.17e-4

2 1,2,10 3 (1.5-1.6)e-4 1.5e-4 1.54e-4

5 2 1 (4.0-4.3)e-4 4.1e-4 4.12e-4

Table 1: Blocking in large network with scaling N = 50. Note entries

with < cannot be estimated via simulation
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Context of arriving session model

When sessions are streams or flows whose rate is variable (random)

how do we determine its bandwidth?

The peak rate? Mean rate? Or is there a measure somewhere in

between?

This has consequences in terms of allocating bandwidth and hence

the total number of flows that can be accommodated by the server.
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QoS approaches

Peak rate based QoS provisioning

• Problem: Very poor network utilization

Deterministic QoS based on traffic shaping

• Metrics: Worst case delays, zero loss

• Problem: Low network utilization.

Statistical QoS

• Metrics: Average delay, packet loss probability, tail of delay

distribution

• Advantage: High network utilization

• Problem: Difficult to characterize for small systems

• Solution: Can obtain very tight explicit formulae for large

systems
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QoS with Mean Delay: Motivation

Consider the following M/G/1 model where there are N sources

that are transmitting at a Poisson rate of λ packets per second.

The server serves at a rate of C bits per second. The packet sizes

are variable and uniformly distributed in [0, M ] where M

represents the maximum packet size in bits.

• Stability implies Nstabλ
M
2 < C or N < 2C

λM
.

• Peak rate implies: Npeak ≤ C
λM

or half as many.

Now suppose the mean delay constraint is D then from the

Pollaczek-Khinchine formula:

Nmult ≤
C

λM2

6CD
+ λM

2

and hence Npeak ≤ Nmult ≤ Nstab
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Now we see that if C → ∞ the number Nmult → Nstab or in other

words as the capacity increases the bandwidth associated with a

connection goes towards its mean (the notion of statistical

multiplexing)

Suppose there are J different types of sources: The quantity:

Ai =
λiM

2
i

6CD
+

λMi

2

is what is referred to as the effective bandwidth and the rule for

admission is:
J

∑

i=1

niAi ≤ C

where ni is the number of users of type i in the system, which looks

like the condition for the multirate loss system.
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Deterministic vs. statistical QoS

N1

Unstable 
Region# of Class 1

N2

Statistical 
QoS

Region
Stable

0

peak

QoS
det.

# of Class 2
Sources

Sources
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Multiplexer model- Overflows

NC

NB

Number of sources of type i = Nn_i

W_0 = sup { t ≥ 0: x(-t,0) - NCt}

Total bits in [0,t] = ∑ x_i(0,t)

Overflow prob. P(W_0 > NB) 

Large Buffer Model

Buffer Content

Type 1

Type m

Type M

B C

: N-fold Scaling

"Nominal Model"

O(N) # of
Type 1 sources

O(N) # of
Type 2 sources

O(N) # of
Type M sources
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Model

Discrete-time model for cell flow.

Total number of sources: N. Buffer size : NB Server speed = NC

Source assumptions: Independent, identical sources.

Server is assumed to be work conserving.

Source i emits λi,t number of bits at time t.

Assumption: E[λi,t] < C (stability assumption)

Let Xi(0, t] denote the total number of bits emitted by source i in

(0, t].

Xi(0, t] =
t

∑

j=1

λi,j

Assumption: Xi(0, t] is a stationary, increment process.
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Statistical QoS measures

• Loss Ratio (LR) (fraction of bits lost) is defined as:

LR =
E[

∑T
t=1(W

(N)
t−1 + λ

(N)
t − N(C + B))+]

EX(N)(0, T ]

Note by stationarity, LR = Bit Loss Probability.

• Overflow probability or delay tail distribution (under FIFO)

P
(

W N > NB
)



'

&

$

%

Bahadur-Rao Theorem

Let φt(h) denote the moment generating function of Xi(0, t]. Then

uniformly in the argument N(Ct + B):

P{X(N)(0, t] ≥ N(Ct + B)} =
e−NIt(C,B)

τt

√

2πNσ2
t

(

1 + O(
1

N
)

)

where

•

It(C, B) = sup
θ≥0

{(Ct + B)θ − log φt(θ)}

= (Ct + B)τt − log(φt(τt)
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• τt is the unique solution to

φ′
t(τt)

φt(τt)
= Ct + B

•
σ2

t =
φ′′

t (τt)

φt(τt)
− (Ct + B)2

Idea is based on exponential measure change to set mean to Ct + B

and then use local Gaussian limit theorem exactly as for the loss

system case.
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Main result for overflow probabilities

Hypotheses

H1: ∃ a unique t0 < ∞ such that:

It0(C, B) = min
t≥1

It(C, B) > 0

H2

lim inf
t→∞

It(C, B)

log t
> 0

(this is satisfied by ”self-similar” sources)

Then as N → ∞, uniformly in NB

P{Y (N) > NB} =
e−NIt0

(C,B)

τt0

√

2πσ2
t0

N

(

1 + O(
1

N
)

)
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Loss probability

Under hypotheses H1 and H2, as N → ∞

LR =
e−NIt0

(C,B)

τ2
t0

Cρ
√

2πNσ2
t0

N3

(

1 + O(
1

N
)

)

where ρ =
E[λt,1]

C
is the average load.

Note: Constant is of order O(N− 3

2 ) implying for large systems

N ∼ 100 − 1000 only considering exponential (as is done in many

studies) gives LR two orders of magnitude off – i.e., if we design for

10−9 using only exponential then actual performance is 10−11 –

conservative.
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Simulation results

Deterministic ON-OFF Sources λ0 = λ1 = 25, and

λt = 0; t = 2, 3, ...49.

These sources are periodic with period 50. The sources are

randomly phase shifted in [0, 49]

C = 2.5N .

N Simulation (90% confidence) Formula

50 (-2.2915, -2.2684) -2.1106

75 (-3.0144, -2.9625) -2.9468

100 (-3.7310, -3.6428) -3.7063

150 (-5.2031, -4.8751) -5.1145

Table 2: Loss probabilities in finite buffers
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Engineering insights

• Statistical multiplexing gains are obtained whether sources are

conventional or self-similar when many sources are multiplexed

(exponentially decreasing in N)

• The parameter t0 is called the critical time scale of a source. It

is the most likely time scale for buffer overflow. Also it defines

the time interval over which we need to measure source

statistics.

Engineering implications: Large number of sources actually helps in

the context of buffer design providing multiplexing gains

irrespective of the type of sources i.e.”self-similarity” and

long-range dependence do not matter in the core of the network.
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Connection acceptance control

To develop CAC we need to estimate the bandwidth of a connection

i.e. the {Ak} in the multi-rate model. How do we define it?

(n1,n2): Most likely configuration*

n1A1+n2A2 = C*

Number of type 1 connections

N
um

be
r 

of
 ty

pe
 2

 c
on

ne
ct

io
ns

n1

n2

C   = Effective capacity
Ai = Effective bandwidth of type i

*

*
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Acceptance Region

Suppose the QoS for loss is ε.

Define:

Ωε = {{ni}M
1=1 : PL ≤ ε}

Then Ωε is the acceptance region.

Define the boundary configurations

∂Ωε = {n : PL = ε}
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Acceptance region- contd.

Once we have Ωε we can study some properties.

Coordinate convexity: Let S be a set of possible configurations.

Then S is said to be coordinate convex if for n ∈ S , the vector

n− ek ∈ S for all nk > 0 and k = 1, 2, . . . , M .

• Fact 1: The set Ωε is co-ordinate convex under the ”true” loss

probability.

• Fact 2: The set Ωε is co-ordinate convex under PL(.)

(approximation) for large N .
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Ramifications: Co-ordinate convexity implies that the equilibrium

distribution of the configurations is given by a ”product-form”.

i.e.

Π(m) =
1

G

∏ (Nλi)
mi

mi!

where G is the normalizing constant given by:

G =
∑

m∈Ωε

(Nλi)
mi

mi!
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Most likely loss state

Definition: The configuration m∗ ∈ ∂Ωε which maximizes Π(m) is

called the most likely loss state.

Properties:

• m∗ is unique

• Let m be any other state in ∂Ωε. Then:

Π(m)

Π(m∗)
∼ O(e−N )

Implications: loss is concentrated at m∗
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Effective rate

Idea is to associate a bandwidth assignment to a call such that if

admitted the call will satisfy the QoS and we can use the multi-rate

loss model for blocking.

Questions:

• What is the effective rate?

• What are the properties?

• What is the coupling between loss and the effective rate?
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Effective rates?

Effective rates= Effective Bandwidth idea due to Hui and Kelly.

The idea is to replace the burstiness of traffic flow by an equivalent

bandwidth requirement.

• Effective bandwidth is defined as Ai =
Γi,t(θ)

θ
where

Γt(θ) = log Mi,t(θ)

• ri,min ≤ Ai ≤ ri,peak

• Ai → ri,mean as the number of sources becomes large.
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Effective rates

Having identified m∗ let us compute it explicitly for our model

where we replace C by C + B
t0

.

m∗
j = Nλj(φj(τc))

y exp{ y

NΓ2

[

(1 +
2

eτc − 1
)
φ′

j(τc)

φj(τc)

]

}

where y is a Lagrange multiplier (for constraint satisfaction) and τc

satisfies:
M
∑

i=1

m∗
i

φ′
i(τc)

φi(τc)
= C

We have (M + 2) unknowns and (M+2) equations to solve for the

unknowns τc,y, m∗
i .
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Effective rates (contd.)

Taking the gradient of P (loss) at the most likely state gives:

aj = ln(φj(τc)) +
1

NΓ2

(

1 +
2

eτc − 1

)

φ′
j(τc)

φj(τc)

Define:

Aj =
aj

amin

Then Aj denotes the slope of the hyperplane at m∗ (normalized to

the minimum of aj). This is nothing but the sensitivity of the loss

probability and therefore the natural definition of the effective rate

of the connection.
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Define:

C∗ =
M
∑

i=1

Ajm
∗
j

Then C∗ denotes the effective capacity of the VP.

The interpretation: for statistical multiplexing C∗ corresponds to

C to be able to use the linear decision rule since C∗ defines the

hyperplane:

Tε = {m :

M
∑

i=1

Aimi = C∗
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CAC Procedure

• Compute m∗
j and Aj for each connection.

• If Aincoming +
∑

ongoing Aini < C accept request.

Else reject request
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Properties of effective rates in large systems

Let us keep ε fixed and see some properties as N increases

• m(N) converges to m0 such that
∑M

i=1 m0
i ri = C where ri is

the mean rate of source i.

• Aj(N) converges to ri

rmin

• Hyperplane is exact in the limit i.e. Tε = ∂Ωε. This implies tat

the boundary of the acceptance region coincides with the

boundary of the stability region.
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Example

Consider multiplexing two classes of ON-OFF sources. C = 2000,

N = 100. Source 1: λ1 = 14, p1 = 0.275, Peak1 = 2 Source 2: λ2 = 14,

p2 = 0.8 and Peak2 = 1.

From which we obtain: A1 = 1.0, A2 = 1.385 and C∗ = 3384.7

To check that our rate or bandwidth assignment is right the

multi-rate blocking rate formula must give consistent results.

Technique Class 1 blocking Class 2 blocking

Simul. (95 % conf. int.) .00427-.00501 .00631-.00724

Theorem .00479 .00661

Table 3: Connection blocking probabilities
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This procedure defines an acceptance region of the form
∑

j Ajnj ≤ NC∗ The table below indicates simulation results the

loss probability for a region that is designed for loss of order of

10−4.

Number of Number of Base 10 logarithm of

Class 1 calls Class 2 calls 95% conf. int. for loss

500 2083 (-4.13,-4.03)

1000 1722 (-4.19,-4.11)

1416 1422 (-4.16,-4.09)

1500 1361 (-4.30,-4.23)

2000 1000 (-4.25,-4.17)

Table 4: Packet loss values
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Concluding remarks

• Mathematical analysis of large communication networks can provide

many insights

• Identifying features such as critical time scales have important

measurement implications

• In large systems source characteristics (long-range dependence etc.)

do not affect behavior

• Extremely accurate formulae for dimensioning and allocating

resources

• Large networks are in fact easier to analyse, even end-to-end!

• There is no single mathematical tool but large deviations and Palm

theory play a key role

• Important new concepts such as effective bandwidths have emerged

• Thousands of long simulations needed to obtain the same knowledge
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